Spaces:
Sleeping
Sleeping
Changement seuils proximax
Browse files
app.py
CHANGED
|
@@ -12,6 +12,9 @@ from vicinity import Vicinity, Backend, Metric
|
|
| 12 |
from sklearn.decomposition import TruncatedSVD
|
| 13 |
|
| 14 |
|
|
|
|
|
|
|
|
|
|
| 15 |
gcantons=gpd.read_file("cantons-normandie.geojson").rename(columns={"nom": "canton"})
|
| 16 |
si=gcantons.sindex
|
| 17 |
def assigne_canton(row):
|
|
@@ -67,7 +70,7 @@ vicf = Vicinity.from_vectors_and_items(
|
|
| 67 |
)
|
| 68 |
|
| 69 |
query=pn.widgets.TextInput(name="Rechercher une compétence")
|
| 70 |
-
|
| 71 |
|
| 72 |
|
| 73 |
score=pn.indicators.Number(name="Score d'adéquation", value=2, visible=False,
|
|
@@ -89,7 +92,7 @@ def carte(col):
|
|
| 89 |
score.visible=False
|
| 90 |
else:
|
| 91 |
test_emb=model.encode(req)
|
| 92 |
-
selcol = [nom for (nom, dist) in vice.query(test_emb, k=200)[0] if dist<
|
| 93 |
dfselcol=dfcomp[dfcomp["Compétence"].isin(selcol)]
|
| 94 |
dfg=dfselcol.groupby("canton")
|
| 95 |
dfa=dfg.agg(total= ("Compétence", lambda x: len(x)),
|
|
@@ -98,7 +101,7 @@ def carte(col):
|
|
| 98 |
m=gdet.explore(column="total", tooltip=["canton", "compétence", "total"],
|
| 99 |
cmap="viridis", vmax=10, tiles="CartoDB positron")
|
| 100 |
|
| 101 |
-
res_form = [nom for (nom, dist) in vicf.query(test_emb, k=50)[0] if dist<
|
| 102 |
dft=pd.DataFrame(res_form, columns=[certcol]).merge(dfform).drop_duplicates(subset=["latitude", "longitude"])
|
| 103 |
|
| 104 |
for irow, row in dft.iterrows():
|
|
|
|
| 12 |
from sklearn.decomposition import TruncatedSVD
|
| 13 |
|
| 14 |
|
| 15 |
+
proximax_emploi=0.65
|
| 16 |
+
proximax_formation=0.68
|
| 17 |
+
|
| 18 |
gcantons=gpd.read_file("cantons-normandie.geojson").rename(columns={"nom": "canton"})
|
| 19 |
si=gcantons.sindex
|
| 20 |
def assigne_canton(row):
|
|
|
|
| 70 |
)
|
| 71 |
|
| 72 |
query=pn.widgets.TextInput(name="Rechercher une compétence")
|
| 73 |
+
|
| 74 |
|
| 75 |
|
| 76 |
score=pn.indicators.Number(name="Score d'adéquation", value=2, visible=False,
|
|
|
|
| 92 |
score.visible=False
|
| 93 |
else:
|
| 94 |
test_emb=model.encode(req)
|
| 95 |
+
selcol = [nom for (nom, dist) in vice.query(test_emb, k=200)[0] if dist<proximax_emploi]
|
| 96 |
dfselcol=dfcomp[dfcomp["Compétence"].isin(selcol)]
|
| 97 |
dfg=dfselcol.groupby("canton")
|
| 98 |
dfa=dfg.agg(total= ("Compétence", lambda x: len(x)),
|
|
|
|
| 101 |
m=gdet.explore(column="total", tooltip=["canton", "compétence", "total"],
|
| 102 |
cmap="viridis", vmax=10, tiles="CartoDB positron")
|
| 103 |
|
| 104 |
+
res_form = [nom for (nom, dist) in vicf.query(test_emb, k=50)[0] if dist<proximax_formation]
|
| 105 |
dft=pd.DataFrame(res_form, columns=[certcol]).merge(dfform).drop_duplicates(subset=["latitude", "longitude"])
|
| 106 |
|
| 107 |
for irow, row in dft.iterrows():
|