Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,42 +3,15 @@ from PIL import Image
|
|
| 3 |
import torch
|
| 4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
|
| 6 |
-
# # Set default device to CUDA for GPU acceleration
|
| 7 |
-
# device = 'cuda' if torch.cuda.is_available() else "cpu"
|
| 8 |
torch.set_default_device("cuda")
|
| 9 |
|
| 10 |
# Initialize the model and tokenizer
|
| 11 |
-
model = AutoModelForCausalLM.from_pretrained("ManishThota/Sparrow",
|
| 12 |
-
|
| 13 |
-
|
|
|
|
| 14 |
tokenizer = AutoTokenizer.from_pretrained("ManishThota/Sparrow", trust_remote_code=True)
|
| 15 |
|
| 16 |
-
# def predict_answer(image, question):
|
| 17 |
-
# # Convert PIL image to RGB if not already
|
| 18 |
-
# image = image.convert("RGB")
|
| 19 |
-
|
| 20 |
-
# # # Format the text input for the model
|
| 21 |
-
# # text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{question} ASSISTANT:"
|
| 22 |
-
|
| 23 |
-
# # Tokenize the text input
|
| 24 |
-
# encoding = tokenizer(image, question, return_tensors='pt').to(device)
|
| 25 |
-
|
| 26 |
-
# out = model.generate(**encoding)
|
| 27 |
-
# # Preprocess the image for the model
|
| 28 |
-
# generated_text = tokenizer.decode(out[0], skip_special_tokens=True)
|
| 29 |
-
|
| 30 |
-
# # # Generate the answer
|
| 31 |
-
# # output_ids = model.generate(
|
| 32 |
-
# # input_ids,
|
| 33 |
-
# # max_new_tokens=100,
|
| 34 |
-
# # images=image_tensor,
|
| 35 |
-
# # use_cache=True)[0]
|
| 36 |
-
|
| 37 |
-
# # # Decode the generated tokens to get the answer
|
| 38 |
-
# # answer = tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
|
| 39 |
-
|
| 40 |
-
# return generated_text
|
| 41 |
-
|
| 42 |
def predict_answer(image, question, max_tokens):
|
| 43 |
#Set inputs
|
| 44 |
text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{question}? ASSISTANT:"
|
|
|
|
| 3 |
import torch
|
| 4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
|
|
|
|
|
|
|
| 6 |
torch.set_default_device("cuda")
|
| 7 |
|
| 8 |
# Initialize the model and tokenizer
|
| 9 |
+
model = AutoModelForCausalLM.from_pretrained("ManishThota/Sparrow",
|
| 10 |
+
torch_dtype=torch.float16,
|
| 11 |
+
device_map="auto",
|
| 12 |
+
trust_remote_code=True)
|
| 13 |
tokenizer = AutoTokenizer.from_pretrained("ManishThota/Sparrow", trust_remote_code=True)
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
def predict_answer(image, question, max_tokens):
|
| 16 |
#Set inputs
|
| 17 |
text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{question}? ASSISTANT:"
|