Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,15 @@
|
|
| 1 |
"""
|
| 2 |
-
AURA Chat β
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
"""
|
| 5 |
|
| 6 |
import os
|
|
@@ -10,10 +19,12 @@ import asyncio
|
|
| 10 |
import requests
|
| 11 |
import atexit
|
| 12 |
import traceback
|
|
|
|
| 13 |
from typing import List
|
| 14 |
import gradio as gr
|
| 15 |
|
| 16 |
-
|
|
|
|
| 17 |
if sys.platform != "win32":
|
| 18 |
try:
|
| 19 |
loop = asyncio.new_event_loop()
|
|
@@ -21,197 +32,334 @@ if sys.platform != "win32":
|
|
| 21 |
except Exception:
|
| 22 |
traceback.print_exc()
|
| 23 |
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
| 25 |
SCRAPER_API_URL = os.getenv("SCRAPER_API_URL", "https://deep-scraper-96.created.app/api/deep-scrape")
|
| 26 |
SCRAPER_HEADERS = {
|
| 27 |
"User-Agent": "Mozilla/5.0",
|
| 28 |
"Content-Type": "application/json"
|
| 29 |
}
|
|
|
|
|
|
|
| 30 |
LLM_MODEL = os.getenv("LLM_MODEL", "openai/gpt-oss-20b:free")
|
| 31 |
MAX_TOKENS = int(os.getenv("LLM_MAX_TOKENS", "3000"))
|
| 32 |
SCRAPE_DELAY = float(os.getenv("SCRAPE_DELAY", "1.0"))
|
|
|
|
| 33 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
| 34 |
OPENAI_BASE_URL = os.getenv("OPENAI_BASE_URL", "https://openrouter.ai/api/v1")
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
PROMPT_TEMPLATE = f"""You are AURA, a concise, professional hedge-fund research assistant.
|
|
|
|
| 37 |
Task:
|
| 38 |
-
- Given scraped data below, produce a clear analysis
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
#
|
|
|
|
|
|
|
| 44 |
def deep_scrape(query: str, retries: int = 3, timeout: int = 40) -> str:
|
|
|
|
| 45 |
payload = {"query": query}
|
| 46 |
last_err = None
|
|
|
|
| 47 |
for attempt in range(1, retries + 1):
|
| 48 |
try:
|
| 49 |
-
resp = requests.post(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
resp.raise_for_status()
|
| 51 |
data = resp.json()
|
|
|
|
|
|
|
| 52 |
if isinstance(data, dict):
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
| 55 |
except Exception as e:
|
| 56 |
last_err = e
|
| 57 |
if attempt < retries:
|
| 58 |
time.sleep(1.0)
|
|
|
|
| 59 |
return f"ERROR: Scraper failed: {last_err}"
|
| 60 |
|
|
|
|
| 61 |
def multi_scrape(queries: List[str], delay: float = SCRAPE_DELAY) -> str:
|
|
|
|
| 62 |
aggregated = []
|
| 63 |
for q in queries:
|
| 64 |
q = q.strip()
|
| 65 |
if not q:
|
| 66 |
continue
|
| 67 |
aggregated.append(f"\n=== QUERY: {q} ===\n")
|
| 68 |
-
|
|
|
|
| 69 |
time.sleep(delay)
|
| 70 |
return "\n".join(aggregated)
|
| 71 |
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
| 73 |
try:
|
| 74 |
from openai import OpenAI
|
| 75 |
except Exception:
|
| 76 |
OpenAI = None
|
| 77 |
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
if OpenAI is None:
|
| 80 |
-
return "ERROR: openai package not installed."
|
|
|
|
| 81 |
if not OPENAI_API_KEY:
|
| 82 |
-
return "ERROR: OPENAI_API_KEY not set."
|
|
|
|
| 83 |
client = None
|
| 84 |
try:
|
| 85 |
client = OpenAI(base_url=OPENAI_BASE_URL, api_key=OPENAI_API_KEY)
|
| 86 |
completion = client.chat.completions.create(
|
| 87 |
-
model=
|
| 88 |
-
messages=[
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
| 90 |
)
|
| 91 |
-
|
|
|
|
|
|
|
| 92 |
try:
|
| 93 |
return completion.choices[0].message.content
|
| 94 |
-
except:
|
| 95 |
return str(completion.choices[0])
|
| 96 |
return str(completion)
|
|
|
|
| 97 |
except Exception as e:
|
| 98 |
return f"ERROR: LLM call failed: {e}"
|
| 99 |
finally:
|
|
|
|
| 100 |
try:
|
| 101 |
if client is not None:
|
| 102 |
try:
|
| 103 |
client.close()
|
| 104 |
-
except:
|
| 105 |
-
try:
|
| 106 |
-
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
| 110 |
def analyze_and_seed_chat(prompts_text: str):
|
|
|
|
| 111 |
if not prompts_text.strip():
|
| 112 |
-
return "Please enter at least one prompt.", []
|
|
|
|
| 113 |
queries = [line.strip() for line in prompts_text.splitlines() if line.strip()]
|
| 114 |
-
scraped = multi_scrape(queries)
|
|
|
|
| 115 |
if scraped.startswith("ERROR"):
|
| 116 |
return scraped, []
|
| 117 |
-
|
|
|
|
|
|
|
| 118 |
analysis = run_llm_system_and_user(PROMPT_TEMPLATE, user_payload)
|
|
|
|
| 119 |
if analysis.startswith("ERROR"):
|
| 120 |
return analysis, []
|
|
|
|
|
|
|
| 121 |
initial_chat = [
|
| 122 |
-
{"role": "user", "content": f"Analyze prompts: {', '.join(queries)}"},
|
| 123 |
{"role": "assistant", "content": analysis}
|
| 124 |
]
|
| 125 |
return analysis, initial_chat
|
| 126 |
|
|
|
|
| 127 |
def continue_chat(chat_messages, user_message: str, analysis_text: str):
|
| 128 |
-
|
| 129 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
chat_messages.append({"role": "user", "content": user_message})
|
| 131 |
-
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
assistant_reply = run_llm_system_and_user(followup_system, user_payload)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
chat_messages.append({"role": "assistant", "content": assistant_reply})
|
| 135 |
return chat_messages
|
| 136 |
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
| 138 |
def build_demo():
|
| 139 |
with gr.Blocks(title="AURA Chat β Hedge Fund Picks") as demo:
|
|
|
|
| 140 |
gr.HTML("""
|
| 141 |
<style>
|
| 142 |
-
.
|
| 143 |
-
.
|
| 144 |
-
.
|
| 145 |
-
.
|
| 146 |
</style>
|
| 147 |
""")
|
| 148 |
-
gr.HTML('<div class="header">AURA Chat β Hedge Fund Picks</div>')
|
| 149 |
|
| 150 |
-
#
|
| 151 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
-
# Instructions container
|
| 154 |
-
gr.HTML("""
|
| 155 |
-
<div class="container instructions">
|
| 156 |
-
<b>What this does:</b> Fetches latest public data on insider trading and top stock market insights based on your prompts.
|
| 157 |
-
It outputs top stock picks with <b>Investment Duration</b> guidance (when to buy and sell).<br><br>
|
| 158 |
-
<b>How to use:</b> Enter one or more prompts below, press <b>Analyze</b>, then chat with AURA about the results.<br><br>
|
| 159 |
-
<b>Example prompts you can copy:</b>
|
| 160 |
-
<div class="example">SEC insider transactions October 2025\n13F filings Q3 2025\nCompany: ACME corp insider buys</div>
|
| 161 |
-
<br>
|
| 162 |
-
The output will help you know which stocks are best to invest in and when to monitor alerts.
|
| 163 |
-
</div>
|
| 164 |
-
""")
|
| 165 |
-
|
| 166 |
-
# Main interface
|
| 167 |
with gr.Row():
|
| 168 |
with gr.Column(scale=1):
|
| 169 |
-
prompts = gr.Textbox(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
analyze_btn = gr.Button("Analyze", variant="primary")
|
| 171 |
error_box = gr.Markdown("", visible=False)
|
|
|
|
|
|
|
| 172 |
|
| 173 |
with gr.Column(scale=1):
|
| 174 |
-
analysis_out = gr.Textbox(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
gr.Markdown("**Chat with AURA about this analysis**")
|
| 176 |
-
chatbot = gr.Chatbot(height=420)
|
| 177 |
-
user_input = gr.Textbox(
|
|
|
|
|
|
|
|
|
|
| 178 |
send_btn = gr.Button("Send")
|
| 179 |
-
|
|
|
|
| 180 |
analysis_state = gr.State("")
|
| 181 |
chat_state = gr.State([])
|
| 182 |
-
|
|
|
|
| 183 |
def on_analyze(prompts_text):
|
| 184 |
analysis_text, initial_chat = analyze_and_seed_chat(prompts_text)
|
| 185 |
if analysis_text.startswith("ERROR"):
|
| 186 |
return "", f"**Error:** {analysis_text}", "", []
|
| 187 |
return analysis_text, "", analysis_text, initial_chat
|
| 188 |
-
|
| 189 |
def on_send(chat_state_list, user_msg, analysis_text):
|
| 190 |
-
if not user_msg.strip():
|
|
|
|
| 191 |
updated_history = continue_chat(chat_state_list or [], user_msg, analysis_text)
|
| 192 |
return updated_history, ""
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
return demo
|
| 200 |
|
| 201 |
-
|
|
|
|
|
|
|
|
|
|
| 202 |
def _cleanup_on_exit():
|
| 203 |
try:
|
| 204 |
loop = asyncio.get_event_loop()
|
| 205 |
if loop and not loop.is_closed():
|
| 206 |
-
try:
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
|
| 212 |
atexit.register(_cleanup_on_exit)
|
| 213 |
|
| 214 |
-
|
|
|
|
|
|
|
|
|
|
| 215 |
if __name__ == "__main__":
|
| 216 |
demo = build_demo()
|
| 217 |
-
demo.launch(
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
"""
|
| 2 |
+
AURA Chat β Gradio Space
|
| 3 |
+
Single-file Gradio app that:
|
| 4 |
+
- Accepts newline-separated prompts (data queries) from the user.
|
| 5 |
+
- On "Analyze" scrapes those queries, sends the aggregated text to a locked LLM,
|
| 6 |
+
and returns a polished analysis with a ranked list of best stocks and an
|
| 7 |
+
"Investment Duration" (when to enter / when to exit) for each stock.
|
| 8 |
+
- Seeds a chat component with the generated analysis; user can then chat about it.
|
| 9 |
+
|
| 10 |
+
Notes:
|
| 11 |
+
- Model, max tokens, and delay between scrapes are fixed and cannot be changed via UI.
|
| 12 |
+
- Set OPENAI_API_KEY in environment (Space Secrets).
|
| 13 |
"""
|
| 14 |
|
| 15 |
import os
|
|
|
|
| 19 |
import requests
|
| 20 |
import atexit
|
| 21 |
import traceback
|
| 22 |
+
from datetime import datetime
|
| 23 |
from typing import List
|
| 24 |
import gradio as gr
|
| 25 |
|
| 26 |
+
|
| 27 |
+
# Defensive: ensure a fresh event loop early to avoid fd race on shutdown.
|
| 28 |
if sys.platform != "win32":
|
| 29 |
try:
|
| 30 |
loop = asyncio.new_event_loop()
|
|
|
|
| 32 |
except Exception:
|
| 33 |
traceback.print_exc()
|
| 34 |
|
| 35 |
+
|
| 36 |
+
# =============================================================================
|
| 37 |
+
# CONFIGURATION (fixed)
|
| 38 |
+
# =============================================================================
|
| 39 |
SCRAPER_API_URL = os.getenv("SCRAPER_API_URL", "https://deep-scraper-96.created.app/api/deep-scrape")
|
| 40 |
SCRAPER_HEADERS = {
|
| 41 |
"User-Agent": "Mozilla/5.0",
|
| 42 |
"Content-Type": "application/json"
|
| 43 |
}
|
| 44 |
+
|
| 45 |
+
# FIXED model & tokens (cannot be changed from UI)
|
| 46 |
LLM_MODEL = os.getenv("LLM_MODEL", "openai/gpt-oss-20b:free")
|
| 47 |
MAX_TOKENS = int(os.getenv("LLM_MAX_TOKENS", "3000"))
|
| 48 |
SCRAPE_DELAY = float(os.getenv("SCRAPE_DELAY", "1.0"))
|
| 49 |
+
|
| 50 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
| 51 |
OPENAI_BASE_URL = os.getenv("OPENAI_BASE_URL", "https://openrouter.ai/api/v1")
|
| 52 |
|
| 53 |
+
|
| 54 |
+
# =============================================================================
|
| 55 |
+
# PROMPT ENGINEERING (fixed)
|
| 56 |
+
# =============================================================================
|
| 57 |
PROMPT_TEMPLATE = f"""You are AURA, a concise, professional hedge-fund research assistant.
|
| 58 |
+
|
| 59 |
Task:
|
| 60 |
+
- Given scraped data below, produce a clear, readable analysis that:
|
| 61 |
+
1) Lists the top 5 stock picks (or fewer if not enough data).
|
| 62 |
+
2) For each stock provide: Ticker / Company name, short rationale (2-3 bullets),
|
| 63 |
+
and an explicit **Investment Duration** entry: a one-line "When to Invest"
|
| 64 |
+
and a one-line "When to Sell" instruction (these two lines are mandatory
|
| 65 |
+
for each stock).
|
| 66 |
+
3) Keep each stock entry short and scannable. Use a bullet list or numbered list.
|
| 67 |
+
4) At the top, provide a 2-3 sentence summary conclusion (market context +
|
| 68 |
+
highest conviction pick).
|
| 69 |
+
5) Output in plain text, clean formatting, easy for humans to read. No JSON.
|
| 70 |
+
6) After the list, include a concise "Assumptions & Risks" section (2-3 bullet points).
|
| 71 |
+
|
| 72 |
+
Important: Be decisive. If data is insufficient, state that clearly and provide
|
| 73 |
+
the best-available picks with lower confidence.
|
| 74 |
+
|
| 75 |
+
Max tokens for the LLM response: {MAX_TOKENS}
|
| 76 |
+
Model: {LLM_MODEL}"""
|
| 77 |
+
|
| 78 |
|
| 79 |
+
# =============================================================================
|
| 80 |
+
# SCRAPING HELPERS
|
| 81 |
+
# =============================================================================
|
| 82 |
def deep_scrape(query: str, retries: int = 3, timeout: int = 40) -> str:
|
| 83 |
+
"""Post a query to SCRAPER_API_URL and return a readable aggregation (or an error string)."""
|
| 84 |
payload = {"query": query}
|
| 85 |
last_err = None
|
| 86 |
+
|
| 87 |
for attempt in range(1, retries + 1):
|
| 88 |
try:
|
| 89 |
+
resp = requests.post(
|
| 90 |
+
SCRAPER_API_URL,
|
| 91 |
+
headers=SCRAPER_HEADERS,
|
| 92 |
+
json=payload,
|
| 93 |
+
timeout=timeout
|
| 94 |
+
)
|
| 95 |
resp.raise_for_status()
|
| 96 |
data = resp.json()
|
| 97 |
+
|
| 98 |
+
# Format into readable text
|
| 99 |
if isinstance(data, dict):
|
| 100 |
+
parts = [f"{k.upper()}:\n{v}\n" for k, v in data.items()]
|
| 101 |
+
return "\n".join(parts)
|
| 102 |
+
else:
|
| 103 |
+
return str(data)
|
| 104 |
+
|
| 105 |
except Exception as e:
|
| 106 |
last_err = e
|
| 107 |
if attempt < retries:
|
| 108 |
time.sleep(1.0)
|
| 109 |
+
|
| 110 |
return f"ERROR: Scraper failed: {last_err}"
|
| 111 |
|
| 112 |
+
|
| 113 |
def multi_scrape(queries: List[str], delay: float = SCRAPE_DELAY) -> str:
|
| 114 |
+
"""Scrape multiple queries and join results into one large string."""
|
| 115 |
aggregated = []
|
| 116 |
for q in queries:
|
| 117 |
q = q.strip()
|
| 118 |
if not q:
|
| 119 |
continue
|
| 120 |
aggregated.append(f"\n=== QUERY: {q} ===\n")
|
| 121 |
+
scraped = deep_scrape(q)
|
| 122 |
+
aggregated.append(scraped)
|
| 123 |
time.sleep(delay)
|
| 124 |
return "\n".join(aggregated)
|
| 125 |
|
| 126 |
+
|
| 127 |
+
# =============================================================================
|
| 128 |
+
# LLM INTERACTION
|
| 129 |
+
# =============================================================================
|
| 130 |
try:
|
| 131 |
from openai import OpenAI
|
| 132 |
except Exception:
|
| 133 |
OpenAI = None
|
| 134 |
|
| 135 |
+
|
| 136 |
+
def run_llm_system_and_user(
|
| 137 |
+
system_prompt: str,
|
| 138 |
+
user_text: str,
|
| 139 |
+
model: str = LLM_MODEL,
|
| 140 |
+
max_tokens: int = MAX_TOKENS
|
| 141 |
+
) -> str:
|
| 142 |
+
"""Create the OpenAI client lazily, call the chat completions endpoint, then close."""
|
| 143 |
if OpenAI is None:
|
| 144 |
+
return "ERROR: openai package not installed or available. See requirements."
|
| 145 |
+
|
| 146 |
if not OPENAI_API_KEY:
|
| 147 |
+
return "ERROR: OPENAI_API_KEY not set in environment. Please add it to Space Secrets."
|
| 148 |
+
|
| 149 |
client = None
|
| 150 |
try:
|
| 151 |
client = OpenAI(base_url=OPENAI_BASE_URL, api_key=OPENAI_API_KEY)
|
| 152 |
completion = client.chat.completions.create(
|
| 153 |
+
model=model,
|
| 154 |
+
messages=[
|
| 155 |
+
{"role": "system", "content": system_prompt},
|
| 156 |
+
{"role": "user", "content": user_text},
|
| 157 |
+
],
|
| 158 |
+
max_tokens=max_tokens,
|
| 159 |
)
|
| 160 |
+
|
| 161 |
+
# Extract content robustly
|
| 162 |
+
if hasattr(completion, "choices") and len(completion.choices) > 0:
|
| 163 |
try:
|
| 164 |
return completion.choices[0].message.content
|
| 165 |
+
except Exception:
|
| 166 |
return str(completion.choices[0])
|
| 167 |
return str(completion)
|
| 168 |
+
|
| 169 |
except Exception as e:
|
| 170 |
return f"ERROR: LLM call failed: {e}"
|
| 171 |
finally:
|
| 172 |
+
# Try to close client transport
|
| 173 |
try:
|
| 174 |
if client is not None:
|
| 175 |
try:
|
| 176 |
client.close()
|
| 177 |
+
except Exception:
|
| 178 |
+
try:
|
| 179 |
+
asyncio.get_event_loop().run_until_complete(client.aclose())
|
| 180 |
+
except Exception:
|
| 181 |
+
pass
|
| 182 |
+
except Exception:
|
| 183 |
+
pass
|
| 184 |
|
| 185 |
+
|
| 186 |
+
# =============================================================================
|
| 187 |
+
# MAIN PIPELINE
|
| 188 |
+
# =============================================================================
|
| 189 |
def analyze_and_seed_chat(prompts_text: str):
|
| 190 |
+
"""Called when user clicks Analyze. Returns: (analysis_text, initial_chat_messages_list)"""
|
| 191 |
if not prompts_text.strip():
|
| 192 |
+
return "Please enter at least one prompt (query) describing what data to gather.", []
|
| 193 |
+
|
| 194 |
queries = [line.strip() for line in prompts_text.splitlines() if line.strip()]
|
| 195 |
+
scraped = multi_scrape(queries, delay=SCRAPE_DELAY)
|
| 196 |
+
|
| 197 |
if scraped.startswith("ERROR"):
|
| 198 |
return scraped, []
|
| 199 |
+
|
| 200 |
+
# Compose user payload for LLM
|
| 201 |
+
user_payload = f"SCRAPED DATA:\n\n{scraped}\n\nPlease follow the system instructions and output the analysis."
|
| 202 |
analysis = run_llm_system_and_user(PROMPT_TEMPLATE, user_payload)
|
| 203 |
+
|
| 204 |
if analysis.startswith("ERROR"):
|
| 205 |
return analysis, []
|
| 206 |
+
|
| 207 |
+
# Seed chat with user request and assistant analysis
|
| 208 |
initial_chat = [
|
| 209 |
+
{"role": "user", "content": f"Analyze the data I provided (prompts: {', '.join(queries)})"},
|
| 210 |
{"role": "assistant", "content": analysis}
|
| 211 |
]
|
| 212 |
return analysis, initial_chat
|
| 213 |
|
| 214 |
+
|
| 215 |
def continue_chat(chat_messages, user_message: str, analysis_text: str):
|
| 216 |
+
"""Handle chat follow-ups. Returns updated list of message dicts."""
|
| 217 |
+
if chat_messages is None:
|
| 218 |
+
chat_messages = []
|
| 219 |
+
if not user_message or not user_message.strip():
|
| 220 |
+
return chat_messages
|
| 221 |
+
|
| 222 |
+
# Append user's new message
|
| 223 |
chat_messages.append({"role": "user", "content": user_message})
|
| 224 |
+
|
| 225 |
+
# Build LLM input using analysis as reference context
|
| 226 |
+
followup_system = (
|
| 227 |
+
"You are AURA, a helpful analyst. The conversation context includes a recently "
|
| 228 |
+
"generated analysis from scraped data. Use that analysis as ground truth context; "
|
| 229 |
+
"answer follow-up questions, explain rationale, and provide clarifications. "
|
| 230 |
+
"Be concise and actionable."
|
| 231 |
+
)
|
| 232 |
+
user_payload = f"REFERENCE ANALYSIS:\n\n{analysis_text}\n\nUSER QUESTION: {user_message}\n\nRespond concisely and reference lines from the analysis where appropriate."
|
| 233 |
+
|
| 234 |
assistant_reply = run_llm_system_and_user(followup_system, user_payload)
|
| 235 |
+
if assistant_reply.startswith("ERROR"):
|
| 236 |
+
assistant_reply = assistant_reply
|
| 237 |
+
|
| 238 |
+
# Append assistant reply
|
| 239 |
chat_messages.append({"role": "assistant", "content": assistant_reply})
|
| 240 |
return chat_messages
|
| 241 |
|
| 242 |
+
|
| 243 |
+
# =============================================================================
|
| 244 |
+
# GRADIO UI
|
| 245 |
+
# =============================================================================
|
| 246 |
def build_demo():
|
| 247 |
with gr.Blocks(title="AURA Chat β Hedge Fund Picks") as demo:
|
| 248 |
+
# Custom CSS
|
| 249 |
gr.HTML("""
|
| 250 |
<style>
|
| 251 |
+
.gradio-container { max-width: 1100px; margin: 18px auto; }
|
| 252 |
+
.header { text-align: left; margin-bottom: 6px; }
|
| 253 |
+
.muted { color: #7d8590; font-size: 14px; }
|
| 254 |
+
.analysis-box { background: #ffffff; border-radius: 8px; padding: 12px; box-shadow: 0 4px 14px rgba(0,0,0,0.06); }
|
| 255 |
</style>
|
| 256 |
""")
|
|
|
|
| 257 |
|
| 258 |
+
gr.Markdown("# AURA Chat β Hedge Fund Picks")
|
| 259 |
+
gr.Markdown(
|
| 260 |
+
"**Enter one or more data prompts (one per line)** β e.g. SEC insider transactions october 2025 company XYZ.\n\n"
|
| 261 |
+
"Only input prompts; model, tokens and timing are fixed. Press **Analyze** to fetch & generate the picks. "
|
| 262 |
+
"After analysis you can chat with the assistant about the results."
|
| 263 |
+
)
|
| 264 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
with gr.Row():
|
| 266 |
with gr.Column(scale=1):
|
| 267 |
+
prompts = gr.Textbox(
|
| 268 |
+
lines=6,
|
| 269 |
+
label="Data Prompts (one per line)",
|
| 270 |
+
placeholder="SEC insider transactions october 2025\n13F filings Q3 2025\ncompany: ACME corp insider buys"
|
| 271 |
+
)
|
| 272 |
analyze_btn = gr.Button("Analyze", variant="primary")
|
| 273 |
error_box = gr.Markdown("", visible=False)
|
| 274 |
+
gr.Markdown(f"**Fixed settings:** Model = {LLM_MODEL} β’ Max tokens = {MAX_TOKENS} β’ Scrape delay = {SCRAPE_DELAY}s")
|
| 275 |
+
gr.Markdown("**Important:** Add your OPENAI_API_KEY to Space Secrets before running.")
|
| 276 |
|
| 277 |
with gr.Column(scale=1):
|
| 278 |
+
analysis_out = gr.Textbox(
|
| 279 |
+
label="Generated Analysis (Top picks with Investment Duration)",
|
| 280 |
+
lines=18,
|
| 281 |
+
interactive=False
|
| 282 |
+
)
|
| 283 |
gr.Markdown("**Chat with AURA about this analysis**")
|
| 284 |
+
chatbot = gr.Chatbot(label="AURA Chat", height=420)
|
| 285 |
+
user_input = gr.Textbox(
|
| 286 |
+
placeholder="Ask a follow-up question about the analysis...",
|
| 287 |
+
label="Your question"
|
| 288 |
+
)
|
| 289 |
send_btn = gr.Button("Send")
|
| 290 |
+
|
| 291 |
+
# States
|
| 292 |
analysis_state = gr.State("")
|
| 293 |
chat_state = gr.State([])
|
| 294 |
+
|
| 295 |
+
# Handler functions
|
| 296 |
def on_analyze(prompts_text):
|
| 297 |
analysis_text, initial_chat = analyze_and_seed_chat(prompts_text)
|
| 298 |
if analysis_text.startswith("ERROR"):
|
| 299 |
return "", f"**Error:** {analysis_text}", "", []
|
| 300 |
return analysis_text, "", analysis_text, initial_chat
|
| 301 |
+
|
| 302 |
def on_send(chat_state_list, user_msg, analysis_text):
|
| 303 |
+
if not user_msg or not user_msg.strip():
|
| 304 |
+
return chat_state_list or [], ""
|
| 305 |
updated_history = continue_chat(chat_state_list or [], user_msg, analysis_text)
|
| 306 |
return updated_history, ""
|
| 307 |
+
|
| 308 |
+
def render_chat(chat_messages):
|
| 309 |
+
return chat_messages or []
|
| 310 |
+
|
| 311 |
+
# Wire handlers
|
| 312 |
+
analyze_btn.click(
|
| 313 |
+
fn=on_analyze,
|
| 314 |
+
inputs=[prompts],
|
| 315 |
+
outputs=[analysis_out, error_box, analysis_state, chat_state]
|
| 316 |
+
)
|
| 317 |
+
send_btn.click(
|
| 318 |
+
fn=on_send,
|
| 319 |
+
inputs=[chat_state, user_input, analysis_state],
|
| 320 |
+
outputs=[chat_state, user_input]
|
| 321 |
+
)
|
| 322 |
+
user_input.submit(
|
| 323 |
+
fn=on_send,
|
| 324 |
+
inputs=[chat_state, user_input, analysis_state],
|
| 325 |
+
outputs=[chat_state, user_input]
|
| 326 |
+
)
|
| 327 |
+
chat_state.change(
|
| 328 |
+
fn=render_chat,
|
| 329 |
+
inputs=[chat_state],
|
| 330 |
+
outputs=[chatbot]
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
return demo
|
| 334 |
|
| 335 |
+
|
| 336 |
+
# =============================================================================
|
| 337 |
+
# CLEAN SHUTDOWN
|
| 338 |
+
# =============================================================================
|
| 339 |
def _cleanup_on_exit():
|
| 340 |
try:
|
| 341 |
loop = asyncio.get_event_loop()
|
| 342 |
if loop and not loop.is_closed():
|
| 343 |
+
try:
|
| 344 |
+
loop.stop()
|
| 345 |
+
except Exception:
|
| 346 |
+
pass
|
| 347 |
+
try:
|
| 348 |
+
loop.close()
|
| 349 |
+
except Exception:
|
| 350 |
+
pass
|
| 351 |
+
except Exception:
|
| 352 |
+
pass
|
| 353 |
|
| 354 |
atexit.register(_cleanup_on_exit)
|
| 355 |
|
| 356 |
+
|
| 357 |
+
# =============================================================================
|
| 358 |
+
# RUN
|
| 359 |
+
# =============================================================================
|
| 360 |
if __name__ == "__main__":
|
| 361 |
demo = build_demo()
|
| 362 |
+
demo.launch(
|
| 363 |
+
server_name="0.0.0.0",
|
| 364 |
+
server_port=int(os.environ.get("PORT", 7860))
|
| 365 |
+
)
|