Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +450 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,450 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Project Phoenix - Cervical Cancer Cell Classification API
|
| 3 |
+
Flask application for running inference on ConvNeXt V2 model from Hugging Face
|
| 4 |
+
with explainability features (GRAD-CAM).
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
import io
|
| 9 |
+
import base64
|
| 10 |
+
import numpy as np
|
| 11 |
+
import cv2
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
from typing import Dict, List, Optional, Tuple
|
| 14 |
+
|
| 15 |
+
# Flask
|
| 16 |
+
from flask import Flask, request, jsonify
|
| 17 |
+
from flask_cors import CORS
|
| 18 |
+
from werkzeug.utils import secure_filename
|
| 19 |
+
|
| 20 |
+
# Deep Learning
|
| 21 |
+
import torch
|
| 22 |
+
import torch.nn as nn
|
| 23 |
+
import torch.nn.functional as F
|
| 24 |
+
from PIL import Image
|
| 25 |
+
import torchvision.transforms as T
|
| 26 |
+
|
| 27 |
+
# Transformers
|
| 28 |
+
from transformers import (
|
| 29 |
+
ConvNextV2ForImageClassification,
|
| 30 |
+
AutoImageProcessor
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
# GRAD-CAM
|
| 34 |
+
from pytorch_grad_cam import GradCAM
|
| 35 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image
|
| 36 |
+
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
| 37 |
+
|
| 38 |
+
# ========== CONFIGURATION ==========
|
| 39 |
+
|
| 40 |
+
# Update this with your Hugging Face model ID
|
| 41 |
+
# Example: "Meet2304/convnextv2-cervical-cell-classification"
|
| 42 |
+
HF_MODEL_ID = os.getenv("HF_MODEL_ID", "Meet2304/convnextv2-cervical-cell-classification")
|
| 43 |
+
|
| 44 |
+
# Class names
|
| 45 |
+
CLASS_NAMES = [
|
| 46 |
+
'im_Dyskeratotic',
|
| 47 |
+
'im_Koilocytotic',
|
| 48 |
+
'im_Metaplastic',
|
| 49 |
+
'im_Parabasal',
|
| 50 |
+
'im_Superficial-Intermediate'
|
| 51 |
+
]
|
| 52 |
+
|
| 53 |
+
# Display names (cleaner for UI)
|
| 54 |
+
DISPLAY_NAMES = [
|
| 55 |
+
'Dyskeratotic',
|
| 56 |
+
'Koilocytotic',
|
| 57 |
+
'Metaplastic',
|
| 58 |
+
'Parabasal',
|
| 59 |
+
'Superficial-Intermediate'
|
| 60 |
+
]
|
| 61 |
+
|
| 62 |
+
# Image preprocessing
|
| 63 |
+
IMG_SIZE = 224
|
| 64 |
+
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg', 'bmp'}
|
| 65 |
+
MAX_FILE_SIZE = 10 * 1024 * 1024 # 10MB
|
| 66 |
+
|
| 67 |
+
# Device
|
| 68 |
+
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 69 |
+
|
| 70 |
+
# ========== FLASK APP SETUP ==========
|
| 71 |
+
|
| 72 |
+
app = Flask(__name__)
|
| 73 |
+
CORS(app) # Enable CORS for Next.js frontend
|
| 74 |
+
|
| 75 |
+
app.config['MAX_CONTENT_LENGTH'] = MAX_FILE_SIZE
|
| 76 |
+
|
| 77 |
+
# ========== MODEL LOADING ==========
|
| 78 |
+
|
| 79 |
+
print("Loading model from Hugging Face...")
|
| 80 |
+
print(f"Model ID: {HF_MODEL_ID}")
|
| 81 |
+
print(f"Device: {DEVICE}")
|
| 82 |
+
|
| 83 |
+
# Load image processor
|
| 84 |
+
processor = AutoImageProcessor.from_pretrained(HF_MODEL_ID)
|
| 85 |
+
print("✓ Processor loaded")
|
| 86 |
+
|
| 87 |
+
# Load model
|
| 88 |
+
model = ConvNextV2ForImageClassification.from_pretrained(HF_MODEL_ID)
|
| 89 |
+
model = model.to(DEVICE)
|
| 90 |
+
model.eval()
|
| 91 |
+
print("✓ Model loaded and set to evaluation mode")
|
| 92 |
+
|
| 93 |
+
print(f"Model configuration:")
|
| 94 |
+
print(f" - Number of classes: {model.config.num_labels}")
|
| 95 |
+
print(f" - Image size: {model.config.image_size}")
|
| 96 |
+
print(f" - Total parameters: {sum(p.numel() for p in model.parameters()):,}")
|
| 97 |
+
|
| 98 |
+
# ========== HELPER FUNCTIONS ==========
|
| 99 |
+
|
| 100 |
+
def allowed_file(filename: str) -> bool:
|
| 101 |
+
"""Check if file extension is allowed."""
|
| 102 |
+
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def preprocess_image(image: Image.Image) -> Tuple[torch.Tensor, np.ndarray]:
|
| 106 |
+
"""
|
| 107 |
+
Preprocess image for model input.
|
| 108 |
+
|
| 109 |
+
Returns:
|
| 110 |
+
Tuple of (preprocessed_tensor, original_image_array)
|
| 111 |
+
"""
|
| 112 |
+
# Store original for visualization
|
| 113 |
+
original_image = np.array(image.convert('RGB'))
|
| 114 |
+
|
| 115 |
+
# Preprocess using the model's processor
|
| 116 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 117 |
+
pixel_values = inputs['pixel_values'].to(DEVICE)
|
| 118 |
+
|
| 119 |
+
return pixel_values, original_image
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def predict_image(pixel_values: torch.Tensor, top_k: int = 5) -> Dict:
|
| 123 |
+
"""
|
| 124 |
+
Make prediction on preprocessed image.
|
| 125 |
+
|
| 126 |
+
Args:
|
| 127 |
+
pixel_values: Preprocessed image tensor
|
| 128 |
+
top_k: Number of top predictions to return
|
| 129 |
+
|
| 130 |
+
Returns:
|
| 131 |
+
Dictionary with prediction results
|
| 132 |
+
"""
|
| 133 |
+
model.eval()
|
| 134 |
+
with torch.no_grad():
|
| 135 |
+
outputs = model(pixel_values)
|
| 136 |
+
logits = outputs.logits
|
| 137 |
+
|
| 138 |
+
# Get probabilities
|
| 139 |
+
probabilities = F.softmax(logits, dim=-1)[0]
|
| 140 |
+
|
| 141 |
+
# Get top-k predictions
|
| 142 |
+
top_probs, top_indices = torch.topk(probabilities, k=min(top_k, len(CLASS_NAMES)))
|
| 143 |
+
|
| 144 |
+
# Get predicted class
|
| 145 |
+
predicted_class_idx = logits.argmax(-1).item()
|
| 146 |
+
predicted_class_name = DISPLAY_NAMES[predicted_class_idx]
|
| 147 |
+
predicted_confidence = probabilities[predicted_class_idx].item()
|
| 148 |
+
|
| 149 |
+
# Prepare results
|
| 150 |
+
results = {
|
| 151 |
+
'predicted_class': predicted_class_name,
|
| 152 |
+
'predicted_class_raw': CLASS_NAMES[predicted_class_idx],
|
| 153 |
+
'predicted_idx': predicted_class_idx,
|
| 154 |
+
'confidence': float(predicted_confidence),
|
| 155 |
+
'top_k_predictions': [
|
| 156 |
+
{
|
| 157 |
+
'class': DISPLAY_NAMES[idx],
|
| 158 |
+
'class_raw': CLASS_NAMES[idx],
|
| 159 |
+
'probability': float(prob)
|
| 160 |
+
}
|
| 161 |
+
for idx, prob in zip(top_indices, top_probs)
|
| 162 |
+
],
|
| 163 |
+
'all_probabilities': {
|
| 164 |
+
DISPLAY_NAMES[i]: float(prob)
|
| 165 |
+
for i, prob in enumerate(probabilities)
|
| 166 |
+
}
|
| 167 |
+
}
|
| 168 |
+
|
| 169 |
+
return results
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
class ConvNeXtGradCAMWrapper(nn.Module):
|
| 173 |
+
"""Wrapper for ConvNeXtV2ForImageClassification to make it compatible with GRAD-CAM."""
|
| 174 |
+
|
| 175 |
+
def __init__(self, model):
|
| 176 |
+
super().__init__()
|
| 177 |
+
self.model = model
|
| 178 |
+
|
| 179 |
+
def forward(self, x):
|
| 180 |
+
outputs = self.model(pixel_values=x)
|
| 181 |
+
return outputs.logits
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
def get_target_layers(model):
|
| 185 |
+
"""Get the target layers for GRAD-CAM from ConvNeXt model."""
|
| 186 |
+
return [model.convnextv2.encoder.stages[-1].layers[-1]]
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
def apply_gradcam(
|
| 190 |
+
pixel_values: torch.Tensor,
|
| 191 |
+
original_image: np.ndarray,
|
| 192 |
+
target_class: Optional[int] = None
|
| 193 |
+
) -> Dict:
|
| 194 |
+
"""
|
| 195 |
+
Apply GRAD-CAM to visualize model attention.
|
| 196 |
+
|
| 197 |
+
Args:
|
| 198 |
+
pixel_values: Preprocessed image tensor
|
| 199 |
+
original_image: Original image as numpy array
|
| 200 |
+
target_class: Target class index (None for predicted class)
|
| 201 |
+
|
| 202 |
+
Returns:
|
| 203 |
+
Dictionary with GRAD-CAM visualization and metadata
|
| 204 |
+
"""
|
| 205 |
+
# Wrap the model
|
| 206 |
+
wrapped_model = ConvNeXtGradCAMWrapper(model)
|
| 207 |
+
|
| 208 |
+
# Get target layers
|
| 209 |
+
target_layers = get_target_layers(model)
|
| 210 |
+
|
| 211 |
+
# Initialize GRAD-CAM
|
| 212 |
+
cam = GradCAM(model=wrapped_model, target_layers=target_layers)
|
| 213 |
+
|
| 214 |
+
# Get prediction
|
| 215 |
+
model.eval()
|
| 216 |
+
with torch.no_grad():
|
| 217 |
+
outputs = model(pixel_values)
|
| 218 |
+
logits = outputs.logits
|
| 219 |
+
predicted_class = logits.argmax(-1).item()
|
| 220 |
+
probabilities = F.softmax(logits, dim=-1)[0]
|
| 221 |
+
|
| 222 |
+
# Use predicted class if target not specified
|
| 223 |
+
if target_class is None:
|
| 224 |
+
target_class = predicted_class
|
| 225 |
+
|
| 226 |
+
# Create target for GRAD-CAM
|
| 227 |
+
targets = [ClassifierOutputTarget(target_class)]
|
| 228 |
+
|
| 229 |
+
# Generate GRAD-CAM
|
| 230 |
+
grayscale_cam = cam(input_tensor=pixel_values, targets=targets)
|
| 231 |
+
grayscale_cam = grayscale_cam[0, :]
|
| 232 |
+
|
| 233 |
+
# Resize original image to match CAM dimensions
|
| 234 |
+
cam_h, cam_w = grayscale_cam.shape
|
| 235 |
+
rgb_image_for_overlay = cv2.resize(original_image, (cam_w, cam_h)).astype(np.float32) / 255.0
|
| 236 |
+
|
| 237 |
+
# Create visualization
|
| 238 |
+
visualization = show_cam_on_image(
|
| 239 |
+
rgb_image_for_overlay,
|
| 240 |
+
grayscale_cam,
|
| 241 |
+
use_rgb=True,
|
| 242 |
+
colormap=cv2.COLORMAP_JET
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
return {
|
| 246 |
+
'grayscale_cam': grayscale_cam,
|
| 247 |
+
'visualization': visualization,
|
| 248 |
+
'predicted_class': predicted_class,
|
| 249 |
+
'target_class': target_class,
|
| 250 |
+
'confidence': float(probabilities[predicted_class].item())
|
| 251 |
+
}
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
def encode_image_to_base64(image_array: np.ndarray) -> str:
|
| 255 |
+
"""Convert numpy array to base64 encoded PNG."""
|
| 256 |
+
# Convert to PIL Image
|
| 257 |
+
if image_array.dtype != np.uint8:
|
| 258 |
+
image_array = (image_array * 255).astype(np.uint8)
|
| 259 |
+
|
| 260 |
+
img = Image.fromarray(image_array)
|
| 261 |
+
|
| 262 |
+
# Save to bytes buffer
|
| 263 |
+
buffer = io.BytesIO()
|
| 264 |
+
img.save(buffer, format='PNG')
|
| 265 |
+
buffer.seek(0)
|
| 266 |
+
|
| 267 |
+
# Encode to base64
|
| 268 |
+
img_base64 = base64.b64encode(buffer.getvalue()).decode('utf-8')
|
| 269 |
+
return f"data:image/png;base64,{img_base64}"
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
# ========== API ENDPOINTS ==========
|
| 273 |
+
|
| 274 |
+
@app.route('/health', methods=['GET'])
|
| 275 |
+
def health_check():
|
| 276 |
+
"""Health check endpoint."""
|
| 277 |
+
return jsonify({
|
| 278 |
+
'status': 'healthy',
|
| 279 |
+
'model_loaded': model is not None,
|
| 280 |
+
'device': str(DEVICE),
|
| 281 |
+
'model_id': HF_MODEL_ID
|
| 282 |
+
})
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
@app.route('/predict', methods=['POST'])
|
| 286 |
+
def predict():
|
| 287 |
+
"""
|
| 288 |
+
Predict cervical cell classification.
|
| 289 |
+
|
| 290 |
+
Expects:
|
| 291 |
+
- image file in multipart/form-data
|
| 292 |
+
- Optional: top_k parameter for number of predictions
|
| 293 |
+
|
| 294 |
+
Returns:
|
| 295 |
+
JSON with prediction results
|
| 296 |
+
"""
|
| 297 |
+
# Check if image file is present
|
| 298 |
+
if 'image' not in request.files:
|
| 299 |
+
return jsonify({'error': 'No image file provided'}), 400
|
| 300 |
+
|
| 301 |
+
file = request.files['image']
|
| 302 |
+
|
| 303 |
+
# Check if file is selected
|
| 304 |
+
if file.filename == '':
|
| 305 |
+
return jsonify({'error': 'No file selected'}), 400
|
| 306 |
+
|
| 307 |
+
# Check file extension
|
| 308 |
+
if not allowed_file(file.filename):
|
| 309 |
+
return jsonify({
|
| 310 |
+
'error': f'File type not allowed. Allowed types: {", ".join(ALLOWED_EXTENSIONS)}'
|
| 311 |
+
}), 400
|
| 312 |
+
|
| 313 |
+
try:
|
| 314 |
+
# Get top_k parameter (default: 5)
|
| 315 |
+
top_k = int(request.form.get('top_k', 5))
|
| 316 |
+
|
| 317 |
+
# Load and preprocess image
|
| 318 |
+
image = Image.open(file.stream)
|
| 319 |
+
pixel_values, original_image = preprocess_image(image)
|
| 320 |
+
|
| 321 |
+
# Make prediction
|
| 322 |
+
results = predict_image(pixel_values, top_k=top_k)
|
| 323 |
+
|
| 324 |
+
return jsonify({
|
| 325 |
+
'success': True,
|
| 326 |
+
'prediction': results
|
| 327 |
+
})
|
| 328 |
+
|
| 329 |
+
except Exception as e:
|
| 330 |
+
return jsonify({
|
| 331 |
+
'success': False,
|
| 332 |
+
'error': str(e)
|
| 333 |
+
}), 500
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
@app.route('/predict_with_explainability', methods=['POST'])
|
| 337 |
+
def predict_with_explainability():
|
| 338 |
+
"""
|
| 339 |
+
Predict cervical cell classification with GRAD-CAM visualization.
|
| 340 |
+
|
| 341 |
+
Expects:
|
| 342 |
+
- image file in multipart/form-data
|
| 343 |
+
- Optional: top_k parameter for number of predictions
|
| 344 |
+
- Optional: target_class parameter for GRAD-CAM visualization
|
| 345 |
+
|
| 346 |
+
Returns:
|
| 347 |
+
JSON with prediction results and GRAD-CAM visualization
|
| 348 |
+
"""
|
| 349 |
+
# Check if image file is present
|
| 350 |
+
if 'image' not in request.files:
|
| 351 |
+
return jsonify({'error': 'No image file provided'}), 400
|
| 352 |
+
|
| 353 |
+
file = request.files['image']
|
| 354 |
+
|
| 355 |
+
# Check if file is selected
|
| 356 |
+
if file.filename == '':
|
| 357 |
+
return jsonify({'error': 'No file selected'}), 400
|
| 358 |
+
|
| 359 |
+
# Check file extension
|
| 360 |
+
if not allowed_file(file.filename):
|
| 361 |
+
return jsonify({
|
| 362 |
+
'error': f'File type not allowed. Allowed types: {", ".join(ALLOWED_EXTENSIONS)}'
|
| 363 |
+
}), 400
|
| 364 |
+
|
| 365 |
+
try:
|
| 366 |
+
# Get parameters
|
| 367 |
+
top_k = int(request.form.get('top_k', 5))
|
| 368 |
+
target_class = request.form.get('target_class')
|
| 369 |
+
if target_class is not None:
|
| 370 |
+
target_class = int(target_class)
|
| 371 |
+
|
| 372 |
+
# Load and preprocess image
|
| 373 |
+
image = Image.open(file.stream)
|
| 374 |
+
pixel_values, original_image = preprocess_image(image)
|
| 375 |
+
|
| 376 |
+
# Make prediction
|
| 377 |
+
prediction_results = predict_image(pixel_values, top_k=top_k)
|
| 378 |
+
|
| 379 |
+
# Apply GRAD-CAM
|
| 380 |
+
gradcam_results = apply_gradcam(pixel_values, original_image, target_class)
|
| 381 |
+
|
| 382 |
+
# Encode visualization as base64
|
| 383 |
+
visualization_base64 = encode_image_to_base64(gradcam_results['visualization'])
|
| 384 |
+
original_image_base64 = encode_image_to_base64(original_image)
|
| 385 |
+
|
| 386 |
+
return jsonify({
|
| 387 |
+
'success': True,
|
| 388 |
+
'prediction': prediction_results,
|
| 389 |
+
'explainability': {
|
| 390 |
+
'method': 'GRAD-CAM',
|
| 391 |
+
'target_class': DISPLAY_NAMES[gradcam_results['target_class']],
|
| 392 |
+
'target_class_idx': gradcam_results['target_class'],
|
| 393 |
+
'visualization': visualization_base64,
|
| 394 |
+
'original_image': original_image_base64
|
| 395 |
+
}
|
| 396 |
+
})
|
| 397 |
+
|
| 398 |
+
except Exception as e:
|
| 399 |
+
return jsonify({
|
| 400 |
+
'success': False,
|
| 401 |
+
'error': str(e)
|
| 402 |
+
}), 500
|
| 403 |
+
|
| 404 |
+
|
| 405 |
+
@app.route('/classes', methods=['GET'])
|
| 406 |
+
def get_classes():
|
| 407 |
+
"""Get list of available classes."""
|
| 408 |
+
return jsonify({
|
| 409 |
+
'classes': [
|
| 410 |
+
{
|
| 411 |
+
'idx': i,
|
| 412 |
+
'name': display_name,
|
| 413 |
+
'raw_name': raw_name
|
| 414 |
+
}
|
| 415 |
+
for i, (display_name, raw_name) in enumerate(zip(DISPLAY_NAMES, CLASS_NAMES))
|
| 416 |
+
]
|
| 417 |
+
})
|
| 418 |
+
|
| 419 |
+
|
| 420 |
+
@app.route('/', methods=['GET'])
|
| 421 |
+
def index():
|
| 422 |
+
"""Root endpoint with API information."""
|
| 423 |
+
return jsonify({
|
| 424 |
+
'name': 'Project Phoenix - Cervical Cancer Cell Classification API',
|
| 425 |
+
'version': '1.0.0',
|
| 426 |
+
'model': HF_MODEL_ID,
|
| 427 |
+
'device': str(DEVICE),
|
| 428 |
+
'endpoints': {
|
| 429 |
+
'/health': 'GET - Health check',
|
| 430 |
+
'/predict': 'POST - Predict cell classification',
|
| 431 |
+
'/predict_with_explainability': 'POST - Predict with GRAD-CAM visualization',
|
| 432 |
+
'/classes': 'GET - Get available classes'
|
| 433 |
+
},
|
| 434 |
+
'supported_formats': list(ALLOWED_EXTENSIONS),
|
| 435 |
+
'max_file_size': f'{MAX_FILE_SIZE / (1024 * 1024)}MB'
|
| 436 |
+
})
|
| 437 |
+
|
| 438 |
+
|
| 439 |
+
# ========== MAIN ==========
|
| 440 |
+
|
| 441 |
+
if __name__ == '__main__':
|
| 442 |
+
# Get port from environment variable or default to 5000
|
| 443 |
+
port = int(os.getenv('PORT', 5000))
|
| 444 |
+
|
| 445 |
+
# Run the app
|
| 446 |
+
app.run(
|
| 447 |
+
host='0.0.0.0',
|
| 448 |
+
port=port,
|
| 449 |
+
debug=os.getenv('FLASK_ENV') == 'development'
|
| 450 |
+
)
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
safetensors
|
| 3 |
+
scikit-learn
|
| 4 |
+
transformers
|
| 5 |
+
numpy
|
| 6 |
+
pillow
|