LTTEAM commited on
Commit
5cdb635
·
verified ·
1 Parent(s): d5e07df

Upload 208 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +7 -0
  2. LatentSync/.gitattributes +42 -0
  3. LatentSync/Colab.ipynb +48 -0
  4. LatentSync/LICENSE +201 -0
  5. LatentSync/README.md +109 -0
  6. LatentSync/app.py +267 -0
  7. LatentSync/apt.txt +2 -0
  8. LatentSync/assets/demo1_audio.wav +3 -0
  9. LatentSync/assets/demo1_video.mp4 +3 -0
  10. LatentSync/assets/demo2_audio.wav +3 -0
  11. LatentSync/assets/demo2_video.mp4 +3 -0
  12. LatentSync/assets/demo3_audio.wav +3 -0
  13. LatentSync/assets/demo3_video.mp4 +3 -0
  14. LatentSync/assets/framework.png +3 -0
  15. LatentSync/configs/audio.yaml +23 -0
  16. LatentSync/configs/scheduler_config.json +13 -0
  17. LatentSync/configs/syncnet/syncnet_16_latent.yaml +46 -0
  18. LatentSync/configs/syncnet/syncnet_16_pixel.yaml +45 -0
  19. LatentSync/configs/syncnet/syncnet_25_pixel.yaml +45 -0
  20. LatentSync/configs/unet/first_stage.yaml +103 -0
  21. LatentSync/configs/unet/second_stage.yaml +103 -0
  22. LatentSync/data_processing_pipeline.sh +9 -0
  23. LatentSync/eval/detectors/README.md +3 -0
  24. LatentSync/eval/detectors/__init__.py +1 -0
  25. LatentSync/eval/detectors/s3fd/__init__.py +61 -0
  26. LatentSync/eval/detectors/s3fd/box_utils.py +221 -0
  27. LatentSync/eval/detectors/s3fd/nets.py +174 -0
  28. LatentSync/eval/draw_syncnet_lines.py +70 -0
  29. LatentSync/eval/eval_fvd.py +96 -0
  30. LatentSync/eval/eval_sync_conf.py +77 -0
  31. LatentSync/eval/eval_sync_conf.sh +2 -0
  32. LatentSync/eval/eval_syncnet_acc.py +118 -0
  33. LatentSync/eval/eval_syncnet_acc.sh +3 -0
  34. LatentSync/eval/fvd.py +56 -0
  35. LatentSync/eval/hyper_iqa.py +343 -0
  36. LatentSync/eval/inference_videos.py +37 -0
  37. LatentSync/eval/syncnet/__init__.py +1 -0
  38. LatentSync/eval/syncnet/syncnet.py +113 -0
  39. LatentSync/eval/syncnet/syncnet_eval.py +220 -0
  40. LatentSync/eval/syncnet_detect.py +251 -0
  41. LatentSync/inference.sh +9 -0
  42. LatentSync/latentsync/data/syncnet_dataset.py +153 -0
  43. LatentSync/latentsync/data/unet_dataset.py +164 -0
  44. LatentSync/latentsync/models/attention.py +492 -0
  45. LatentSync/latentsync/models/motion_module.py +332 -0
  46. LatentSync/latentsync/models/resnet.py +234 -0
  47. LatentSync/latentsync/models/syncnet.py +233 -0
  48. LatentSync/latentsync/models/syncnet_wav2lip.py +90 -0
  49. LatentSync/latentsync/models/unet.py +528 -0
  50. LatentSync/latentsync/models/unet_blocks.py +903 -0
.gitattributes CHANGED
@@ -33,3 +33,10 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ LatentSync/assets/demo1_audio.wav filter=lfs diff=lfs merge=lfs -text
37
+ LatentSync/assets/demo1_video.mp4 filter=lfs diff=lfs merge=lfs -text
38
+ LatentSync/assets/demo2_audio.wav filter=lfs diff=lfs merge=lfs -text
39
+ LatentSync/assets/demo2_video.mp4 filter=lfs diff=lfs merge=lfs -text
40
+ LatentSync/assets/demo3_audio.wav filter=lfs diff=lfs merge=lfs -text
41
+ LatentSync/assets/demo3_video.mp4 filter=lfs diff=lfs merge=lfs -text
42
+ LatentSync/assets/framework.png filter=lfs diff=lfs merge=lfs -text
LatentSync/.gitattributes ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ assets/demo1_video.mp4 filter=lfs diff=lfs merge=lfs -text
37
+ assets/demo2_video.mp4 filter=lfs diff=lfs merge=lfs -text
38
+ assets/demo3_video.mp4 filter=lfs diff=lfs merge=lfs -text
39
+ assets/demo1_audio.wav filter=lfs diff=lfs merge=lfs -text
40
+ assets/demo2_audio.wav filter=lfs diff=lfs merge=lfs -text
41
+ assets/demo3_audio.wav filter=lfs diff=lfs merge=lfs -text
42
+ assets/framework.png filter=lfs diff=lfs merge=lfs -text
LatentSync/Colab.ipynb ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "nbformat": 4,
3
+ "nbformat_minor": 0,
4
+ "metadata": {
5
+ "colab": {
6
+ "provenance": [],
7
+ "gpuType": "T4"
8
+ },
9
+ "kernelspec": {
10
+ "name": "python3",
11
+ "display_name": "Python 3"
12
+ },
13
+ "language_info": {
14
+ "name": "python"
15
+ },
16
+ "accelerator": "GPU"
17
+ },
18
+ "cells": [
19
+ {
20
+ "cell_type": "code",
21
+ "execution_count": null,
22
+ "metadata": {
23
+ "id": "GCpiCPg8h5r3",
24
+ "collapsed": true
25
+ },
26
+ "outputs": [],
27
+ "source": [
28
+ "#@title ⚙️ Cài đặt\n",
29
+ "!git clone https://huggingface.co/spaces/LTTEAM/LatentSync\n",
30
+ "%cd LatentSync\n",
31
+ "!pip install -r requirements.txt"
32
+ ]
33
+ },
34
+ {
35
+ "cell_type": "code",
36
+ "source": [
37
+ "#@title ⌛️ Chạy\n",
38
+ "!python app.py"
39
+ ],
40
+ "metadata": {
41
+ "id": "E9rJM-F4iVTU",
42
+ "collapsed": true
43
+ },
44
+ "execution_count": null,
45
+ "outputs": []
46
+ }
47
+ ]
48
+ }
LatentSync/LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
LatentSync/README.md ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: LatentSync - Đồng bộ môi bằng AI
3
+ emoji: 🎤
4
+ colorFrom: green
5
+ colorTo: yellow
6
+ sdk: gradio
7
+ sdk_version: 5.34.0
8
+ app_file: app.py
9
+ pinned: true
10
+ ---
11
+
12
+ # LatentSync - AI Lip Sync Technology
13
+
14
+ [![Open in Spaces](https://img.shields.io/badge/🤗-Open%20in%20Spaces-blue.svg)](https://huggingface.co/spaces/LTTEAM/LatentSync)
15
+ [![Facebook Community](https://img.shields.io/badge/👥-Facebook%20Group-blue)](https://www.facebook.com/groups/622526090937760)
16
+
17
+ ## 🌟 Giới thiệu / Introduction
18
+
19
+ **LatentSync** là công nghệ đồng bộ hóa chuyển động môi sử dụng mô hình Diffusion tiên tiến, cho phép tạo chuyển động môi tự nhiên từ âm thanh đầu vào.
20
+
21
+ **LatentSync** is an advanced lip-sync technology using Diffusion models to generate natural lip movements from input audio.
22
+
23
+ ## 🚀 Công nghệ / Technology
24
+
25
+ ```python
26
+ # Kiến trúc chính / Core Architecture
27
+ pipeline = LipsyncPipeline(
28
+ vae=AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse"),
29
+ audio_encoder=Audio2Feature(model_path="whisper/small.pt"),
30
+ unet=UNet3DConditionModel.from_config(config),
31
+ scheduler=DDIMScheduler()
32
+ )
33
+ ```
34
+
35
+ **Công nghệ chính / Key Technologies:**
36
+ - 🧠 UNet 3D Condition Model
37
+ - 🔊 Whisper Audio Encoder
38
+ - 🌀 Latent Diffusion
39
+ - ⚡ GPU Acceleration
40
+
41
+ ## 📚 Cách sử dụng / How to Use
42
+
43
+ 1. Tải lên video chứa khuôn mặt / Upload face video
44
+ 2. Tải lên file âm thanh / Upload audio file
45
+ 3. Nhấn "Chạy đồng bộ" / Click "Run Sync"
46
+ 4. Chờ kết quả / Wait for processing
47
+
48
+ ```bash
49
+ # Chạy local / Run locally
50
+ git clone https://huggingface.co/spaces/LTTEAM/LatentSync
51
+ cd LatentSync
52
+ pip install -r requirements.txt
53
+ python app.py
54
+ ```
55
+
56
+ ## 🌐 Demo Online
57
+
58
+ [![Try on Spaces](https://img.shields.io/badge/🤗-Try%20on%20Spaces-blue.svg)](https://huggingface.co/spaces/LTTEAM/LatentSync)
59
+
60
+ ## 👨‍💻 Tác giả & Cộng đồng / Author & Community
61
+
62
+ **Tác giả / Author:**
63
+ [Lý Trần](https://github.com/lytrann)
64
+
65
+ **Cộng đồng / Community:**
66
+ [LTTEAM Facebook Group](https://www.facebook.com/groups/622526090937760)
67
+
68
+ **Hỗ trợ / Support:**
69
+ [![Facebook Community](https://img.shields.io/badge/👥-Join%20Community-blue)](https://www.facebook.com/groups/622526090937760)
70
+
71
+ ## 📜 Giấy phép / License
72
+
73
+ ```text
74
+ Copyright 2023 LTTEAM
75
+
76
+ Licensed under the Apache License, Version 2.0 (the "License");
77
+ you may not use this file except in compliance with the License.
78
+ ```
79
+
80
+ ---
81
+
82
+ 🔥 **Đóng góp / Contributions welcome!**
83
+ 💡 **Báo lỗi / Report issues:** [Issues](https://huggingface.co/spaces/LTTEAM/LatentSync/discussions)
84
+ ```
85
+
86
+ ## Key Features of this README:
87
+
88
+ 1. **Bilingual Presentation**: Vietnamese and English for wider accessibility
89
+ 2. **Technical Highlights**:
90
+ - Code block showing core architecture
91
+ - Badges for easy navigation
92
+ - Clear technology stack
93
+
94
+ 3. **Community Focus**:
95
+ - Author information
96
+ - Community links
97
+ - Support channels
98
+
99
+ 4. **Visual Appeal**:
100
+ - Emoji usage
101
+ - Colorful badges
102
+ - Clear section separation
103
+
104
+ 5. **Practical Information**:
105
+ - Usage instructions
106
+ - Local setup guide
107
+ - License information
108
+
109
+ This README will display beautifully on your Hugging Face Space while effectively communicating all key information to users.
LatentSync/app.py ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import uuid
3
+ import shutil
4
+ import tempfile
5
+ import gradio as gr
6
+ import torch
7
+ from moviepy.editor import VideoFileClip
8
+ from pydub import AudioSegment
9
+ from huggingface_hub import snapshot_download
10
+ from omegaconf import OmegaConf
11
+ from diffusers import AutoencoderKL, DDIMScheduler
12
+ from latentsync.models.unet import UNet3DConditionModel
13
+ from latentsync.pipelines.lipsync_pipeline import LipsyncPipeline
14
+ from latentsync.whisper.audio2feature import Audio2Feature
15
+ from accelerate.utils import set_seed
16
+ AUTHOR = "Lý Trần"
17
+ COMMUNITY = "LTTEAM"
18
+ COMMUNITY_LINK = "https://www.facebook.com/groups/622526090937760"
19
+ REPO_ID = "LTTEAM/Nhep_Mieng"
20
+ os.makedirs("checkpoints", exist_ok=True)
21
+ snapshot_download(
22
+ repo_id=REPO_ID,
23
+ local_dir="./checkpoints"
24
+ )
25
+ def process_video(input_video_path: str, temp_dir: str = "temp_video") -> str:
26
+ os.makedirs(temp_dir, exist_ok=True)
27
+ video = VideoFileClip(input_video_path)
28
+ output_path = os.path.join(
29
+ temp_dir, f"crop_{os.path.basename(input_video_path)}"
30
+ )
31
+ if video.duration > 10:
32
+ video = video.subclip(0, 10)
33
+ video.write_videofile(output_path, codec="libx264", audio_codec="aac")
34
+ return output_path
35
+ def process_audio(input_audio_path: str, temp_dir: str) -> str:
36
+ os.makedirs(temp_dir, exist_ok=True)
37
+ audio = AudioSegment.from_file(input_audio_path)
38
+ max_ms = 8 * 1000
39
+ if len(audio) > max_ms:
40
+ audio = audio[:max_ms]
41
+ output_path = os.path.join(temp_dir, "trim_audio.wav")
42
+ audio.export(output_path, format="wav")
43
+ return output_path
44
+ def main(video_path, audio_path, progress=gr.Progress(track_tqdm=True)):
45
+ device = "cuda" if torch.cuda.is_available() else "cpu"
46
+ print(f"[INFO] Chạy trên device: {device}")
47
+ space_id = os.environ.get("SPACE_ID", "")
48
+ is_shared_ui = "fffiloni/LatentSync" in space_id
49
+
50
+ # Nếu chạy trên shared UI, lưu tạm và cắt ngắn đầu vào
51
+ temp_dir = None
52
+ if is_shared_ui:
53
+ temp_dir = tempfile.mkdtemp()
54
+ video_path = process_video(video_path, temp_dir)
55
+ audio_path = process_audio(audio_path, temp_dir)
56
+
57
+ # Nạp cấu hình và checkpoint
58
+ config = OmegaConf.load("configs/unet/second_stage.yaml")
59
+ unet_ckpt = "checkpoints/latentsync_unet.pt"
60
+ scheduler = DDIMScheduler.from_pretrained("configs")
61
+
62
+ # Chọn Whisper model dựa vào cross_attention_dim
63
+ dim = config.model.cross_attention_dim
64
+ if dim == 768:
65
+ whisper_ckpt = "checkpoints/whisper/small.pt"
66
+ elif dim == 384:
67
+ whisper_ckpt = "checkpoints/whisper/tiny.pt"
68
+ else:
69
+ raise NotImplementedError("cross_attention_dim phải là 768 hoặc 384")
70
+
71
+ # Tạo audio encoder
72
+ audio_encoder = Audio2Feature(
73
+ model_path=whisper_ckpt,
74
+ device=device,
75
+ num_frames=config.data.num_frames
76
+ )
77
+
78
+ # Nạp VAE
79
+ vae = AutoencoderKL.from_pretrained(
80
+ "stabilityai/sd-vae-ft-mse",
81
+ torch_dtype=torch.float16 if device=="cuda" else torch.float32
82
+ )
83
+ vae.config.scaling_factor = 0.18215
84
+ vae.config.shift_factor = 0
85
+
86
+ # Nạp UNet
87
+ unet, _ = UNet3DConditionModel.from_pretrained(
88
+ OmegaConf.to_container(config.model),
89
+ unet_ckpt,
90
+ device=device
91
+ )
92
+ # Chuyển dtype phù hợp
93
+ unet = unet.to(dtype=torch.float16) if device=="cuda" else unet.to(dtype=torch.float32)
94
+
95
+ # Khởi tạo pipeline và chuyển lên device
96
+ pipeline = LipsyncPipeline(
97
+ vae=vae,
98
+ audio_encoder=audio_encoder,
99
+ unet=unet,
100
+ scheduler=scheduler,
101
+ ).to(device)
102
+
103
+ # Thiết lập seed
104
+ seed = -1
105
+ if seed != -1:
106
+ set_seed(seed)
107
+ else:
108
+ torch.seed()
109
+ print(f"[INFO] Seed khởi tạo: {torch.initial_seed()}")
110
+
111
+ # Thực thi pipeline
112
+ output_id = uuid.uuid4().hex
113
+ result_path = f"output_{output_id}.mp4"
114
+ pipeline(
115
+ video_path=video_path,
116
+ audio_path=audio_path,
117
+ video_out_path=result_path,
118
+ video_mask_path=result_path.replace(".mp4", "_mask.mp4"),
119
+ num_frames=config.data.num_frames,
120
+ num_inference_steps=config.run.inference_steps,
121
+ guidance_scale=1.0,
122
+ weight_dtype=torch.float16 if device=="cuda" else torch.float32,
123
+ width=config.data.resolution,
124
+ height=config.data.resolution,
125
+ )
126
+
127
+ # Dọn dẹp thư mục tạm nếu có
128
+ if is_shared_ui and temp_dir and os.path.exists(temp_dir):
129
+ shutil.rmtree(temp_dir)
130
+
131
+ return result_path
132
+ custom_css = """
133
+ :root {
134
+ --primary: #4CAF50;
135
+ --secondary: #8BC34A;
136
+ --accent: #FFC107;
137
+ --dark: #1E1E1E;
138
+ --light: #F5F5F5;
139
+ }
140
+
141
+ body {
142
+ font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
143
+ background-color: var(--light);
144
+ }
145
+
146
+ div#main-container {
147
+ margin: 0 auto;
148
+ max-width: 900px;
149
+ background: white;
150
+ padding: 2rem;
151
+ border-radius: 12px;
152
+ box-shadow: 0 4px 12px rgba(0,0,0,0.1);
153
+ }
154
+
155
+ h1 {
156
+ color: var(--primary);
157
+ border-bottom: 2px solid var(--secondary);
158
+ padding-bottom: 0.5rem;
159
+ }
160
+
161
+ .gr-button {
162
+ background: var(--primary) !important;
163
+ color: white !important;
164
+ border: none !important;
165
+ padding: 0.75rem 1.5rem !important;
166
+ border-radius: 8px !important;
167
+ font-weight: 600 !important;
168
+ transition: all 0.3s ease !important;
169
+ }
170
+
171
+ .gr-button:hover {
172
+ background: var(--secondary) !important;
173
+ transform: translateY(-2px) !important;
174
+ box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important;
175
+ }
176
+
177
+ .gr-box {
178
+ border-radius: 8px !important;
179
+ border: 1px solid #e0e0e0 !important;
180
+ }
181
+
182
+ footer {
183
+ text-align: center;
184
+ margin-top: 2rem;
185
+ color: #666;
186
+ font-size: 0.9rem;
187
+ }
188
+
189
+ .example-container {
190
+ background: #f9f9f9;
191
+ padding: 1rem;
192
+ border-radius: 8px;
193
+ margin-top: 1rem;
194
+ }
195
+ """
196
+
197
+ with gr.Blocks(css=custom_css, title="LatentSync - Đồng bộ môi bằng AI") as demo:
198
+ with gr.Column(elem_id="main-container"):
199
+ # Header
200
+ gr.Markdown(f"# 🎤 LatentSync - Đồng bộ môi bằng AI")
201
+ gr.Markdown(f"**Tác giả:** {AUTHOR} | **Cộng đồng:** [{COMMUNITY}]({COMMUNITY_LINK})")
202
+
203
+ # Giới thiệu
204
+ with gr.Accordion("ℹ️ Giới thiệu ứng dụng", open=False):
205
+ gr.Markdown("""
206
+ Ứng dụng sử dụng mô hình AI tiên tiến để đồng bộ chuyển động môi trong video với âm thanh đầu vào.
207
+
208
+ **Cách sử dụng:**
209
+ 1. Tải lên video chứa khuôn mặt cần đồng bộ môi
210
+ 2. Tải lên file âm thanh hoặc ghi âm trực tiếp
211
+ 3. Nhấn nút "Chạy đồng bộ" và chờ kết quả
212
+
213
+ **Lưu ý:**
214
+ - Video nên có khuôn mặt rõ ràng, ánh sáng tốt
215
+ - Âm thanh cần rõ ràng, không nhiễu
216
+ - Thời gian xử lý phụ thuộc vào độ dài video và cấu hình máy
217
+ """)
218
+
219
+ # Input/Output
220
+ with gr.Row():
221
+ with gr.Column():
222
+ gr.Markdown("### 🎥 Đầu vào")
223
+ video_in = gr.Video(label="Video đầu vào (MP4)", format="mp4", interactive=True)
224
+ audio_in = gr.Audio(label="Âm thanh đầu vào", type="filepath", interactive=True)
225
+ with gr.Row():
226
+ btn = gr.Button("🚀 Chạy đồng bộ", variant="primary")
227
+ clear_btn = gr.Button("🔄 Xóa hết")
228
+
229
+ with gr.Column():
230
+ gr.Markdown("### 📼 Kết quả")
231
+ video_out = gr.Video(label="Video kết quả", interactive=False)
232
+ with gr.Row():
233
+ download_btn = gr.Button("💾 Tải xuống")
234
+
235
+ # Ví dụ mẫu - ĐÃ SỬA LỖI Ở ĐÂY
236
+ with gr.Accordion("📂 Ví dụ mẫu", open=True):
237
+ gr.Examples(
238
+ examples=[
239
+ ["assets/demo1_video.mp4", "assets/demo1_audio.wav"],
240
+ ["assets/demo2_video.mp4", "assets/demo2_audio.wav"],
241
+ ["assets/demo3_video.mp4", "assets/demo3_audio.wav"],
242
+ ],
243
+ inputs=[video_in, audio_in],
244
+ outputs=[video_out],
245
+ fn=main, # Thêm hàm xử lý chính
246
+ label="Nhấn vào ví dụ để thử ngay",
247
+ # cache_examples=True # Đã bỏ cache_examples vì cần thêm cấu hình
248
+ )
249
+
250
+ # Footer
251
+ gr.Markdown(f"""
252
+ ---
253
+ *Ứng dụng được phát triển bởi {AUTHOR} và cộng đồng {COMMUNITY}*
254
+ *Phiên bản 1.0 | [Tham gia nhóm]({COMMUNITY_LINK}) để cập nhật và hỗ trợ*
255
+ """)
256
+
257
+ # Xử lý sự kiện
258
+ btn.click(fn=main, inputs=[video_in, audio_in], outputs=[video_out])
259
+ clear_btn.click(lambda: [None, None, None], outputs=[video_in, audio_in, video_out])
260
+ download_btn.click(lambda x: x, inputs=[video_out], outputs=[video_out])
261
+
262
+ demo.launch(
263
+ share=True,
264
+ show_error=True,
265
+ server_name="0.0.0.0",
266
+ server_port=int(os.environ.get("PORT", 7860)),
267
+ )
LatentSync/apt.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ffmpeg
2
+ libgl1
LatentSync/assets/demo1_audio.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f7dd2112dbdc0bece5ee6f26553a4867b65740eb53187ecc8b1a3c1618b2405
3
+ size 307278
LatentSync/assets/demo1_video.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed2dd1e2001aa605c3f2d77672a8af4ed55e427a85c55d408adfc3d5076bc872
3
+ size 1240008
LatentSync/assets/demo2_audio.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4916574779fb975367ddcb1f12597205ae15ea8aeaa61ad92d2c1c5d719c3607
3
+ size 634958
LatentSync/assets/demo2_video.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c3f10288e0642e587a95c0040e6966f8f6b7e003c3a17b572f72472b896d8ff
3
+ size 1772492
LatentSync/assets/demo3_audio.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5014567b03d35e0bd813a3725c3129a99722497cd4cf8e036d2c304530ea432
3
+ size 593998
LatentSync/assets/demo3_video.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfa177b2a44f7809f606285c120e270d526caa50d708ec95e0f614d220970e0f
3
+ size 2112370
LatentSync/assets/framework.png ADDED

Git LFS Details

  • SHA256: c60b1d7915db454d816617598b55c9b452bcb79d1a87e4e700ec15d3edbbda65
  • Pointer size: 131 Bytes
  • Size of remote file: 691 kB
LatentSync/configs/audio.yaml ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ audio:
2
+ num_mels: 80 # Number of mel-spectrogram channels and local conditioning dimensionality
3
+ rescale: true # Whether to rescale audio prior to preprocessing
4
+ rescaling_max: 0.9 # Rescaling value
5
+ use_lws:
6
+ false # Use LWS (https://github.com/Jonathan-LeRoux/lws) for STFT and phase reconstruction
7
+ # It"s preferred to set True to use with https://github.com/r9y9/wavenet_vocoder
8
+ # Does not work if n_ffit is not multiple of hop_size!!
9
+ n_fft: 800 # Extra window size is filled with 0 paddings to match this parameter
10
+ hop_size: 200 # For 16000Hz, 200 = 12.5 ms (0.0125 * sample_rate)
11
+ win_size: 800 # For 16000Hz, 800 = 50 ms (If None, win_size = n_fft) (0.05 * sample_rate)
12
+ sample_rate: 16000 # 16000Hz (corresponding to librispeech) (sox --i <filename>)
13
+ frame_shift_ms: null
14
+ signal_normalization: true
15
+ allow_clipping_in_normalization: true
16
+ symmetric_mels: true
17
+ max_abs_value: 4.0
18
+ preemphasize: true # whether to apply filter
19
+ preemphasis: 0.97 # filter coefficient.
20
+ min_level_db: -100
21
+ ref_level_db: 20
22
+ fmin: 55
23
+ fmax: 7600
LatentSync/configs/scheduler_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "DDIMScheduler",
3
+ "_diffusers_version": "0.6.0.dev0",
4
+ "beta_end": 0.012,
5
+ "beta_schedule": "scaled_linear",
6
+ "beta_start": 0.00085,
7
+ "clip_sample": false,
8
+ "num_train_timesteps": 1000,
9
+ "set_alpha_to_one": false,
10
+ "steps_offset": 1,
11
+ "trained_betas": null,
12
+ "skip_prk_steps": true
13
+ }
LatentSync/configs/syncnet/syncnet_16_latent.yaml ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ audio_encoder: # input (1, 80, 52)
3
+ in_channels: 1
4
+ block_out_channels: [32, 64, 128, 256, 512, 1024]
5
+ downsample_factors: [[2, 1], 2, 2, 2, 2, [2, 3]]
6
+ attn_blocks: [0, 0, 0, 0, 0, 0]
7
+ dropout: 0.0
8
+ visual_encoder: # input (64, 32, 32)
9
+ in_channels: 64
10
+ block_out_channels: [64, 128, 256, 256, 512, 1024]
11
+ downsample_factors: [2, 2, 2, 1, 2, 2]
12
+ attn_blocks: [0, 0, 0, 0, 0, 0]
13
+ dropout: 0.0
14
+
15
+ ckpt:
16
+ resume_ckpt_path: ""
17
+ inference_ckpt_path: ""
18
+ save_ckpt_steps: 2500
19
+
20
+ data:
21
+ train_output_dir: output/syncnet
22
+ num_val_samples: 1200
23
+ batch_size: 120 # 40
24
+ num_workers: 11 # 11
25
+ latent_space: true
26
+ num_frames: 16
27
+ resolution: 256
28
+ train_fileslist: ""
29
+ train_data_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/high_visual_quality/train
30
+ val_fileslist: ""
31
+ val_data_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/high_visual_quality/val
32
+ audio_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/mel_new
33
+ lower_half: false
34
+ pretrained_audio_model_path: facebook/wav2vec2-large-xlsr-53
35
+ audio_sample_rate: 16000
36
+ video_fps: 25
37
+
38
+ optimizer:
39
+ lr: 1e-5
40
+ max_grad_norm: 1.0
41
+
42
+ run:
43
+ max_train_steps: 10000000
44
+ validation_steps: 2500
45
+ mixed_precision_training: true
46
+ seed: 42
LatentSync/configs/syncnet/syncnet_16_pixel.yaml ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ audio_encoder: # input (1, 80, 52)
3
+ in_channels: 1
4
+ block_out_channels: [32, 64, 128, 256, 512, 1024, 2048]
5
+ downsample_factors: [[2, 1], 2, 2, 1, 2, 2, [2, 3]]
6
+ attn_blocks: [0, 0, 0, 0, 0, 0, 0]
7
+ dropout: 0.0
8
+ visual_encoder: # input (48, 128, 256)
9
+ in_channels: 48
10
+ block_out_channels: [64, 128, 256, 256, 512, 1024, 2048, 2048]
11
+ downsample_factors: [[1, 2], 2, 2, 2, 2, 2, 2, 2]
12
+ attn_blocks: [0, 0, 0, 0, 0, 0, 0, 0]
13
+ dropout: 0.0
14
+
15
+ ckpt:
16
+ resume_ckpt_path: ""
17
+ inference_ckpt_path: checkpoints/latentsync_syncnet.pt
18
+ save_ckpt_steps: 2500
19
+
20
+ data:
21
+ train_output_dir: debug/syncnet
22
+ num_val_samples: 2048
23
+ batch_size: 128 # 128
24
+ num_workers: 11 # 11
25
+ latent_space: false
26
+ num_frames: 16
27
+ resolution: 256
28
+ train_fileslist: /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/all_data_v6.txt
29
+ train_data_dir: ""
30
+ val_fileslist: ""
31
+ val_data_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/high_visual_quality/val
32
+ audio_mel_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/mel_new
33
+ lower_half: true
34
+ audio_sample_rate: 16000
35
+ video_fps: 25
36
+
37
+ optimizer:
38
+ lr: 1e-5
39
+ max_grad_norm: 1.0
40
+
41
+ run:
42
+ max_train_steps: 10000000
43
+ validation_steps: 2500
44
+ mixed_precision_training: true
45
+ seed: 42
LatentSync/configs/syncnet/syncnet_25_pixel.yaml ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ audio_encoder: # input (1, 80, 80)
3
+ in_channels: 1
4
+ block_out_channels: [64, 128, 256, 256, 512, 1024]
5
+ downsample_factors: [2, 2, 2, 2, 2, 2]
6
+ dropout: 0.0
7
+ visual_encoder: # input (75, 128, 256)
8
+ in_channels: 75
9
+ block_out_channels: [128, 128, 256, 256, 512, 512, 1024, 1024]
10
+ downsample_factors: [[1, 2], 2, 2, 2, 2, 2, 2, 2]
11
+ dropout: 0.0
12
+
13
+ ckpt:
14
+ resume_ckpt_path: ""
15
+ inference_ckpt_path: ""
16
+ save_ckpt_steps: 2500
17
+
18
+ data:
19
+ train_output_dir: debug/syncnet
20
+ num_val_samples: 2048
21
+ batch_size: 64 # 64
22
+ num_workers: 11 # 11
23
+ latent_space: false
24
+ num_frames: 25
25
+ resolution: 256
26
+ train_fileslist: /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/hdtf_vox_avatars_ads_affine.txt
27
+ # /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/hdtf_voxceleb_avatars_affine.txt
28
+ train_data_dir: ""
29
+ val_fileslist: /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/vox_affine_val.txt
30
+ # /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/voxceleb_val.txt
31
+ val_data_dir: ""
32
+ audio_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/mel
33
+ lower_half: true
34
+ pretrained_audio_model_path: facebook/wav2vec2-large-xlsr-53
35
+ audio_sample_rate: 16000
36
+ video_fps: 25
37
+
38
+ optimizer:
39
+ lr: 1e-5
40
+ max_grad_norm: 1.0
41
+
42
+ run:
43
+ max_train_steps: 10000000
44
+ mixed_precision_training: true
45
+ seed: 42
LatentSync/configs/unet/first_stage.yaml ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ data:
2
+ syncnet_config_path: configs/syncnet/syncnet_16_pixel.yaml
3
+ train_output_dir: debug/unet
4
+ train_fileslist: /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/all_data_v6.txt
5
+ train_data_dir: ""
6
+ audio_embeds_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/whisper_new
7
+ audio_mel_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/mel_new
8
+
9
+ val_video_path: assets/demo1_video.mp4
10
+ val_audio_path: assets/demo1_audio.wav
11
+ batch_size: 8 # 8
12
+ num_workers: 11 # 11
13
+ num_frames: 16
14
+ resolution: 256
15
+ mask: fix_mask
16
+ audio_sample_rate: 16000
17
+ video_fps: 25
18
+
19
+ ckpt:
20
+ resume_ckpt_path: checkpoints/latentsync_unet.pt
21
+ save_ckpt_steps: 5000
22
+
23
+ run:
24
+ pixel_space_supervise: false
25
+ use_syncnet: false
26
+ sync_loss_weight: 0.05 # 1/283
27
+ perceptual_loss_weight: 0.1 # 0.1
28
+ recon_loss_weight: 1 # 1
29
+ guidance_scale: 1.0 # 1.5 or 1.0
30
+ trepa_loss_weight: 10
31
+ inference_steps: 20
32
+ seed: 1247
33
+ use_mixed_noise: true
34
+ mixed_noise_alpha: 1 # 1
35
+ mixed_precision_training: true
36
+ enable_gradient_checkpointing: false
37
+ enable_xformers_memory_efficient_attention: true
38
+ max_train_steps: 10000000
39
+ max_train_epochs: -1
40
+
41
+ optimizer:
42
+ lr: 1e-5
43
+ scale_lr: false
44
+ max_grad_norm: 1.0
45
+ lr_scheduler: constant
46
+ lr_warmup_steps: 0
47
+
48
+ model:
49
+ act_fn: silu
50
+ add_audio_layer: true
51
+ custom_audio_layer: false
52
+ audio_condition_method: cross_attn # Choose between [cross_attn, group_norm]
53
+ attention_head_dim: 8
54
+ block_out_channels: [320, 640, 1280, 1280]
55
+ center_input_sample: false
56
+ cross_attention_dim: 384
57
+ down_block_types:
58
+ [
59
+ "CrossAttnDownBlock3D",
60
+ "CrossAttnDownBlock3D",
61
+ "CrossAttnDownBlock3D",
62
+ "DownBlock3D",
63
+ ]
64
+ mid_block_type: UNetMidBlock3DCrossAttn
65
+ up_block_types:
66
+ [
67
+ "UpBlock3D",
68
+ "CrossAttnUpBlock3D",
69
+ "CrossAttnUpBlock3D",
70
+ "CrossAttnUpBlock3D",
71
+ ]
72
+ downsample_padding: 1
73
+ flip_sin_to_cos: true
74
+ freq_shift: 0
75
+ in_channels: 13 # 49
76
+ layers_per_block: 2
77
+ mid_block_scale_factor: 1
78
+ norm_eps: 1e-5
79
+ norm_num_groups: 32
80
+ out_channels: 4 # 16
81
+ sample_size: 64
82
+ resnet_time_scale_shift: default # Choose between [default, scale_shift]
83
+ unet_use_cross_frame_attention: false
84
+ unet_use_temporal_attention: false
85
+
86
+ # Actually we don't use the motion module in the final version of LatentSync
87
+ # When we started the project, we used the codebase of AnimateDiff and tried motion module, the results are poor
88
+ # We decied to leave the code here for possible future usage
89
+ use_motion_module: false
90
+ motion_module_resolutions: [1, 2, 4, 8]
91
+ motion_module_mid_block: false
92
+ motion_module_decoder_only: false
93
+ motion_module_type: Vanilla
94
+ motion_module_kwargs:
95
+ num_attention_heads: 8
96
+ num_transformer_block: 1
97
+ attention_block_types:
98
+ - Temporal_Self
99
+ - Temporal_Self
100
+ temporal_position_encoding: true
101
+ temporal_position_encoding_max_len: 16
102
+ temporal_attention_dim_div: 1
103
+ zero_initialize: true
LatentSync/configs/unet/second_stage.yaml ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ data:
2
+ syncnet_config_path: configs/syncnet/syncnet_16_pixel.yaml
3
+ train_output_dir: debug/unet
4
+ train_fileslist: /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/all_data_v6.txt
5
+ train_data_dir: ""
6
+ audio_embeds_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/whisper_new
7
+ audio_mel_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/mel_new
8
+
9
+ val_video_path: assets/demo1_video.mp4
10
+ val_audio_path: assets/demo1_audio.wav
11
+ batch_size: 2 # 8
12
+ num_workers: 11 # 11
13
+ num_frames: 16
14
+ resolution: 256
15
+ mask: fix_mask
16
+ audio_sample_rate: 16000
17
+ video_fps: 25
18
+
19
+ ckpt:
20
+ resume_ckpt_path: checkpoints/latentsync_unet.pt
21
+ save_ckpt_steps: 5000
22
+
23
+ run:
24
+ pixel_space_supervise: true
25
+ use_syncnet: true
26
+ sync_loss_weight: 0.05 # 1/283
27
+ perceptual_loss_weight: 0.1 # 0.1
28
+ recon_loss_weight: 1 # 1
29
+ guidance_scale: 1.0 # 1.5 or 1.0
30
+ trepa_loss_weight: 10
31
+ inference_steps: 20
32
+ seed: 1247
33
+ use_mixed_noise: true
34
+ mixed_noise_alpha: 1 # 1
35
+ mixed_precision_training: true
36
+ enable_gradient_checkpointing: false
37
+ enable_xformers_memory_efficient_attention: true
38
+ max_train_steps: 10000000
39
+ max_train_epochs: -1
40
+
41
+ optimizer:
42
+ lr: 1e-5
43
+ scale_lr: false
44
+ max_grad_norm: 1.0
45
+ lr_scheduler: constant
46
+ lr_warmup_steps: 0
47
+
48
+ model:
49
+ act_fn: silu
50
+ add_audio_layer: true
51
+ custom_audio_layer: false
52
+ audio_condition_method: cross_attn # Choose between [cross_attn, group_norm]
53
+ attention_head_dim: 8
54
+ block_out_channels: [320, 640, 1280, 1280]
55
+ center_input_sample: false
56
+ cross_attention_dim: 384
57
+ down_block_types:
58
+ [
59
+ "CrossAttnDownBlock3D",
60
+ "CrossAttnDownBlock3D",
61
+ "CrossAttnDownBlock3D",
62
+ "DownBlock3D",
63
+ ]
64
+ mid_block_type: UNetMidBlock3DCrossAttn
65
+ up_block_types:
66
+ [
67
+ "UpBlock3D",
68
+ "CrossAttnUpBlock3D",
69
+ "CrossAttnUpBlock3D",
70
+ "CrossAttnUpBlock3D",
71
+ ]
72
+ downsample_padding: 1
73
+ flip_sin_to_cos: true
74
+ freq_shift: 0
75
+ in_channels: 13 # 49
76
+ layers_per_block: 2
77
+ mid_block_scale_factor: 1
78
+ norm_eps: 1e-5
79
+ norm_num_groups: 32
80
+ out_channels: 4 # 16
81
+ sample_size: 64
82
+ resnet_time_scale_shift: default # Choose between [default, scale_shift]
83
+ unet_use_cross_frame_attention: false
84
+ unet_use_temporal_attention: false
85
+
86
+ # Actually we don't use the motion module in the final version of LatentSync
87
+ # When we started the project, we used the codebase of AnimateDiff and tried motion module, the results are poor
88
+ # We decied to leave the code here for possible future usage
89
+ use_motion_module: false
90
+ motion_module_resolutions: [1, 2, 4, 8]
91
+ motion_module_mid_block: false
92
+ motion_module_decoder_only: false
93
+ motion_module_type: Vanilla
94
+ motion_module_kwargs:
95
+ num_attention_heads: 8
96
+ num_transformer_block: 1
97
+ attention_block_types:
98
+ - Temporal_Self
99
+ - Temporal_Self
100
+ temporal_position_encoding: true
101
+ temporal_position_encoding_max_len: 16
102
+ temporal_attention_dim_div: 1
103
+ zero_initialize: true
LatentSync/data_processing_pipeline.sh ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ python -m preprocess.data_processing_pipeline \
4
+ --total_num_workers 20 \
5
+ --per_gpu_num_workers 20 \
6
+ --resolution 256 \
7
+ --sync_conf_threshold 3 \
8
+ --temp_dir temp \
9
+ --input_dir /mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/raw
LatentSync/eval/detectors/README.md ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ # Face detector
2
+
3
+ This face detector is adapted from `https://github.com/cs-giung/face-detection-pytorch`.
LatentSync/eval/detectors/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .s3fd import S3FD
LatentSync/eval/detectors/s3fd/__init__.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import numpy as np
3
+ import cv2
4
+ import torch
5
+ from torchvision import transforms
6
+ from .nets import S3FDNet
7
+ from .box_utils import nms_
8
+
9
+ PATH_WEIGHT = 'checkpoints/auxiliary/sfd_face.pth'
10
+ img_mean = np.array([104., 117., 123.])[:, np.newaxis, np.newaxis].astype('float32')
11
+
12
+
13
+ class S3FD():
14
+
15
+ def __init__(self, device='cuda'):
16
+
17
+ tstamp = time.time()
18
+ self.device = device
19
+
20
+ print('[S3FD] loading with', self.device)
21
+ self.net = S3FDNet(device=self.device).to(self.device)
22
+ state_dict = torch.load(PATH_WEIGHT, map_location=self.device)
23
+ self.net.load_state_dict(state_dict)
24
+ self.net.eval()
25
+ print('[S3FD] finished loading (%.4f sec)' % (time.time() - tstamp))
26
+
27
+ def detect_faces(self, image, conf_th=0.8, scales=[1]):
28
+
29
+ w, h = image.shape[1], image.shape[0]
30
+
31
+ bboxes = np.empty(shape=(0, 5))
32
+
33
+ with torch.no_grad():
34
+ for s in scales:
35
+ scaled_img = cv2.resize(image, dsize=(0, 0), fx=s, fy=s, interpolation=cv2.INTER_LINEAR)
36
+
37
+ scaled_img = np.swapaxes(scaled_img, 1, 2)
38
+ scaled_img = np.swapaxes(scaled_img, 1, 0)
39
+ scaled_img = scaled_img[[2, 1, 0], :, :]
40
+ scaled_img = scaled_img.astype('float32')
41
+ scaled_img -= img_mean
42
+ scaled_img = scaled_img[[2, 1, 0], :, :]
43
+ x = torch.from_numpy(scaled_img).unsqueeze(0).to(self.device)
44
+ y = self.net(x)
45
+
46
+ detections = y.data
47
+ scale = torch.Tensor([w, h, w, h])
48
+
49
+ for i in range(detections.size(1)):
50
+ j = 0
51
+ while detections[0, i, j, 0] > conf_th:
52
+ score = detections[0, i, j, 0]
53
+ pt = (detections[0, i, j, 1:] * scale).cpu().numpy()
54
+ bbox = (pt[0], pt[1], pt[2], pt[3], score)
55
+ bboxes = np.vstack((bboxes, bbox))
56
+ j += 1
57
+
58
+ keep = nms_(bboxes, 0.1)
59
+ bboxes = bboxes[keep]
60
+
61
+ return bboxes
LatentSync/eval/detectors/s3fd/box_utils.py ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from itertools import product as product
3
+ import torch
4
+ from torch.autograd import Function
5
+ import warnings
6
+
7
+
8
+ def nms_(dets, thresh):
9
+ """
10
+ Courtesy of Ross Girshick
11
+ [https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/nms/py_cpu_nms.py]
12
+ """
13
+ x1 = dets[:, 0]
14
+ y1 = dets[:, 1]
15
+ x2 = dets[:, 2]
16
+ y2 = dets[:, 3]
17
+ scores = dets[:, 4]
18
+
19
+ areas = (x2 - x1) * (y2 - y1)
20
+ order = scores.argsort()[::-1]
21
+
22
+ keep = []
23
+ while order.size > 0:
24
+ i = order[0]
25
+ keep.append(int(i))
26
+ xx1 = np.maximum(x1[i], x1[order[1:]])
27
+ yy1 = np.maximum(y1[i], y1[order[1:]])
28
+ xx2 = np.minimum(x2[i], x2[order[1:]])
29
+ yy2 = np.minimum(y2[i], y2[order[1:]])
30
+
31
+ w = np.maximum(0.0, xx2 - xx1)
32
+ h = np.maximum(0.0, yy2 - yy1)
33
+ inter = w * h
34
+ ovr = inter / (areas[i] + areas[order[1:]] - inter)
35
+
36
+ inds = np.where(ovr <= thresh)[0]
37
+ order = order[inds + 1]
38
+
39
+ return np.array(keep).astype(np.int32)
40
+
41
+
42
+ def decode(loc, priors, variances):
43
+ """Decode locations from predictions using priors to undo
44
+ the encoding we did for offset regression at train time.
45
+ Args:
46
+ loc (tensor): location predictions for loc layers,
47
+ Shape: [num_priors,4]
48
+ priors (tensor): Prior boxes in center-offset form.
49
+ Shape: [num_priors,4].
50
+ variances: (list[float]) Variances of priorboxes
51
+ Return:
52
+ decoded bounding box predictions
53
+ """
54
+
55
+ boxes = torch.cat((
56
+ priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
57
+ priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1)
58
+ boxes[:, :2] -= boxes[:, 2:] / 2
59
+ boxes[:, 2:] += boxes[:, :2]
60
+ return boxes
61
+
62
+
63
+ def nms(boxes, scores, overlap=0.5, top_k=200):
64
+ """Apply non-maximum suppression at test time to avoid detecting too many
65
+ overlapping bounding boxes for a given object.
66
+ Args:
67
+ boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
68
+ scores: (tensor) The class predscores for the img, Shape:[num_priors].
69
+ overlap: (float) The overlap thresh for suppressing unnecessary boxes.
70
+ top_k: (int) The Maximum number of box preds to consider.
71
+ Return:
72
+ The indices of the kept boxes with respect to num_priors.
73
+ """
74
+
75
+ keep = scores.new(scores.size(0)).zero_().long()
76
+ if boxes.numel() == 0:
77
+ return keep, 0
78
+ x1 = boxes[:, 0]
79
+ y1 = boxes[:, 1]
80
+ x2 = boxes[:, 2]
81
+ y2 = boxes[:, 3]
82
+ area = torch.mul(x2 - x1, y2 - y1)
83
+ v, idx = scores.sort(0) # sort in ascending order
84
+ # I = I[v >= 0.01]
85
+ idx = idx[-top_k:] # indices of the top-k largest vals
86
+ xx1 = boxes.new()
87
+ yy1 = boxes.new()
88
+ xx2 = boxes.new()
89
+ yy2 = boxes.new()
90
+ w = boxes.new()
91
+ h = boxes.new()
92
+
93
+ # keep = torch.Tensor()
94
+ count = 0
95
+ while idx.numel() > 0:
96
+ i = idx[-1] # index of current largest val
97
+ # keep.append(i)
98
+ keep[count] = i
99
+ count += 1
100
+ if idx.size(0) == 1:
101
+ break
102
+ idx = idx[:-1] # remove kept element from view
103
+ # load bboxes of next highest vals
104
+ with warnings.catch_warnings():
105
+ # Ignore UserWarning within this block
106
+ warnings.simplefilter("ignore", category=UserWarning)
107
+ torch.index_select(x1, 0, idx, out=xx1)
108
+ torch.index_select(y1, 0, idx, out=yy1)
109
+ torch.index_select(x2, 0, idx, out=xx2)
110
+ torch.index_select(y2, 0, idx, out=yy2)
111
+ # store element-wise max with next highest score
112
+ xx1 = torch.clamp(xx1, min=x1[i])
113
+ yy1 = torch.clamp(yy1, min=y1[i])
114
+ xx2 = torch.clamp(xx2, max=x2[i])
115
+ yy2 = torch.clamp(yy2, max=y2[i])
116
+ w.resize_as_(xx2)
117
+ h.resize_as_(yy2)
118
+ w = xx2 - xx1
119
+ h = yy2 - yy1
120
+ # check sizes of xx1 and xx2.. after each iteration
121
+ w = torch.clamp(w, min=0.0)
122
+ h = torch.clamp(h, min=0.0)
123
+ inter = w * h
124
+ # IoU = i / (area(a) + area(b) - i)
125
+ rem_areas = torch.index_select(area, 0, idx) # load remaining areas)
126
+ union = (rem_areas - inter) + area[i]
127
+ IoU = inter / union # store result in iou
128
+ # keep only elements with an IoU <= overlap
129
+ idx = idx[IoU.le(overlap)]
130
+ return keep, count
131
+
132
+
133
+ class Detect(object):
134
+
135
+ def __init__(self, num_classes=2,
136
+ top_k=750, nms_thresh=0.3, conf_thresh=0.05,
137
+ variance=[0.1, 0.2], nms_top_k=5000):
138
+
139
+ self.num_classes = num_classes
140
+ self.top_k = top_k
141
+ self.nms_thresh = nms_thresh
142
+ self.conf_thresh = conf_thresh
143
+ self.variance = variance
144
+ self.nms_top_k = nms_top_k
145
+
146
+ def forward(self, loc_data, conf_data, prior_data):
147
+
148
+ num = loc_data.size(0)
149
+ num_priors = prior_data.size(0)
150
+
151
+ conf_preds = conf_data.view(num, num_priors, self.num_classes).transpose(2, 1)
152
+ batch_priors = prior_data.view(-1, num_priors, 4).expand(num, num_priors, 4)
153
+ batch_priors = batch_priors.contiguous().view(-1, 4)
154
+
155
+ decoded_boxes = decode(loc_data.view(-1, 4), batch_priors, self.variance)
156
+ decoded_boxes = decoded_boxes.view(num, num_priors, 4)
157
+
158
+ output = torch.zeros(num, self.num_classes, self.top_k, 5)
159
+
160
+ for i in range(num):
161
+ boxes = decoded_boxes[i].clone()
162
+ conf_scores = conf_preds[i].clone()
163
+
164
+ for cl in range(1, self.num_classes):
165
+ c_mask = conf_scores[cl].gt(self.conf_thresh)
166
+ scores = conf_scores[cl][c_mask]
167
+
168
+ if scores.dim() == 0:
169
+ continue
170
+ l_mask = c_mask.unsqueeze(1).expand_as(boxes)
171
+ boxes_ = boxes[l_mask].view(-1, 4)
172
+ ids, count = nms(boxes_, scores, self.nms_thresh, self.nms_top_k)
173
+ count = count if count < self.top_k else self.top_k
174
+
175
+ output[i, cl, :count] = torch.cat((scores[ids[:count]].unsqueeze(1), boxes_[ids[:count]]), 1)
176
+
177
+ return output
178
+
179
+
180
+ class PriorBox(object):
181
+
182
+ def __init__(self, input_size, feature_maps,
183
+ variance=[0.1, 0.2],
184
+ min_sizes=[16, 32, 64, 128, 256, 512],
185
+ steps=[4, 8, 16, 32, 64, 128],
186
+ clip=False):
187
+
188
+ super(PriorBox, self).__init__()
189
+
190
+ self.imh = input_size[0]
191
+ self.imw = input_size[1]
192
+ self.feature_maps = feature_maps
193
+
194
+ self.variance = variance
195
+ self.min_sizes = min_sizes
196
+ self.steps = steps
197
+ self.clip = clip
198
+
199
+ def forward(self):
200
+ mean = []
201
+ for k, fmap in enumerate(self.feature_maps):
202
+ feath = fmap[0]
203
+ featw = fmap[1]
204
+ for i, j in product(range(feath), range(featw)):
205
+ f_kw = self.imw / self.steps[k]
206
+ f_kh = self.imh / self.steps[k]
207
+
208
+ cx = (j + 0.5) / f_kw
209
+ cy = (i + 0.5) / f_kh
210
+
211
+ s_kw = self.min_sizes[k] / self.imw
212
+ s_kh = self.min_sizes[k] / self.imh
213
+
214
+ mean += [cx, cy, s_kw, s_kh]
215
+
216
+ output = torch.FloatTensor(mean).view(-1, 4)
217
+
218
+ if self.clip:
219
+ output.clamp_(max=1, min=0)
220
+
221
+ return output
LatentSync/eval/detectors/s3fd/nets.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ import torch.nn.init as init
5
+ from .box_utils import Detect, PriorBox
6
+
7
+
8
+ class L2Norm(nn.Module):
9
+
10
+ def __init__(self, n_channels, scale):
11
+ super(L2Norm, self).__init__()
12
+ self.n_channels = n_channels
13
+ self.gamma = scale or None
14
+ self.eps = 1e-10
15
+ self.weight = nn.Parameter(torch.Tensor(self.n_channels))
16
+ self.reset_parameters()
17
+
18
+ def reset_parameters(self):
19
+ init.constant_(self.weight, self.gamma)
20
+
21
+ def forward(self, x):
22
+ norm = x.pow(2).sum(dim=1, keepdim=True).sqrt() + self.eps
23
+ x = torch.div(x, norm)
24
+ out = self.weight.unsqueeze(0).unsqueeze(2).unsqueeze(3).expand_as(x) * x
25
+ return out
26
+
27
+
28
+ class S3FDNet(nn.Module):
29
+
30
+ def __init__(self, device='cuda'):
31
+ super(S3FDNet, self).__init__()
32
+ self.device = device
33
+
34
+ self.vgg = nn.ModuleList([
35
+ nn.Conv2d(3, 64, 3, 1, padding=1),
36
+ nn.ReLU(inplace=True),
37
+ nn.Conv2d(64, 64, 3, 1, padding=1),
38
+ nn.ReLU(inplace=True),
39
+ nn.MaxPool2d(2, 2),
40
+
41
+ nn.Conv2d(64, 128, 3, 1, padding=1),
42
+ nn.ReLU(inplace=True),
43
+ nn.Conv2d(128, 128, 3, 1, padding=1),
44
+ nn.ReLU(inplace=True),
45
+ nn.MaxPool2d(2, 2),
46
+
47
+ nn.Conv2d(128, 256, 3, 1, padding=1),
48
+ nn.ReLU(inplace=True),
49
+ nn.Conv2d(256, 256, 3, 1, padding=1),
50
+ nn.ReLU(inplace=True),
51
+ nn.Conv2d(256, 256, 3, 1, padding=1),
52
+ nn.ReLU(inplace=True),
53
+ nn.MaxPool2d(2, 2, ceil_mode=True),
54
+
55
+ nn.Conv2d(256, 512, 3, 1, padding=1),
56
+ nn.ReLU(inplace=True),
57
+ nn.Conv2d(512, 512, 3, 1, padding=1),
58
+ nn.ReLU(inplace=True),
59
+ nn.Conv2d(512, 512, 3, 1, padding=1),
60
+ nn.ReLU(inplace=True),
61
+ nn.MaxPool2d(2, 2),
62
+
63
+ nn.Conv2d(512, 512, 3, 1, padding=1),
64
+ nn.ReLU(inplace=True),
65
+ nn.Conv2d(512, 512, 3, 1, padding=1),
66
+ nn.ReLU(inplace=True),
67
+ nn.Conv2d(512, 512, 3, 1, padding=1),
68
+ nn.ReLU(inplace=True),
69
+ nn.MaxPool2d(2, 2),
70
+
71
+ nn.Conv2d(512, 1024, 3, 1, padding=6, dilation=6),
72
+ nn.ReLU(inplace=True),
73
+ nn.Conv2d(1024, 1024, 1, 1),
74
+ nn.ReLU(inplace=True),
75
+ ])
76
+
77
+ self.L2Norm3_3 = L2Norm(256, 10)
78
+ self.L2Norm4_3 = L2Norm(512, 8)
79
+ self.L2Norm5_3 = L2Norm(512, 5)
80
+
81
+ self.extras = nn.ModuleList([
82
+ nn.Conv2d(1024, 256, 1, 1),
83
+ nn.Conv2d(256, 512, 3, 2, padding=1),
84
+ nn.Conv2d(512, 128, 1, 1),
85
+ nn.Conv2d(128, 256, 3, 2, padding=1),
86
+ ])
87
+
88
+ self.loc = nn.ModuleList([
89
+ nn.Conv2d(256, 4, 3, 1, padding=1),
90
+ nn.Conv2d(512, 4, 3, 1, padding=1),
91
+ nn.Conv2d(512, 4, 3, 1, padding=1),
92
+ nn.Conv2d(1024, 4, 3, 1, padding=1),
93
+ nn.Conv2d(512, 4, 3, 1, padding=1),
94
+ nn.Conv2d(256, 4, 3, 1, padding=1),
95
+ ])
96
+
97
+ self.conf = nn.ModuleList([
98
+ nn.Conv2d(256, 4, 3, 1, padding=1),
99
+ nn.Conv2d(512, 2, 3, 1, padding=1),
100
+ nn.Conv2d(512, 2, 3, 1, padding=1),
101
+ nn.Conv2d(1024, 2, 3, 1, padding=1),
102
+ nn.Conv2d(512, 2, 3, 1, padding=1),
103
+ nn.Conv2d(256, 2, 3, 1, padding=1),
104
+ ])
105
+
106
+ self.softmax = nn.Softmax(dim=-1)
107
+ self.detect = Detect()
108
+
109
+ def forward(self, x):
110
+ size = x.size()[2:]
111
+ sources = list()
112
+ loc = list()
113
+ conf = list()
114
+
115
+ for k in range(16):
116
+ x = self.vgg[k](x)
117
+ s = self.L2Norm3_3(x)
118
+ sources.append(s)
119
+
120
+ for k in range(16, 23):
121
+ x = self.vgg[k](x)
122
+ s = self.L2Norm4_3(x)
123
+ sources.append(s)
124
+
125
+ for k in range(23, 30):
126
+ x = self.vgg[k](x)
127
+ s = self.L2Norm5_3(x)
128
+ sources.append(s)
129
+
130
+ for k in range(30, len(self.vgg)):
131
+ x = self.vgg[k](x)
132
+ sources.append(x)
133
+
134
+ # apply extra layers and cache source layer outputs
135
+ for k, v in enumerate(self.extras):
136
+ x = F.relu(v(x), inplace=True)
137
+ if k % 2 == 1:
138
+ sources.append(x)
139
+
140
+ # apply multibox head to source layers
141
+ loc_x = self.loc[0](sources[0])
142
+ conf_x = self.conf[0](sources[0])
143
+
144
+ max_conf, _ = torch.max(conf_x[:, 0:3, :, :], dim=1, keepdim=True)
145
+ conf_x = torch.cat((max_conf, conf_x[:, 3:, :, :]), dim=1)
146
+
147
+ loc.append(loc_x.permute(0, 2, 3, 1).contiguous())
148
+ conf.append(conf_x.permute(0, 2, 3, 1).contiguous())
149
+
150
+ for i in range(1, len(sources)):
151
+ x = sources[i]
152
+ conf.append(self.conf[i](x).permute(0, 2, 3, 1).contiguous())
153
+ loc.append(self.loc[i](x).permute(0, 2, 3, 1).contiguous())
154
+
155
+ features_maps = []
156
+ for i in range(len(loc)):
157
+ feat = []
158
+ feat += [loc[i].size(1), loc[i].size(2)]
159
+ features_maps += [feat]
160
+
161
+ loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1)
162
+ conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1)
163
+
164
+ with torch.no_grad():
165
+ self.priorbox = PriorBox(size, features_maps)
166
+ self.priors = self.priorbox.forward()
167
+
168
+ output = self.detect.forward(
169
+ loc.view(loc.size(0), -1, 4),
170
+ self.softmax(conf.view(conf.size(0), -1, 2)),
171
+ self.priors.type(type(x.data)).to(self.device)
172
+ )
173
+
174
+ return output
LatentSync/eval/draw_syncnet_lines.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import torch
16
+ import matplotlib.pyplot as plt
17
+
18
+
19
+ class Chart:
20
+ def __init__(self):
21
+ self.loss_list = []
22
+
23
+ def add_ckpt(self, ckpt_path, line_name):
24
+ ckpt = torch.load(ckpt_path, map_location="cpu")
25
+ train_step_list = ckpt["train_step_list"]
26
+ train_loss_list = ckpt["train_loss_list"]
27
+ val_step_list = ckpt["val_step_list"]
28
+ val_loss_list = ckpt["val_loss_list"]
29
+ val_step_list = [val_step_list[0]] + val_step_list[4::5]
30
+ val_loss_list = [val_loss_list[0]] + val_loss_list[4::5]
31
+ self.loss_list.append((line_name, train_step_list, train_loss_list, val_step_list, val_loss_list))
32
+
33
+ def draw(self, save_path, plot_val=True):
34
+ # Global settings
35
+ plt.rcParams["font.size"] = 14
36
+ plt.rcParams["font.family"] = "serif"
37
+ plt.rcParams["font.sans-serif"] = ["Arial", "DejaVu Sans", "Lucida Grande"]
38
+ plt.rcParams["font.serif"] = ["Times New Roman", "DejaVu Serif"]
39
+
40
+ # Creating the plot
41
+ plt.figure(figsize=(7.766, 4.8)) # Golden ratio
42
+ for loss in self.loss_list:
43
+ if plot_val:
44
+ (line,) = plt.plot(loss[1], loss[2], label=loss[0], linewidth=0.5, alpha=0.5)
45
+ line_color = line.get_color()
46
+ plt.plot(loss[3], loss[4], linewidth=1.5, color=line_color)
47
+ else:
48
+ plt.plot(loss[1], loss[2], label=loss[0], linewidth=1)
49
+ plt.xlabel("Step")
50
+ plt.ylabel("Loss")
51
+ legend = plt.legend()
52
+ # legend = plt.legend(loc='upper right', bbox_to_anchor=(1, 0.82))
53
+
54
+ # Adjust the linewidth of legend
55
+ for line in legend.get_lines():
56
+ line.set_linewidth(2)
57
+
58
+ plt.savefig(save_path, transparent=True)
59
+ plt.close()
60
+
61
+
62
+ if __name__ == "__main__":
63
+ chart = Chart()
64
+ # chart.add_ckpt("output/syncnet/train-2024_10_25-18:14:43/checkpoints/checkpoint-10000.pt", "w/ self-attn")
65
+ # chart.add_ckpt("output/syncnet/train-2024_10_25-18:21:59/checkpoints/checkpoint-10000.pt", "w/o self-attn")
66
+ chart.add_ckpt("output/syncnet/train-2024_10_24-21:03:11/checkpoints/checkpoint-10000.pt", "Dim 512")
67
+ chart.add_ckpt("output/syncnet/train-2024_10_25-18:21:59/checkpoints/checkpoint-10000.pt", "Dim 2048")
68
+ chart.add_ckpt("output/syncnet/train-2024_10_24-22:37:04/checkpoints/checkpoint-10000.pt", "Dim 4096")
69
+ chart.add_ckpt("output/syncnet/train-2024_10_25-02:30:17/checkpoints/checkpoint-10000.pt", "Dim 6144")
70
+ chart.draw("ablation.pdf", plot_val=True)
LatentSync/eval/eval_fvd.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import mediapipe as mp
16
+ import cv2
17
+ from decord import VideoReader
18
+ from einops import rearrange
19
+ import os
20
+ import numpy as np
21
+ import torch
22
+ import tqdm
23
+ from eval.fvd import compute_our_fvd
24
+
25
+
26
+ class FVD:
27
+ def __init__(self, resolution=(224, 224)):
28
+ self.face_detector = mp.solutions.face_detection.FaceDetection(model_selection=0, min_detection_confidence=0.5)
29
+ self.resolution = resolution
30
+
31
+ def detect_face(self, image):
32
+ height, width = image.shape[:2]
33
+ # Process the image and detect faces.
34
+ results = self.face_detector.process(image)
35
+
36
+ if not results.detections: # Face not detected
37
+ raise Exception("Face not detected")
38
+
39
+ detection = results.detections[0] # Only use the first face in the image
40
+ bounding_box = detection.location_data.relative_bounding_box
41
+ xmin = int(bounding_box.xmin * width)
42
+ ymin = int(bounding_box.ymin * height)
43
+ face_width = int(bounding_box.width * width)
44
+ face_height = int(bounding_box.height * height)
45
+
46
+ # Crop the image to the bounding box.
47
+ xmin = max(0, xmin)
48
+ ymin = max(0, ymin)
49
+ xmax = min(width, xmin + face_width)
50
+ ymax = min(height, ymin + face_height)
51
+ image = image[ymin:ymax, xmin:xmax]
52
+
53
+ return image
54
+
55
+ def detect_video(self, video_path, real: bool = True):
56
+ vr = VideoReader(video_path)
57
+ video_frames = vr[20:36].asnumpy() # Use one frame per second
58
+ vr.seek(0) # avoid memory leak
59
+ faces = []
60
+ for frame in video_frames:
61
+ face = self.detect_face(frame)
62
+ face = cv2.resize(face, (self.resolution[1], self.resolution[0]), interpolation=cv2.INTER_AREA)
63
+ faces.append(face)
64
+
65
+ if len(faces) != 16:
66
+ return None
67
+ faces = np.stack(faces, axis=0) # (f, h, w, c)
68
+ faces = torch.from_numpy(faces)
69
+ return faces
70
+
71
+
72
+ def eval_fvd(real_videos_dir, fake_videos_dir):
73
+ fvd = FVD()
74
+ real_features_list = []
75
+ fake_features_list = []
76
+ for file in tqdm.tqdm(os.listdir(fake_videos_dir)):
77
+ if file.endswith(".mp4"):
78
+ real_video_path = os.path.join(real_videos_dir, file.replace("_out.mp4", ".mp4"))
79
+ fake_video_path = os.path.join(fake_videos_dir, file)
80
+ real_features = fvd.detect_video(real_video_path, real=True)
81
+ fake_features = fvd.detect_video(fake_video_path, real=False)
82
+ if real_features is None or fake_features is None:
83
+ continue
84
+ real_features_list.append(real_features)
85
+ fake_features_list.append(fake_features)
86
+
87
+ real_features = torch.stack(real_features_list) / 255.0
88
+ fake_features = torch.stack(fake_features_list) / 255.0
89
+ print(compute_our_fvd(real_features, fake_features, device="cpu"))
90
+
91
+
92
+ if __name__ == "__main__":
93
+ real_videos_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/segmented/cross"
94
+ fake_videos_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/segmented/latentsync_cross"
95
+
96
+ eval_fvd(real_videos_dir, fake_videos_dir)
LatentSync/eval/eval_sync_conf.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import argparse
16
+ import os
17
+ import tqdm
18
+ from statistics import fmean
19
+ from eval.syncnet import SyncNetEval
20
+ from eval.syncnet_detect import SyncNetDetector
21
+ from latentsync.utils.util import red_text
22
+ import torch
23
+
24
+
25
+ def syncnet_eval(syncnet, syncnet_detector, video_path, temp_dir, detect_results_dir="detect_results"):
26
+ syncnet_detector(video_path=video_path, min_track=50)
27
+ crop_videos = os.listdir(os.path.join(detect_results_dir, "crop"))
28
+ if crop_videos == []:
29
+ raise Exception(red_text(f"Face not detected in {video_path}"))
30
+ av_offset_list = []
31
+ conf_list = []
32
+ for video in crop_videos:
33
+ av_offset, _, conf = syncnet.evaluate(
34
+ video_path=os.path.join(detect_results_dir, "crop", video), temp_dir=temp_dir
35
+ )
36
+ av_offset_list.append(av_offset)
37
+ conf_list.append(conf)
38
+ av_offset = int(fmean(av_offset_list))
39
+ conf = fmean(conf_list)
40
+ print(f"Input video: {video_path}\nSyncNet confidence: {conf:.2f}\nAV offset: {av_offset}")
41
+ return av_offset, conf
42
+
43
+
44
+ def main():
45
+ parser = argparse.ArgumentParser(description="SyncNet")
46
+ parser.add_argument("--initial_model", type=str, default="checkpoints/auxiliary/syncnet_v2.model", help="")
47
+ parser.add_argument("--video_path", type=str, default=None, help="")
48
+ parser.add_argument("--videos_dir", type=str, default="/root/processed")
49
+ parser.add_argument("--temp_dir", type=str, default="temp", help="")
50
+
51
+ args = parser.parse_args()
52
+
53
+ device = "cuda" if torch.cuda.is_available() else "cpu"
54
+
55
+ syncnet = SyncNetEval(device=device)
56
+ syncnet.loadParameters(args.initial_model)
57
+
58
+ syncnet_detector = SyncNetDetector(device=device, detect_results_dir="detect_results")
59
+
60
+ if args.video_path is not None:
61
+ syncnet_eval(syncnet, syncnet_detector, args.video_path, args.temp_dir)
62
+ else:
63
+ sync_conf_list = []
64
+ video_names = sorted([f for f in os.listdir(args.videos_dir) if f.endswith(".mp4")])
65
+ for video_name in tqdm.tqdm(video_names):
66
+ try:
67
+ _, conf = syncnet_eval(
68
+ syncnet, syncnet_detector, os.path.join(args.videos_dir, video_name), args.temp_dir
69
+ )
70
+ sync_conf_list.append(conf)
71
+ except Exception as e:
72
+ print(e)
73
+ print(f"The average sync confidence is {fmean(sync_conf_list):.02f}")
74
+
75
+
76
+ if __name__ == "__main__":
77
+ main()
LatentSync/eval/eval_sync_conf.sh ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ #!/bin/bash
2
+ python -m eval.eval_sync_conf --video_path "RD_Radio1_000_006_out.mp4"
LatentSync/eval/eval_syncnet_acc.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import argparse
16
+ from tqdm.auto import tqdm
17
+ import torch
18
+ import torch.nn as nn
19
+ from einops import rearrange
20
+ from latentsync.models.syncnet import SyncNet
21
+ from latentsync.data.syncnet_dataset import SyncNetDataset
22
+ from diffusers import AutoencoderKL
23
+ from omegaconf import OmegaConf
24
+ from accelerate.utils import set_seed
25
+
26
+
27
+ def main(config):
28
+ set_seed(config.run.seed)
29
+
30
+ device = "cuda" if torch.cuda.is_available() else "cpu"
31
+
32
+ if config.data.latent_space:
33
+ vae = AutoencoderKL.from_pretrained(
34
+ "runwayml/stable-diffusion-inpainting", subfolder="vae", revision="fp16", torch_dtype=torch.float16
35
+ )
36
+ vae.requires_grad_(False)
37
+ vae.to(device)
38
+
39
+ # Dataset and Dataloader setup
40
+ dataset = SyncNetDataset(config.data.val_data_dir, config.data.val_fileslist, config)
41
+
42
+ test_dataloader = torch.utils.data.DataLoader(
43
+ dataset,
44
+ batch_size=config.data.batch_size,
45
+ shuffle=False,
46
+ num_workers=config.data.num_workers,
47
+ drop_last=False,
48
+ worker_init_fn=dataset.worker_init_fn,
49
+ )
50
+
51
+ # Model
52
+ syncnet = SyncNet(OmegaConf.to_container(config.model)).to(device)
53
+
54
+ print(f"Load checkpoint from: {config.ckpt.inference_ckpt_path}")
55
+ checkpoint = torch.load(config.ckpt.inference_ckpt_path, map_location=device)
56
+
57
+ syncnet.load_state_dict(checkpoint["state_dict"])
58
+ syncnet.to(dtype=torch.float16)
59
+ syncnet.requires_grad_(False)
60
+ syncnet.eval()
61
+
62
+ global_step = 0
63
+ num_val_batches = config.data.num_val_samples // config.data.batch_size
64
+ progress_bar = tqdm(range(0, num_val_batches), initial=0, desc="Testing accuracy")
65
+
66
+ num_correct_preds = 0
67
+ num_total_preds = 0
68
+
69
+ while True:
70
+ for step, batch in enumerate(test_dataloader):
71
+ ### >>>> Test >>>> ###
72
+
73
+ frames = batch["frames"].to(device, dtype=torch.float16)
74
+ audio_samples = batch["audio_samples"].to(device, dtype=torch.float16)
75
+ y = batch["y"].to(device, dtype=torch.float16).squeeze(1)
76
+
77
+ if config.data.latent_space:
78
+ frames = rearrange(frames, "b f c h w -> (b f) c h w")
79
+
80
+ with torch.no_grad():
81
+ frames = vae.encode(frames).latent_dist.sample() * 0.18215
82
+
83
+ frames = rearrange(frames, "(b f) c h w -> b (f c) h w", f=config.data.num_frames)
84
+ else:
85
+ frames = rearrange(frames, "b f c h w -> b (f c) h w")
86
+
87
+ if config.data.lower_half:
88
+ height = frames.shape[2]
89
+ frames = frames[:, :, height // 2 :, :]
90
+
91
+ with torch.no_grad():
92
+ vision_embeds, audio_embeds = syncnet(frames, audio_samples)
93
+
94
+ sims = nn.functional.cosine_similarity(vision_embeds, audio_embeds)
95
+
96
+ preds = (sims > 0.5).to(dtype=torch.float16)
97
+ num_correct_preds += (preds == y).sum().item()
98
+ num_total_preds += len(sims)
99
+
100
+ progress_bar.update(1)
101
+ global_step += 1
102
+
103
+ if global_step >= num_val_batches:
104
+ progress_bar.close()
105
+ print(f"Accuracy score: {num_correct_preds / num_total_preds*100:.2f}%")
106
+ return
107
+
108
+
109
+ if __name__ == "__main__":
110
+ parser = argparse.ArgumentParser(description="Code to test the accuracy of expert lip-sync discriminator")
111
+
112
+ parser.add_argument("--config_path", type=str, default="configs/syncnet/syncnet_16_latent.yaml")
113
+ args = parser.parse_args()
114
+
115
+ # Load a configuration file
116
+ config = OmegaConf.load(args.config_path)
117
+
118
+ main(config)
LatentSync/eval/eval_syncnet_acc.sh ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ python -m eval.eval_syncnet_acc --config_path "configs/syncnet/syncnet_16_pixel.yaml"
LatentSync/eval/fvd.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/universome/fvd-comparison/blob/master/our_fvd.py
2
+
3
+ from typing import Tuple
4
+ import scipy
5
+ import numpy as np
6
+ import torch
7
+
8
+
9
+ def compute_fvd(feats_fake: np.ndarray, feats_real: np.ndarray) -> float:
10
+ mu_gen, sigma_gen = compute_stats(feats_fake)
11
+ mu_real, sigma_real = compute_stats(feats_real)
12
+
13
+ m = np.square(mu_gen - mu_real).sum()
14
+ s, _ = scipy.linalg.sqrtm(np.dot(sigma_gen, sigma_real), disp=False) # pylint: disable=no-member
15
+ fid = np.real(m + np.trace(sigma_gen + sigma_real - s * 2))
16
+
17
+ return float(fid)
18
+
19
+
20
+ def compute_stats(feats: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
21
+ mu = feats.mean(axis=0) # [d]
22
+ sigma = np.cov(feats, rowvar=False) # [d, d]
23
+
24
+ return mu, sigma
25
+
26
+
27
+ @torch.no_grad()
28
+ def compute_our_fvd(videos_fake: np.ndarray, videos_real: np.ndarray, device: str = "cuda") -> float:
29
+ i3d_path = "checkpoints/auxiliary/i3d_torchscript.pt"
30
+ i3d_kwargs = dict(
31
+ rescale=False, resize=False, return_features=True
32
+ ) # Return raw features before the softmax layer.
33
+
34
+ with open(i3d_path, "rb") as f:
35
+ i3d_model = torch.jit.load(f).eval().to(device)
36
+
37
+ videos_fake = videos_fake.permute(0, 4, 1, 2, 3).to(device)
38
+ videos_real = videos_real.permute(0, 4, 1, 2, 3).to(device)
39
+
40
+ feats_fake = i3d_model(videos_fake, **i3d_kwargs).cpu().numpy()
41
+ feats_real = i3d_model(videos_real, **i3d_kwargs).cpu().numpy()
42
+
43
+ return compute_fvd(feats_fake, feats_real)
44
+
45
+
46
+ def main():
47
+ # input shape: (b, f, h, w, c)
48
+ videos_fake = torch.rand(10, 16, 224, 224, 3)
49
+ videos_real = torch.rand(10, 16, 224, 224, 3)
50
+
51
+ our_fvd_result = compute_our_fvd(videos_fake, videos_real)
52
+ print(f"[FVD scores] Ours: {our_fvd_result}")
53
+
54
+
55
+ if __name__ == "__main__":
56
+ main()
LatentSync/eval/hyper_iqa.py ADDED
@@ -0,0 +1,343 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/SSL92/hyperIQA/blob/master/models.py
2
+
3
+ import torch as torch
4
+ import torch.nn as nn
5
+ from torch.nn import functional as F
6
+ from torch.nn import init
7
+ import math
8
+ import torch.utils.model_zoo as model_zoo
9
+
10
+ model_urls = {
11
+ 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
12
+ 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
13
+ 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
14
+ 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
15
+ 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
16
+ }
17
+
18
+
19
+ class HyperNet(nn.Module):
20
+ """
21
+ Hyper network for learning perceptual rules.
22
+
23
+ Args:
24
+ lda_out_channels: local distortion aware module output size.
25
+ hyper_in_channels: input feature channels for hyper network.
26
+ target_in_size: input vector size for target network.
27
+ target_fc(i)_size: fully connection layer size of target network.
28
+ feature_size: input feature map width/height for hyper network.
29
+
30
+ Note:
31
+ For size match, input args must satisfy: 'target_fc(i)_size * target_fc(i+1)_size' is divisible by 'feature_size ^ 2'.
32
+
33
+ """
34
+ def __init__(self, lda_out_channels, hyper_in_channels, target_in_size, target_fc1_size, target_fc2_size, target_fc3_size, target_fc4_size, feature_size):
35
+ super(HyperNet, self).__init__()
36
+
37
+ self.hyperInChn = hyper_in_channels
38
+ self.target_in_size = target_in_size
39
+ self.f1 = target_fc1_size
40
+ self.f2 = target_fc2_size
41
+ self.f3 = target_fc3_size
42
+ self.f4 = target_fc4_size
43
+ self.feature_size = feature_size
44
+
45
+ self.res = resnet50_backbone(lda_out_channels, target_in_size, pretrained=True)
46
+
47
+ self.pool = nn.AdaptiveAvgPool2d((1, 1))
48
+
49
+ # Conv layers for resnet output features
50
+ self.conv1 = nn.Sequential(
51
+ nn.Conv2d(2048, 1024, 1, padding=(0, 0)),
52
+ nn.ReLU(inplace=True),
53
+ nn.Conv2d(1024, 512, 1, padding=(0, 0)),
54
+ nn.ReLU(inplace=True),
55
+ nn.Conv2d(512, self.hyperInChn, 1, padding=(0, 0)),
56
+ nn.ReLU(inplace=True)
57
+ )
58
+
59
+ # Hyper network part, conv for generating target fc weights, fc for generating target fc biases
60
+ self.fc1w_conv = nn.Conv2d(self.hyperInChn, int(self.target_in_size * self.f1 / feature_size ** 2), 3, padding=(1, 1))
61
+ self.fc1b_fc = nn.Linear(self.hyperInChn, self.f1)
62
+
63
+ self.fc2w_conv = nn.Conv2d(self.hyperInChn, int(self.f1 * self.f2 / feature_size ** 2), 3, padding=(1, 1))
64
+ self.fc2b_fc = nn.Linear(self.hyperInChn, self.f2)
65
+
66
+ self.fc3w_conv = nn.Conv2d(self.hyperInChn, int(self.f2 * self.f3 / feature_size ** 2), 3, padding=(1, 1))
67
+ self.fc3b_fc = nn.Linear(self.hyperInChn, self.f3)
68
+
69
+ self.fc4w_conv = nn.Conv2d(self.hyperInChn, int(self.f3 * self.f4 / feature_size ** 2), 3, padding=(1, 1))
70
+ self.fc4b_fc = nn.Linear(self.hyperInChn, self.f4)
71
+
72
+ self.fc5w_fc = nn.Linear(self.hyperInChn, self.f4)
73
+ self.fc5b_fc = nn.Linear(self.hyperInChn, 1)
74
+
75
+ # initialize
76
+ for i, m_name in enumerate(self._modules):
77
+ if i > 2:
78
+ nn.init.kaiming_normal_(self._modules[m_name].weight.data)
79
+
80
+ def forward(self, img):
81
+ feature_size = self.feature_size
82
+
83
+ res_out = self.res(img)
84
+
85
+ # input vector for target net
86
+ target_in_vec = res_out['target_in_vec'].reshape(-1, self.target_in_size, 1, 1)
87
+
88
+ # input features for hyper net
89
+ hyper_in_feat = self.conv1(res_out['hyper_in_feat']).reshape(-1, self.hyperInChn, feature_size, feature_size)
90
+
91
+ # generating target net weights & biases
92
+ target_fc1w = self.fc1w_conv(hyper_in_feat).reshape(-1, self.f1, self.target_in_size, 1, 1)
93
+ target_fc1b = self.fc1b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f1)
94
+
95
+ target_fc2w = self.fc2w_conv(hyper_in_feat).reshape(-1, self.f2, self.f1, 1, 1)
96
+ target_fc2b = self.fc2b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f2)
97
+
98
+ target_fc3w = self.fc3w_conv(hyper_in_feat).reshape(-1, self.f3, self.f2, 1, 1)
99
+ target_fc3b = self.fc3b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f3)
100
+
101
+ target_fc4w = self.fc4w_conv(hyper_in_feat).reshape(-1, self.f4, self.f3, 1, 1)
102
+ target_fc4b = self.fc4b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f4)
103
+
104
+ target_fc5w = self.fc5w_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, 1, self.f4, 1, 1)
105
+ target_fc5b = self.fc5b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, 1)
106
+
107
+ out = {}
108
+ out['target_in_vec'] = target_in_vec
109
+ out['target_fc1w'] = target_fc1w
110
+ out['target_fc1b'] = target_fc1b
111
+ out['target_fc2w'] = target_fc2w
112
+ out['target_fc2b'] = target_fc2b
113
+ out['target_fc3w'] = target_fc3w
114
+ out['target_fc3b'] = target_fc3b
115
+ out['target_fc4w'] = target_fc4w
116
+ out['target_fc4b'] = target_fc4b
117
+ out['target_fc5w'] = target_fc5w
118
+ out['target_fc5b'] = target_fc5b
119
+
120
+ return out
121
+
122
+
123
+ class TargetNet(nn.Module):
124
+ """
125
+ Target network for quality prediction.
126
+ """
127
+ def __init__(self, paras):
128
+ super(TargetNet, self).__init__()
129
+ self.l1 = nn.Sequential(
130
+ TargetFC(paras['target_fc1w'], paras['target_fc1b']),
131
+ nn.Sigmoid(),
132
+ )
133
+ self.l2 = nn.Sequential(
134
+ TargetFC(paras['target_fc2w'], paras['target_fc2b']),
135
+ nn.Sigmoid(),
136
+ )
137
+
138
+ self.l3 = nn.Sequential(
139
+ TargetFC(paras['target_fc3w'], paras['target_fc3b']),
140
+ nn.Sigmoid(),
141
+ )
142
+
143
+ self.l4 = nn.Sequential(
144
+ TargetFC(paras['target_fc4w'], paras['target_fc4b']),
145
+ nn.Sigmoid(),
146
+ TargetFC(paras['target_fc5w'], paras['target_fc5b']),
147
+ )
148
+
149
+ def forward(self, x):
150
+ q = self.l1(x)
151
+ # q = F.dropout(q)
152
+ q = self.l2(q)
153
+ q = self.l3(q)
154
+ q = self.l4(q).squeeze()
155
+ return q
156
+
157
+
158
+ class TargetFC(nn.Module):
159
+ """
160
+ Fully connection operations for target net
161
+
162
+ Note:
163
+ Weights & biases are different for different images in a batch,
164
+ thus here we use group convolution for calculating images in a batch with individual weights & biases.
165
+ """
166
+ def __init__(self, weight, bias):
167
+ super(TargetFC, self).__init__()
168
+ self.weight = weight
169
+ self.bias = bias
170
+
171
+ def forward(self, input_):
172
+
173
+ input_re = input_.reshape(-1, input_.shape[0] * input_.shape[1], input_.shape[2], input_.shape[3])
174
+ weight_re = self.weight.reshape(self.weight.shape[0] * self.weight.shape[1], self.weight.shape[2], self.weight.shape[3], self.weight.shape[4])
175
+ bias_re = self.bias.reshape(self.bias.shape[0] * self.bias.shape[1])
176
+ out = F.conv2d(input=input_re, weight=weight_re, bias=bias_re, groups=self.weight.shape[0])
177
+
178
+ return out.reshape(input_.shape[0], self.weight.shape[1], input_.shape[2], input_.shape[3])
179
+
180
+
181
+ class Bottleneck(nn.Module):
182
+ expansion = 4
183
+
184
+ def __init__(self, inplanes, planes, stride=1, downsample=None):
185
+ super(Bottleneck, self).__init__()
186
+ self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
187
+ self.bn1 = nn.BatchNorm2d(planes)
188
+ self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
189
+ padding=1, bias=False)
190
+ self.bn2 = nn.BatchNorm2d(planes)
191
+ self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
192
+ self.bn3 = nn.BatchNorm2d(planes * 4)
193
+ self.relu = nn.ReLU(inplace=True)
194
+ self.downsample = downsample
195
+ self.stride = stride
196
+
197
+ def forward(self, x):
198
+ residual = x
199
+
200
+ out = self.conv1(x)
201
+ out = self.bn1(out)
202
+ out = self.relu(out)
203
+
204
+ out = self.conv2(out)
205
+ out = self.bn2(out)
206
+ out = self.relu(out)
207
+
208
+ out = self.conv3(out)
209
+ out = self.bn3(out)
210
+
211
+ if self.downsample is not None:
212
+ residual = self.downsample(x)
213
+
214
+ out += residual
215
+ out = self.relu(out)
216
+
217
+ return out
218
+
219
+
220
+ class ResNetBackbone(nn.Module):
221
+
222
+ def __init__(self, lda_out_channels, in_chn, block, layers, num_classes=1000):
223
+ super(ResNetBackbone, self).__init__()
224
+ self.inplanes = 64
225
+ self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
226
+ self.bn1 = nn.BatchNorm2d(64)
227
+ self.relu = nn.ReLU(inplace=True)
228
+ self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
229
+ self.layer1 = self._make_layer(block, 64, layers[0])
230
+ self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
231
+ self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
232
+ self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
233
+
234
+ # local distortion aware module
235
+ self.lda1_pool = nn.Sequential(
236
+ nn.Conv2d(256, 16, kernel_size=1, stride=1, padding=0, bias=False),
237
+ nn.AvgPool2d(7, stride=7),
238
+ )
239
+ self.lda1_fc = nn.Linear(16 * 64, lda_out_channels)
240
+
241
+ self.lda2_pool = nn.Sequential(
242
+ nn.Conv2d(512, 32, kernel_size=1, stride=1, padding=0, bias=False),
243
+ nn.AvgPool2d(7, stride=7),
244
+ )
245
+ self.lda2_fc = nn.Linear(32 * 16, lda_out_channels)
246
+
247
+ self.lda3_pool = nn.Sequential(
248
+ nn.Conv2d(1024, 64, kernel_size=1, stride=1, padding=0, bias=False),
249
+ nn.AvgPool2d(7, stride=7),
250
+ )
251
+ self.lda3_fc = nn.Linear(64 * 4, lda_out_channels)
252
+
253
+ self.lda4_pool = nn.AvgPool2d(7, stride=7)
254
+ self.lda4_fc = nn.Linear(2048, in_chn - lda_out_channels * 3)
255
+
256
+ for m in self.modules():
257
+ if isinstance(m, nn.Conv2d):
258
+ n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
259
+ m.weight.data.normal_(0, math.sqrt(2. / n))
260
+ elif isinstance(m, nn.BatchNorm2d):
261
+ m.weight.data.fill_(1)
262
+ m.bias.data.zero_()
263
+
264
+ # initialize
265
+ nn.init.kaiming_normal_(self.lda1_pool._modules['0'].weight.data)
266
+ nn.init.kaiming_normal_(self.lda2_pool._modules['0'].weight.data)
267
+ nn.init.kaiming_normal_(self.lda3_pool._modules['0'].weight.data)
268
+ nn.init.kaiming_normal_(self.lda1_fc.weight.data)
269
+ nn.init.kaiming_normal_(self.lda2_fc.weight.data)
270
+ nn.init.kaiming_normal_(self.lda3_fc.weight.data)
271
+ nn.init.kaiming_normal_(self.lda4_fc.weight.data)
272
+
273
+ def _make_layer(self, block, planes, blocks, stride=1):
274
+ downsample = None
275
+ if stride != 1 or self.inplanes != planes * block.expansion:
276
+ downsample = nn.Sequential(
277
+ nn.Conv2d(self.inplanes, planes * block.expansion,
278
+ kernel_size=1, stride=stride, bias=False),
279
+ nn.BatchNorm2d(planes * block.expansion),
280
+ )
281
+
282
+ layers = []
283
+ layers.append(block(self.inplanes, planes, stride, downsample))
284
+ self.inplanes = planes * block.expansion
285
+ for i in range(1, blocks):
286
+ layers.append(block(self.inplanes, planes))
287
+
288
+ return nn.Sequential(*layers)
289
+
290
+ def forward(self, x):
291
+ x = self.conv1(x)
292
+ x = self.bn1(x)
293
+ x = self.relu(x)
294
+ x = self.maxpool(x)
295
+ x = self.layer1(x)
296
+
297
+ # the same effect as lda operation in the paper, but save much more memory
298
+ lda_1 = self.lda1_fc(self.lda1_pool(x).reshape(x.size(0), -1))
299
+ x = self.layer2(x)
300
+ lda_2 = self.lda2_fc(self.lda2_pool(x).reshape(x.size(0), -1))
301
+ x = self.layer3(x)
302
+ lda_3 = self.lda3_fc(self.lda3_pool(x).reshape(x.size(0), -1))
303
+ x = self.layer4(x)
304
+ lda_4 = self.lda4_fc(self.lda4_pool(x).reshape(x.size(0), -1))
305
+
306
+ vec = torch.cat((lda_1, lda_2, lda_3, lda_4), 1)
307
+
308
+ out = {}
309
+ out['hyper_in_feat'] = x
310
+ out['target_in_vec'] = vec
311
+
312
+ return out
313
+
314
+
315
+ def resnet50_backbone(lda_out_channels, in_chn, pretrained=False, **kwargs):
316
+ """Constructs a ResNet-50 model_hyper.
317
+
318
+ Args:
319
+ pretrained (bool): If True, returns a model_hyper pre-trained on ImageNet
320
+ """
321
+ model = ResNetBackbone(lda_out_channels, in_chn, Bottleneck, [3, 4, 6, 3], **kwargs)
322
+ if pretrained:
323
+ save_model = model_zoo.load_url(model_urls['resnet50'])
324
+ model_dict = model.state_dict()
325
+ state_dict = {k: v for k, v in save_model.items() if k in model_dict.keys()}
326
+ model_dict.update(state_dict)
327
+ model.load_state_dict(model_dict)
328
+ else:
329
+ model.apply(weights_init_xavier)
330
+ return model
331
+
332
+
333
+ def weights_init_xavier(m):
334
+ classname = m.__class__.__name__
335
+ # print(classname)
336
+ # if isinstance(m, nn.Conv2d):
337
+ if classname.find('Conv') != -1:
338
+ init.kaiming_normal_(m.weight.data)
339
+ elif classname.find('Linear') != -1:
340
+ init.kaiming_normal_(m.weight.data)
341
+ elif classname.find('BatchNorm2d') != -1:
342
+ init.uniform_(m.weight.data, 1.0, 0.02)
343
+ init.constant_(m.bias.data, 0.0)
LatentSync/eval/inference_videos.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import os
16
+ import subprocess
17
+ from tqdm import tqdm
18
+
19
+
20
+ def inference_video_from_dir(input_dir, output_dir, unet_config_path, ckpt_path):
21
+ os.makedirs(output_dir, exist_ok=True)
22
+ video_names = sorted([f for f in os.listdir(input_dir) if f.endswith(".mp4")])
23
+ for video_name in tqdm(video_names):
24
+ video_path = os.path.join(input_dir, video_name)
25
+ audio_path = os.path.join(input_dir, video_name.replace(".mp4", "_audio.wav"))
26
+ video_out_path = os.path.join(output_dir, video_name.replace(".mp4", "_out.mp4"))
27
+ inference_command = f"python inference.py --unet_config_path {unet_config_path} --video_path {video_path} --audio_path {audio_path} --video_out_path {video_out_path} --inference_ckpt_path {ckpt_path} --seed 1247"
28
+ subprocess.run(inference_command, shell=True)
29
+
30
+
31
+ if __name__ == "__main__":
32
+ input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/HDTF/segmented/cross"
33
+ output_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/HDTF/segmented/latentsync_cross"
34
+ unet_config_path = "configs/unet/unet_latent_16_diffusion.yaml"
35
+ ckpt_path = "output/unet/train-2024_10_08-16:23:43/checkpoints/checkpoint-1920000.pt"
36
+
37
+ inference_video_from_dir(input_dir, output_dir, unet_config_path, ckpt_path)
LatentSync/eval/syncnet/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .syncnet_eval import SyncNetEval
LatentSync/eval/syncnet/syncnet.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # https://github.com/joonson/syncnet_python/blob/master/SyncNetModel.py
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+
6
+
7
+ def save(model, filename):
8
+ with open(filename, "wb") as f:
9
+ torch.save(model, f)
10
+ print("%s saved." % filename)
11
+
12
+
13
+ def load(filename):
14
+ net = torch.load(filename)
15
+ return net
16
+
17
+
18
+ class S(nn.Module):
19
+ def __init__(self, num_layers_in_fc_layers=1024):
20
+ super(S, self).__init__()
21
+
22
+ self.__nFeatures__ = 24
23
+ self.__nChs__ = 32
24
+ self.__midChs__ = 32
25
+
26
+ self.netcnnaud = nn.Sequential(
27
+ nn.Conv2d(1, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
28
+ nn.BatchNorm2d(64),
29
+ nn.ReLU(inplace=True),
30
+ nn.MaxPool2d(kernel_size=(1, 1), stride=(1, 1)),
31
+ nn.Conv2d(64, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
32
+ nn.BatchNorm2d(192),
33
+ nn.ReLU(inplace=True),
34
+ nn.MaxPool2d(kernel_size=(3, 3), stride=(1, 2)),
35
+ nn.Conv2d(192, 384, kernel_size=(3, 3), padding=(1, 1)),
36
+ nn.BatchNorm2d(384),
37
+ nn.ReLU(inplace=True),
38
+ nn.Conv2d(384, 256, kernel_size=(3, 3), padding=(1, 1)),
39
+ nn.BatchNorm2d(256),
40
+ nn.ReLU(inplace=True),
41
+ nn.Conv2d(256, 256, kernel_size=(3, 3), padding=(1, 1)),
42
+ nn.BatchNorm2d(256),
43
+ nn.ReLU(inplace=True),
44
+ nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2)),
45
+ nn.Conv2d(256, 512, kernel_size=(5, 4), padding=(0, 0)),
46
+ nn.BatchNorm2d(512),
47
+ nn.ReLU(),
48
+ )
49
+
50
+ self.netfcaud = nn.Sequential(
51
+ nn.Linear(512, 512),
52
+ nn.BatchNorm1d(512),
53
+ nn.ReLU(),
54
+ nn.Linear(512, num_layers_in_fc_layers),
55
+ )
56
+
57
+ self.netfclip = nn.Sequential(
58
+ nn.Linear(512, 512),
59
+ nn.BatchNorm1d(512),
60
+ nn.ReLU(),
61
+ nn.Linear(512, num_layers_in_fc_layers),
62
+ )
63
+
64
+ self.netcnnlip = nn.Sequential(
65
+ nn.Conv3d(3, 96, kernel_size=(5, 7, 7), stride=(1, 2, 2), padding=0),
66
+ nn.BatchNorm3d(96),
67
+ nn.ReLU(inplace=True),
68
+ nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2)),
69
+ nn.Conv3d(96, 256, kernel_size=(1, 5, 5), stride=(1, 2, 2), padding=(0, 1, 1)),
70
+ nn.BatchNorm3d(256),
71
+ nn.ReLU(inplace=True),
72
+ nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1)),
73
+ nn.Conv3d(256, 256, kernel_size=(1, 3, 3), padding=(0, 1, 1)),
74
+ nn.BatchNorm3d(256),
75
+ nn.ReLU(inplace=True),
76
+ nn.Conv3d(256, 256, kernel_size=(1, 3, 3), padding=(0, 1, 1)),
77
+ nn.BatchNorm3d(256),
78
+ nn.ReLU(inplace=True),
79
+ nn.Conv3d(256, 256, kernel_size=(1, 3, 3), padding=(0, 1, 1)),
80
+ nn.BatchNorm3d(256),
81
+ nn.ReLU(inplace=True),
82
+ nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2)),
83
+ nn.Conv3d(256, 512, kernel_size=(1, 6, 6), padding=0),
84
+ nn.BatchNorm3d(512),
85
+ nn.ReLU(inplace=True),
86
+ )
87
+
88
+ def forward_aud(self, x):
89
+
90
+ mid = self.netcnnaud(x)
91
+ # N x ch x 24 x M
92
+ mid = mid.view((mid.size()[0], -1))
93
+ # N x (ch x 24)
94
+ out = self.netfcaud(mid)
95
+
96
+ return out
97
+
98
+ def forward_lip(self, x):
99
+
100
+ mid = self.netcnnlip(x)
101
+ mid = mid.view((mid.size()[0], -1))
102
+ # N x (ch x 24)
103
+ out = self.netfclip(mid)
104
+
105
+ return out
106
+
107
+ def forward_lipfeat(self, x):
108
+
109
+ mid = self.netcnnlip(x)
110
+ out = mid.view((mid.size()[0], -1))
111
+ # N x (ch x 24)
112
+
113
+ return out
LatentSync/eval/syncnet/syncnet_eval.py ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/joonson/syncnet_python/blob/master/SyncNetInstance.py
2
+
3
+ import torch
4
+ import numpy
5
+ import time, pdb, argparse, subprocess, os, math, glob
6
+ import cv2
7
+ import python_speech_features
8
+
9
+ from scipy import signal
10
+ from scipy.io import wavfile
11
+ from .syncnet import S
12
+ from shutil import rmtree
13
+
14
+
15
+ # ==================== Get OFFSET ====================
16
+
17
+ # Video 25 FPS, Audio 16000HZ
18
+
19
+
20
+ def calc_pdist(feat1, feat2, vshift=10):
21
+ win_size = vshift * 2 + 1
22
+
23
+ feat2p = torch.nn.functional.pad(feat2, (0, 0, vshift, vshift))
24
+
25
+ dists = []
26
+
27
+ for i in range(0, len(feat1)):
28
+
29
+ dists.append(
30
+ torch.nn.functional.pairwise_distance(feat1[[i], :].repeat(win_size, 1), feat2p[i : i + win_size, :])
31
+ )
32
+
33
+ return dists
34
+
35
+
36
+ # ==================== MAIN DEF ====================
37
+
38
+
39
+ class SyncNetEval(torch.nn.Module):
40
+ def __init__(self, dropout=0, num_layers_in_fc_layers=1024, device="cpu"):
41
+ super().__init__()
42
+
43
+ self.__S__ = S(num_layers_in_fc_layers=num_layers_in_fc_layers).to(device)
44
+ self.device = device
45
+
46
+ def evaluate(self, video_path, temp_dir="temp", batch_size=20, vshift=15):
47
+
48
+ self.__S__.eval()
49
+
50
+ # ========== ==========
51
+ # Convert files
52
+ # ========== ==========
53
+
54
+ if os.path.exists(temp_dir):
55
+ rmtree(temp_dir)
56
+
57
+ os.makedirs(temp_dir)
58
+
59
+ # temp_video_path = os.path.join(temp_dir, "temp.mp4")
60
+ # command = f"ffmpeg -loglevel error -nostdin -y -i {video_path} -vf scale='224:224' {temp_video_path}"
61
+ # subprocess.call(command, shell=True)
62
+
63
+ command = (
64
+ f"ffmpeg -loglevel error -nostdin -y -i {video_path} -f image2 {os.path.join(temp_dir, '%06d.jpg')}"
65
+ )
66
+ subprocess.call(command, shell=True, stdout=None)
67
+
68
+ command = f"ffmpeg -loglevel error -nostdin -y -i {video_path} -async 1 -ac 1 -vn -acodec pcm_s16le -ar 16000 {os.path.join(temp_dir, 'audio.wav')}"
69
+ subprocess.call(command, shell=True, stdout=None)
70
+
71
+ # ========== ==========
72
+ # Load video
73
+ # ========== ==========
74
+
75
+ images = []
76
+
77
+ flist = glob.glob(os.path.join(temp_dir, "*.jpg"))
78
+ flist.sort()
79
+
80
+ for fname in flist:
81
+ img_input = cv2.imread(fname)
82
+ img_input = cv2.resize(img_input, (224, 224)) # HARD CODED, CHANGE BEFORE RELEASE
83
+ images.append(img_input)
84
+
85
+ im = numpy.stack(images, axis=3)
86
+ im = numpy.expand_dims(im, axis=0)
87
+ im = numpy.transpose(im, (0, 3, 4, 1, 2))
88
+
89
+ imtv = torch.autograd.Variable(torch.from_numpy(im.astype(float)).float())
90
+
91
+ # ========== ==========
92
+ # Load audio
93
+ # ========== ==========
94
+
95
+ sample_rate, audio = wavfile.read(os.path.join(temp_dir, "audio.wav"))
96
+ mfcc = zip(*python_speech_features.mfcc(audio, sample_rate))
97
+ mfcc = numpy.stack([numpy.array(i) for i in mfcc])
98
+
99
+ cc = numpy.expand_dims(numpy.expand_dims(mfcc, axis=0), axis=0)
100
+ cct = torch.autograd.Variable(torch.from_numpy(cc.astype(float)).float())
101
+
102
+ # ========== ==========
103
+ # Check audio and video input length
104
+ # ========== ==========
105
+
106
+ # if (float(len(audio)) / 16000) != (float(len(images)) / 25):
107
+ # print(
108
+ # "WARNING: Audio (%.4fs) and video (%.4fs) lengths are different."
109
+ # % (float(len(audio)) / 16000, float(len(images)) / 25)
110
+ # )
111
+
112
+ min_length = min(len(images), math.floor(len(audio) / 640))
113
+
114
+ # ========== ==========
115
+ # Generate video and audio feats
116
+ # ========== ==========
117
+
118
+ lastframe = min_length - 5
119
+ im_feat = []
120
+ cc_feat = []
121
+
122
+ tS = time.time()
123
+ for i in range(0, lastframe, batch_size):
124
+
125
+ im_batch = [imtv[:, :, vframe : vframe + 5, :, :] for vframe in range(i, min(lastframe, i + batch_size))]
126
+ im_in = torch.cat(im_batch, 0)
127
+ im_out = self.__S__.forward_lip(im_in.to(self.device))
128
+ im_feat.append(im_out.data.cpu())
129
+
130
+ cc_batch = [
131
+ cct[:, :, :, vframe * 4 : vframe * 4 + 20] for vframe in range(i, min(lastframe, i + batch_size))
132
+ ]
133
+ cc_in = torch.cat(cc_batch, 0)
134
+ cc_out = self.__S__.forward_aud(cc_in.to(self.device))
135
+ cc_feat.append(cc_out.data.cpu())
136
+
137
+ im_feat = torch.cat(im_feat, 0)
138
+ cc_feat = torch.cat(cc_feat, 0)
139
+
140
+ # ========== ==========
141
+ # Compute offset
142
+ # ========== ==========
143
+
144
+ dists = calc_pdist(im_feat, cc_feat, vshift=vshift)
145
+ mean_dists = torch.mean(torch.stack(dists, 1), 1)
146
+
147
+ min_dist, minidx = torch.min(mean_dists, 0)
148
+
149
+ av_offset = vshift - minidx
150
+ conf = torch.median(mean_dists) - min_dist
151
+
152
+ fdist = numpy.stack([dist[minidx].numpy() for dist in dists])
153
+ # fdist = numpy.pad(fdist, (3,3), 'constant', constant_values=15)
154
+ fconf = torch.median(mean_dists).numpy() - fdist
155
+ framewise_conf = signal.medfilt(fconf, kernel_size=9)
156
+
157
+ # numpy.set_printoptions(formatter={"float": "{: 0.3f}".format})
158
+ rmtree(temp_dir)
159
+ return av_offset.item(), min_dist.item(), conf.item()
160
+
161
+ def extract_feature(self, opt, videofile):
162
+
163
+ self.__S__.eval()
164
+
165
+ # ========== ==========
166
+ # Load video
167
+ # ========== ==========
168
+ cap = cv2.VideoCapture(videofile)
169
+
170
+ frame_num = 1
171
+ images = []
172
+ while frame_num:
173
+ frame_num += 1
174
+ ret, image = cap.read()
175
+ if ret == 0:
176
+ break
177
+
178
+ images.append(image)
179
+
180
+ im = numpy.stack(images, axis=3)
181
+ im = numpy.expand_dims(im, axis=0)
182
+ im = numpy.transpose(im, (0, 3, 4, 1, 2))
183
+
184
+ imtv = torch.autograd.Variable(torch.from_numpy(im.astype(float)).float())
185
+
186
+ # ========== ==========
187
+ # Generate video feats
188
+ # ========== ==========
189
+
190
+ lastframe = len(images) - 4
191
+ im_feat = []
192
+
193
+ tS = time.time()
194
+ for i in range(0, lastframe, opt.batch_size):
195
+
196
+ im_batch = [
197
+ imtv[:, :, vframe : vframe + 5, :, :] for vframe in range(i, min(lastframe, i + opt.batch_size))
198
+ ]
199
+ im_in = torch.cat(im_batch, 0)
200
+ im_out = self.__S__.forward_lipfeat(im_in.to(self.device))
201
+ im_feat.append(im_out.data.cpu())
202
+
203
+ im_feat = torch.cat(im_feat, 0)
204
+
205
+ # ========== ==========
206
+ # Compute offset
207
+ # ========== ==========
208
+
209
+ print("Compute time %.3f sec." % (time.time() - tS))
210
+
211
+ return im_feat
212
+
213
+ def loadParameters(self, path):
214
+ loaded_state = torch.load(path, map_location=lambda storage, loc: storage)
215
+
216
+ self_state = self.__S__.state_dict()
217
+
218
+ for name, param in loaded_state.items():
219
+
220
+ self_state[name].copy_(param)
LatentSync/eval/syncnet_detect.py ADDED
@@ -0,0 +1,251 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/joonson/syncnet_python/blob/master/run_pipeline.py
2
+
3
+ import os, pdb, subprocess, glob, cv2
4
+ import numpy as np
5
+ from shutil import rmtree
6
+ import torch
7
+
8
+ from scenedetect.video_manager import VideoManager
9
+ from scenedetect.scene_manager import SceneManager
10
+ from scenedetect.stats_manager import StatsManager
11
+ from scenedetect.detectors import ContentDetector
12
+
13
+ from scipy.interpolate import interp1d
14
+ from scipy.io import wavfile
15
+ from scipy import signal
16
+
17
+ from eval.detectors import S3FD
18
+
19
+
20
+ class SyncNetDetector:
21
+ def __init__(self, device, detect_results_dir="detect_results"):
22
+ self.s3f_detector = S3FD(device=device)
23
+ self.detect_results_dir = detect_results_dir
24
+
25
+ def __call__(self, video_path: str, min_track=50, scale=False):
26
+ crop_dir = os.path.join(self.detect_results_dir, "crop")
27
+ video_dir = os.path.join(self.detect_results_dir, "video")
28
+ frames_dir = os.path.join(self.detect_results_dir, "frames")
29
+ temp_dir = os.path.join(self.detect_results_dir, "temp")
30
+
31
+ # ========== DELETE EXISTING DIRECTORIES ==========
32
+ if os.path.exists(crop_dir):
33
+ rmtree(crop_dir)
34
+
35
+ if os.path.exists(video_dir):
36
+ rmtree(video_dir)
37
+
38
+ if os.path.exists(frames_dir):
39
+ rmtree(frames_dir)
40
+
41
+ if os.path.exists(temp_dir):
42
+ rmtree(temp_dir)
43
+
44
+ # ========== MAKE NEW DIRECTORIES ==========
45
+
46
+ os.makedirs(crop_dir)
47
+ os.makedirs(video_dir)
48
+ os.makedirs(frames_dir)
49
+ os.makedirs(temp_dir)
50
+
51
+ # ========== CONVERT VIDEO AND EXTRACT FRAMES ==========
52
+
53
+ if scale:
54
+ scaled_video_path = os.path.join(video_dir, "scaled.mp4")
55
+ command = f"ffmpeg -loglevel error -y -nostdin -i {video_path} -vf scale='224:224' {scaled_video_path}"
56
+ subprocess.run(command, shell=True)
57
+ video_path = scaled_video_path
58
+
59
+ command = f"ffmpeg -y -nostdin -loglevel error -i {video_path} -qscale:v 2 -async 1 -r 25 {os.path.join(video_dir, 'video.mp4')}"
60
+ subprocess.run(command, shell=True, stdout=None)
61
+
62
+ command = f"ffmpeg -y -nostdin -loglevel error -i {os.path.join(video_dir, 'video.mp4')} -qscale:v 2 -f image2 {os.path.join(frames_dir, '%06d.jpg')}"
63
+ subprocess.run(command, shell=True, stdout=None)
64
+
65
+ command = f"ffmpeg -y -nostdin -loglevel error -i {os.path.join(video_dir, 'video.mp4')} -ac 1 -vn -acodec pcm_s16le -ar 16000 {os.path.join(video_dir, 'audio.wav')}"
66
+ subprocess.run(command, shell=True, stdout=None)
67
+
68
+ faces = self.detect_face(frames_dir)
69
+
70
+ scene = self.scene_detect(video_dir)
71
+
72
+ # Face tracking
73
+ alltracks = []
74
+
75
+ for shot in scene:
76
+ if shot[1].frame_num - shot[0].frame_num >= min_track:
77
+ alltracks.extend(self.track_face(faces[shot[0].frame_num : shot[1].frame_num], min_track=min_track))
78
+
79
+ # Face crop
80
+ for ii, track in enumerate(alltracks):
81
+ self.crop_video(track, os.path.join(crop_dir, "%05d" % ii), frames_dir, 25, temp_dir, video_dir)
82
+
83
+ rmtree(temp_dir)
84
+
85
+ def scene_detect(self, video_dir):
86
+ video_manager = VideoManager([os.path.join(video_dir, "video.mp4")])
87
+ stats_manager = StatsManager()
88
+ scene_manager = SceneManager(stats_manager)
89
+ # Add ContentDetector algorithm (constructor takes detector options like threshold).
90
+ scene_manager.add_detector(ContentDetector())
91
+ base_timecode = video_manager.get_base_timecode()
92
+
93
+ video_manager.set_downscale_factor()
94
+
95
+ video_manager.start()
96
+
97
+ scene_manager.detect_scenes(frame_source=video_manager)
98
+
99
+ scene_list = scene_manager.get_scene_list(base_timecode)
100
+
101
+ if scene_list == []:
102
+ scene_list = [(video_manager.get_base_timecode(), video_manager.get_current_timecode())]
103
+
104
+ return scene_list
105
+
106
+ def track_face(self, scenefaces, num_failed_det=25, min_track=50, min_face_size=100):
107
+
108
+ iouThres = 0.5 # Minimum IOU between consecutive face detections
109
+ tracks = []
110
+
111
+ while True:
112
+ track = []
113
+ for framefaces in scenefaces:
114
+ for face in framefaces:
115
+ if track == []:
116
+ track.append(face)
117
+ framefaces.remove(face)
118
+ elif face["frame"] - track[-1]["frame"] <= num_failed_det:
119
+ iou = bounding_box_iou(face["bbox"], track[-1]["bbox"])
120
+ if iou > iouThres:
121
+ track.append(face)
122
+ framefaces.remove(face)
123
+ continue
124
+ else:
125
+ break
126
+
127
+ if track == []:
128
+ break
129
+ elif len(track) > min_track:
130
+
131
+ framenum = np.array([f["frame"] for f in track])
132
+ bboxes = np.array([np.array(f["bbox"]) for f in track])
133
+
134
+ frame_i = np.arange(framenum[0], framenum[-1] + 1)
135
+
136
+ bboxes_i = []
137
+ for ij in range(0, 4):
138
+ interpfn = interp1d(framenum, bboxes[:, ij])
139
+ bboxes_i.append(interpfn(frame_i))
140
+ bboxes_i = np.stack(bboxes_i, axis=1)
141
+
142
+ if (
143
+ max(np.mean(bboxes_i[:, 2] - bboxes_i[:, 0]), np.mean(bboxes_i[:, 3] - bboxes_i[:, 1]))
144
+ > min_face_size
145
+ ):
146
+ tracks.append({"frame": frame_i, "bbox": bboxes_i})
147
+
148
+ return tracks
149
+
150
+ def detect_face(self, frames_dir, facedet_scale=0.25):
151
+ flist = glob.glob(os.path.join(frames_dir, "*.jpg"))
152
+ flist.sort()
153
+
154
+ dets = []
155
+
156
+ for fidx, fname in enumerate(flist):
157
+ image = cv2.imread(fname)
158
+
159
+ image_np = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
160
+ bboxes = self.s3f_detector.detect_faces(image_np, conf_th=0.9, scales=[facedet_scale])
161
+
162
+ dets.append([])
163
+ for bbox in bboxes:
164
+ dets[-1].append({"frame": fidx, "bbox": (bbox[:-1]).tolist(), "conf": bbox[-1]})
165
+
166
+ return dets
167
+
168
+ def crop_video(self, track, cropfile, frames_dir, frame_rate, temp_dir, video_dir, crop_scale=0.4):
169
+
170
+ flist = glob.glob(os.path.join(frames_dir, "*.jpg"))
171
+ flist.sort()
172
+
173
+ fourcc = cv2.VideoWriter_fourcc(*"mp4v")
174
+ vOut = cv2.VideoWriter(cropfile + "t.mp4", fourcc, frame_rate, (224, 224))
175
+
176
+ dets = {"x": [], "y": [], "s": []}
177
+
178
+ for det in track["bbox"]:
179
+
180
+ dets["s"].append(max((det[3] - det[1]), (det[2] - det[0])) / 2)
181
+ dets["y"].append((det[1] + det[3]) / 2) # crop center x
182
+ dets["x"].append((det[0] + det[2]) / 2) # crop center y
183
+
184
+ # Smooth detections
185
+ dets["s"] = signal.medfilt(dets["s"], kernel_size=13)
186
+ dets["x"] = signal.medfilt(dets["x"], kernel_size=13)
187
+ dets["y"] = signal.medfilt(dets["y"], kernel_size=13)
188
+
189
+ for fidx, frame in enumerate(track["frame"]):
190
+
191
+ cs = crop_scale
192
+
193
+ bs = dets["s"][fidx] # Detection box size
194
+ bsi = int(bs * (1 + 2 * cs)) # Pad videos by this amount
195
+
196
+ image = cv2.imread(flist[frame])
197
+
198
+ frame = np.pad(image, ((bsi, bsi), (bsi, bsi), (0, 0)), "constant", constant_values=(110, 110))
199
+ my = dets["y"][fidx] + bsi # BBox center Y
200
+ mx = dets["x"][fidx] + bsi # BBox center X
201
+
202
+ face = frame[int(my - bs) : int(my + bs * (1 + 2 * cs)), int(mx - bs * (1 + cs)) : int(mx + bs * (1 + cs))]
203
+
204
+ vOut.write(cv2.resize(face, (224, 224)))
205
+
206
+ audiotmp = os.path.join(temp_dir, "audio.wav")
207
+ audiostart = (track["frame"][0]) / frame_rate
208
+ audioend = (track["frame"][-1] + 1) / frame_rate
209
+
210
+ vOut.release()
211
+
212
+ # ========== CROP AUDIO FILE ==========
213
+
214
+ command = "ffmpeg -y -nostdin -loglevel error -i %s -ss %.3f -to %.3f %s" % (
215
+ os.path.join(video_dir, "audio.wav"),
216
+ audiostart,
217
+ audioend,
218
+ audiotmp,
219
+ )
220
+ output = subprocess.run(command, shell=True, stdout=None)
221
+
222
+ sample_rate, audio = wavfile.read(audiotmp)
223
+
224
+ # ========== COMBINE AUDIO AND VIDEO FILES ==========
225
+
226
+ command = "ffmpeg -y -nostdin -loglevel error -i %st.mp4 -i %s -c:v copy -c:a aac %s.mp4" % (
227
+ cropfile,
228
+ audiotmp,
229
+ cropfile,
230
+ )
231
+ output = subprocess.run(command, shell=True, stdout=None)
232
+
233
+ os.remove(cropfile + "t.mp4")
234
+
235
+ return {"track": track, "proc_track": dets}
236
+
237
+
238
+ def bounding_box_iou(boxA, boxB):
239
+ xA = max(boxA[0], boxB[0])
240
+ yA = max(boxA[1], boxB[1])
241
+ xB = min(boxA[2], boxB[2])
242
+ yB = min(boxA[3], boxB[3])
243
+
244
+ interArea = max(0, xB - xA) * max(0, yB - yA)
245
+
246
+ boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
247
+ boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
248
+
249
+ iou = interArea / float(boxAArea + boxBArea - interArea)
250
+
251
+ return iou
LatentSync/inference.sh ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ python -m scripts.inference \
4
+ --unet_config_path "configs/unet/second_stage.yaml" \
5
+ --inference_ckpt_path "checkpoints/latentsync_unet.pt" \
6
+ --guidance_scale 1.0 \
7
+ --video_path "assets/demo1_video.mp4" \
8
+ --audio_path "assets/demo1_audio.wav" \
9
+ --video_out_path "video_out.mp4"
LatentSync/latentsync/data/syncnet_dataset.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import os
16
+ import numpy as np
17
+ from torch.utils.data import Dataset
18
+ import torch
19
+ import random
20
+ from ..utils.util import gather_video_paths_recursively
21
+ from ..utils.image_processor import ImageProcessor
22
+ from ..utils.audio import melspectrogram
23
+ import math
24
+
25
+ from decord import AudioReader, VideoReader, cpu
26
+
27
+
28
+ class SyncNetDataset(Dataset):
29
+ def __init__(self, data_dir: str, fileslist: str, config):
30
+ if fileslist != "":
31
+ with open(fileslist) as file:
32
+ self.video_paths = [line.rstrip() for line in file]
33
+ elif data_dir != "":
34
+ self.video_paths = gather_video_paths_recursively(data_dir)
35
+ else:
36
+ raise ValueError("data_dir and fileslist cannot be both empty")
37
+
38
+ self.resolution = config.data.resolution
39
+ self.num_frames = config.data.num_frames
40
+
41
+ self.mel_window_length = math.ceil(self.num_frames / 5 * 16)
42
+
43
+ self.audio_sample_rate = config.data.audio_sample_rate
44
+ self.video_fps = config.data.video_fps
45
+ self.audio_samples_length = int(
46
+ config.data.audio_sample_rate // config.data.video_fps * config.data.num_frames
47
+ )
48
+ self.image_processor = ImageProcessor(resolution=config.data.resolution, mask="half")
49
+ self.audio_mel_cache_dir = config.data.audio_mel_cache_dir
50
+ os.makedirs(self.audio_mel_cache_dir, exist_ok=True)
51
+
52
+ def __len__(self):
53
+ return len(self.video_paths)
54
+
55
+ def read_audio(self, video_path: str):
56
+ ar = AudioReader(video_path, ctx=cpu(self.worker_id), sample_rate=self.audio_sample_rate)
57
+ original_mel = melspectrogram(ar[:].asnumpy().squeeze(0))
58
+ return torch.from_numpy(original_mel)
59
+
60
+ def crop_audio_window(self, original_mel, start_index):
61
+ start_idx = int(80.0 * (start_index / float(self.video_fps)))
62
+ end_idx = start_idx + self.mel_window_length
63
+ return original_mel[:, start_idx:end_idx].unsqueeze(0)
64
+
65
+ def get_frames(self, video_reader: VideoReader):
66
+ total_num_frames = len(video_reader)
67
+
68
+ start_idx = random.randint(0, total_num_frames - self.num_frames)
69
+ frames_index = np.arange(start_idx, start_idx + self.num_frames, dtype=int)
70
+
71
+ while True:
72
+ wrong_start_idx = random.randint(0, total_num_frames - self.num_frames)
73
+ # wrong_start_idx = random.randint(
74
+ # max(0, start_idx - 25), min(total_num_frames - self.num_frames, start_idx + 25)
75
+ # )
76
+ if wrong_start_idx == start_idx:
77
+ continue
78
+ # if wrong_start_idx >= start_idx - self.num_frames and wrong_start_idx <= start_idx + self.num_frames:
79
+ # continue
80
+ wrong_frames_index = np.arange(wrong_start_idx, wrong_start_idx + self.num_frames, dtype=int)
81
+ break
82
+
83
+ frames = video_reader.get_batch(frames_index).asnumpy()
84
+ wrong_frames = video_reader.get_batch(wrong_frames_index).asnumpy()
85
+
86
+ return frames, wrong_frames, start_idx
87
+
88
+ def worker_init_fn(self, worker_id):
89
+ # Initialize the face mesh object in each worker process,
90
+ # because the face mesh object cannot be called in subprocesses
91
+ self.worker_id = worker_id
92
+ # setattr(self, f"image_processor_{worker_id}", ImageProcessor(self.resolution, self.mask))
93
+
94
+ def __getitem__(self, idx):
95
+ # image_processor = getattr(self, f"image_processor_{self.worker_id}")
96
+ while True:
97
+ try:
98
+ idx = random.randint(0, len(self) - 1)
99
+
100
+ # Get video file path
101
+ video_path = self.video_paths[idx]
102
+
103
+ vr = VideoReader(video_path, ctx=cpu(self.worker_id))
104
+
105
+ if len(vr) < 2 * self.num_frames:
106
+ continue
107
+
108
+ frames, wrong_frames, start_idx = self.get_frames(vr)
109
+
110
+ mel_cache_path = os.path.join(
111
+ self.audio_mel_cache_dir, os.path.basename(video_path).replace(".mp4", "_mel.pt")
112
+ )
113
+
114
+ if os.path.isfile(mel_cache_path):
115
+ try:
116
+ original_mel = torch.load(mel_cache_path)
117
+ except Exception as e:
118
+ print(f"{type(e).__name__} - {e} - {mel_cache_path}")
119
+ os.remove(mel_cache_path)
120
+ original_mel = self.read_audio(video_path)
121
+ torch.save(original_mel, mel_cache_path)
122
+ else:
123
+ original_mel = self.read_audio(video_path)
124
+ torch.save(original_mel, mel_cache_path)
125
+
126
+ mel = self.crop_audio_window(original_mel, start_idx)
127
+
128
+ if mel.shape[-1] != self.mel_window_length:
129
+ continue
130
+
131
+ if random.choice([True, False]):
132
+ y = torch.ones(1).float()
133
+ chosen_frames = frames
134
+ else:
135
+ y = torch.zeros(1).float()
136
+ chosen_frames = wrong_frames
137
+
138
+ chosen_frames = self.image_processor.process_images(chosen_frames)
139
+ # chosen_frames, _, _ = image_processor.prepare_masks_and_masked_images(
140
+ # chosen_frames, affine_transform=True
141
+ # )
142
+
143
+ vr.seek(0) # avoid memory leak
144
+ break
145
+
146
+ except Exception as e: # Handle the exception of face not detcted
147
+ print(f"{type(e).__name__} - {e} - {video_path}")
148
+ if "vr" in locals():
149
+ vr.seek(0) # avoid memory leak
150
+
151
+ sample = dict(frames=chosen_frames, audio_samples=mel, y=y)
152
+
153
+ return sample
LatentSync/latentsync/data/unet_dataset.py ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import os
16
+ import numpy as np
17
+ from torch.utils.data import Dataset
18
+ import torch
19
+ import random
20
+ import cv2
21
+ from ..utils.image_processor import ImageProcessor, load_fixed_mask
22
+ from ..utils.audio import melspectrogram
23
+ from decord import AudioReader, VideoReader, cpu
24
+
25
+
26
+ class UNetDataset(Dataset):
27
+ def __init__(self, train_data_dir: str, config):
28
+ if config.data.train_fileslist != "":
29
+ with open(config.data.train_fileslist) as file:
30
+ self.video_paths = [line.rstrip() for line in file]
31
+ elif train_data_dir != "":
32
+ self.video_paths = []
33
+ for file in os.listdir(train_data_dir):
34
+ if file.endswith(".mp4"):
35
+ self.video_paths.append(os.path.join(train_data_dir, file))
36
+ else:
37
+ raise ValueError("data_dir and fileslist cannot be both empty")
38
+
39
+ self.resolution = config.data.resolution
40
+ self.num_frames = config.data.num_frames
41
+
42
+ if self.num_frames == 16:
43
+ self.mel_window_length = 52
44
+ elif self.num_frames == 5:
45
+ self.mel_window_length = 16
46
+ else:
47
+ raise NotImplementedError("Only support 16 and 5 frames now")
48
+
49
+ self.audio_sample_rate = config.data.audio_sample_rate
50
+ self.video_fps = config.data.video_fps
51
+ self.mask = config.data.mask
52
+ self.mask_image = load_fixed_mask(self.resolution)
53
+ self.load_audio_data = config.model.add_audio_layer and config.run.use_syncnet
54
+ self.audio_mel_cache_dir = config.data.audio_mel_cache_dir
55
+ os.makedirs(self.audio_mel_cache_dir, exist_ok=True)
56
+
57
+ def __len__(self):
58
+ return len(self.video_paths)
59
+
60
+ def read_audio(self, video_path: str):
61
+ ar = AudioReader(video_path, ctx=cpu(self.worker_id), sample_rate=self.audio_sample_rate)
62
+ original_mel = melspectrogram(ar[:].asnumpy().squeeze(0))
63
+ return torch.from_numpy(original_mel)
64
+
65
+ def crop_audio_window(self, original_mel, start_index):
66
+ start_idx = int(80.0 * (start_index / float(self.video_fps)))
67
+ end_idx = start_idx + self.mel_window_length
68
+ return original_mel[:, start_idx:end_idx].unsqueeze(0)
69
+
70
+ def get_frames(self, video_reader: VideoReader):
71
+ total_num_frames = len(video_reader)
72
+
73
+ start_idx = random.randint(self.num_frames // 2, total_num_frames - self.num_frames - self.num_frames // 2)
74
+ frames_index = np.arange(start_idx, start_idx + self.num_frames, dtype=int)
75
+
76
+ while True:
77
+ wrong_start_idx = random.randint(0, total_num_frames - self.num_frames)
78
+ if wrong_start_idx > start_idx - self.num_frames and wrong_start_idx < start_idx + self.num_frames:
79
+ continue
80
+ wrong_frames_index = np.arange(wrong_start_idx, wrong_start_idx + self.num_frames, dtype=int)
81
+ break
82
+
83
+ frames = video_reader.get_batch(frames_index).asnumpy()
84
+ wrong_frames = video_reader.get_batch(wrong_frames_index).asnumpy()
85
+
86
+ return frames, wrong_frames, start_idx
87
+
88
+ def worker_init_fn(self, worker_id):
89
+ # Initialize the face mesh object in each worker process,
90
+ # because the face mesh object cannot be called in subprocesses
91
+ self.worker_id = worker_id
92
+ setattr(
93
+ self,
94
+ f"image_processor_{worker_id}",
95
+ ImageProcessor(self.resolution, self.mask, mask_image=self.mask_image),
96
+ )
97
+
98
+ def __getitem__(self, idx):
99
+ image_processor = getattr(self, f"image_processor_{self.worker_id}")
100
+ while True:
101
+ try:
102
+ idx = random.randint(0, len(self) - 1)
103
+
104
+ # Get video file path
105
+ video_path = self.video_paths[idx]
106
+
107
+ vr = VideoReader(video_path, ctx=cpu(self.worker_id))
108
+
109
+ if len(vr) < 3 * self.num_frames:
110
+ continue
111
+
112
+ continuous_frames, ref_frames, start_idx = self.get_frames(vr)
113
+
114
+ if self.load_audio_data:
115
+ mel_cache_path = os.path.join(
116
+ self.audio_mel_cache_dir, os.path.basename(video_path).replace(".mp4", "_mel.pt")
117
+ )
118
+
119
+ if os.path.isfile(mel_cache_path):
120
+ try:
121
+ original_mel = torch.load(mel_cache_path)
122
+ except Exception as e:
123
+ print(f"{type(e).__name__} - {e} - {mel_cache_path}")
124
+ os.remove(mel_cache_path)
125
+ original_mel = self.read_audio(video_path)
126
+ torch.save(original_mel, mel_cache_path)
127
+ else:
128
+ original_mel = self.read_audio(video_path)
129
+ torch.save(original_mel, mel_cache_path)
130
+
131
+ mel = self.crop_audio_window(original_mel, start_idx)
132
+
133
+ if mel.shape[-1] != self.mel_window_length:
134
+ continue
135
+ else:
136
+ mel = []
137
+
138
+ gt, masked_gt, mask = image_processor.prepare_masks_and_masked_images(
139
+ continuous_frames, affine_transform=False
140
+ )
141
+
142
+ if self.mask == "fix_mask":
143
+ ref, _, _ = image_processor.prepare_masks_and_masked_images(ref_frames, affine_transform=False)
144
+ else:
145
+ ref = image_processor.process_images(ref_frames)
146
+ vr.seek(0) # avoid memory leak
147
+ break
148
+
149
+ except Exception as e: # Handle the exception of face not detcted
150
+ print(f"{type(e).__name__} - {e} - {video_path}")
151
+ if "vr" in locals():
152
+ vr.seek(0) # avoid memory leak
153
+
154
+ sample = dict(
155
+ gt=gt,
156
+ masked_gt=masked_gt,
157
+ ref=ref,
158
+ mel=mel,
159
+ mask=mask,
160
+ video_path=video_path,
161
+ start_idx=start_idx,
162
+ )
163
+
164
+ return sample
LatentSync/latentsync/models/attention.py ADDED
@@ -0,0 +1,492 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py
2
+
3
+ from dataclasses import dataclass
4
+ from turtle import forward
5
+ from typing import Optional
6
+
7
+ import torch
8
+ import torch.nn.functional as F
9
+ from torch import nn
10
+
11
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
12
+ from diffusers.models.modeling_utils import ModelMixin
13
+ from diffusers.utils import BaseOutput
14
+ from diffusers.utils.import_utils import is_xformers_available
15
+ from diffusers.models.attention import Attention as CrossAttention, FeedForward, AdaLayerNorm
16
+
17
+ from einops import rearrange, repeat
18
+ from .utils import zero_module
19
+
20
+
21
+ @dataclass
22
+ class Transformer3DModelOutput(BaseOutput):
23
+ sample: torch.FloatTensor
24
+
25
+
26
+ if is_xformers_available():
27
+ import xformers
28
+ import xformers.ops
29
+ else:
30
+ xformers = None
31
+
32
+
33
+ class Transformer3DModel(ModelMixin, ConfigMixin):
34
+ @register_to_config
35
+ def __init__(
36
+ self,
37
+ num_attention_heads: int = 16,
38
+ attention_head_dim: int = 88,
39
+ in_channels: Optional[int] = None,
40
+ num_layers: int = 1,
41
+ dropout: float = 0.0,
42
+ norm_num_groups: int = 32,
43
+ cross_attention_dim: Optional[int] = None,
44
+ attention_bias: bool = False,
45
+ activation_fn: str = "geglu",
46
+ num_embeds_ada_norm: Optional[int] = None,
47
+ use_linear_projection: bool = False,
48
+ only_cross_attention: bool = False,
49
+ upcast_attention: bool = False,
50
+ use_motion_module: bool = False,
51
+ unet_use_cross_frame_attention=None,
52
+ unet_use_temporal_attention=None,
53
+ add_audio_layer=False,
54
+ audio_condition_method="cross_attn",
55
+ custom_audio_layer: bool = False,
56
+ ):
57
+ super().__init__()
58
+ self.use_linear_projection = use_linear_projection
59
+ self.num_attention_heads = num_attention_heads
60
+ self.attention_head_dim = attention_head_dim
61
+ inner_dim = num_attention_heads * attention_head_dim
62
+
63
+ # Define input layers
64
+ self.in_channels = in_channels
65
+
66
+ self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
67
+ if use_linear_projection:
68
+ self.proj_in = nn.Linear(in_channels, inner_dim)
69
+ else:
70
+ self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
71
+
72
+ if not custom_audio_layer:
73
+ # Define transformers blocks
74
+ self.transformer_blocks = nn.ModuleList(
75
+ [
76
+ BasicTransformerBlock(
77
+ inner_dim,
78
+ num_attention_heads,
79
+ attention_head_dim,
80
+ dropout=dropout,
81
+ cross_attention_dim=cross_attention_dim,
82
+ activation_fn=activation_fn,
83
+ num_embeds_ada_norm=num_embeds_ada_norm,
84
+ attention_bias=attention_bias,
85
+ only_cross_attention=only_cross_attention,
86
+ upcast_attention=upcast_attention,
87
+ use_motion_module=use_motion_module,
88
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
89
+ unet_use_temporal_attention=unet_use_temporal_attention,
90
+ add_audio_layer=add_audio_layer,
91
+ custom_audio_layer=custom_audio_layer,
92
+ audio_condition_method=audio_condition_method,
93
+ )
94
+ for d in range(num_layers)
95
+ ]
96
+ )
97
+ else:
98
+ self.transformer_blocks = nn.ModuleList(
99
+ [
100
+ AudioTransformerBlock(
101
+ inner_dim,
102
+ num_attention_heads,
103
+ attention_head_dim,
104
+ dropout=dropout,
105
+ cross_attention_dim=cross_attention_dim,
106
+ activation_fn=activation_fn,
107
+ num_embeds_ada_norm=num_embeds_ada_norm,
108
+ attention_bias=attention_bias,
109
+ only_cross_attention=only_cross_attention,
110
+ upcast_attention=upcast_attention,
111
+ use_motion_module=use_motion_module,
112
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
113
+ unet_use_temporal_attention=unet_use_temporal_attention,
114
+ add_audio_layer=add_audio_layer,
115
+ )
116
+ for d in range(num_layers)
117
+ ]
118
+ )
119
+
120
+ # 4. Define output layers
121
+ if use_linear_projection:
122
+ self.proj_out = nn.Linear(in_channels, inner_dim)
123
+ else:
124
+ self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
125
+
126
+ if custom_audio_layer:
127
+ self.proj_out = zero_module(self.proj_out)
128
+
129
+ def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
130
+ # Input
131
+ assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
132
+ video_length = hidden_states.shape[2]
133
+ hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
134
+
135
+ # No need to do this for audio input, because different audio samples are independent
136
+ # encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length)
137
+
138
+ batch, channel, height, weight = hidden_states.shape
139
+ residual = hidden_states
140
+
141
+ hidden_states = self.norm(hidden_states)
142
+ if not self.use_linear_projection:
143
+ hidden_states = self.proj_in(hidden_states)
144
+ inner_dim = hidden_states.shape[1]
145
+ hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
146
+ else:
147
+ inner_dim = hidden_states.shape[1]
148
+ hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
149
+ hidden_states = self.proj_in(hidden_states)
150
+
151
+ # Blocks
152
+ for block in self.transformer_blocks:
153
+ hidden_states = block(
154
+ hidden_states,
155
+ encoder_hidden_states=encoder_hidden_states,
156
+ timestep=timestep,
157
+ video_length=video_length,
158
+ )
159
+
160
+ # Output
161
+ if not self.use_linear_projection:
162
+ hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
163
+ hidden_states = self.proj_out(hidden_states)
164
+ else:
165
+ hidden_states = self.proj_out(hidden_states)
166
+ hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
167
+
168
+ output = hidden_states + residual
169
+
170
+ output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
171
+ if not return_dict:
172
+ return (output,)
173
+
174
+ return Transformer3DModelOutput(sample=output)
175
+
176
+
177
+ class BasicTransformerBlock(nn.Module):
178
+ def __init__(
179
+ self,
180
+ dim: int,
181
+ num_attention_heads: int,
182
+ attention_head_dim: int,
183
+ dropout=0.0,
184
+ cross_attention_dim: Optional[int] = None,
185
+ activation_fn: str = "geglu",
186
+ num_embeds_ada_norm: Optional[int] = None,
187
+ attention_bias: bool = False,
188
+ only_cross_attention: bool = False,
189
+ upcast_attention: bool = False,
190
+ use_motion_module: bool = False,
191
+ unet_use_cross_frame_attention=None,
192
+ unet_use_temporal_attention=None,
193
+ add_audio_layer=False,
194
+ custom_audio_layer=False,
195
+ audio_condition_method="cross_attn",
196
+ ):
197
+ super().__init__()
198
+ self.only_cross_attention = only_cross_attention
199
+ self.use_ada_layer_norm = num_embeds_ada_norm is not None
200
+ self.unet_use_cross_frame_attention = unet_use_cross_frame_attention
201
+ self.unet_use_temporal_attention = unet_use_temporal_attention
202
+ self.use_motion_module = use_motion_module
203
+ self.add_audio_layer = add_audio_layer
204
+
205
+ # SC-Attn
206
+ assert unet_use_cross_frame_attention is not None
207
+ if unet_use_cross_frame_attention:
208
+ raise NotImplementedError("SparseCausalAttention2D not implemented yet.")
209
+ else:
210
+ self.attn1 = CrossAttention(
211
+ query_dim=dim,
212
+ heads=num_attention_heads,
213
+ dim_head=attention_head_dim,
214
+ dropout=dropout,
215
+ bias=attention_bias,
216
+ upcast_attention=upcast_attention,
217
+ )
218
+ self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
219
+
220
+ # Cross-Attn
221
+ if add_audio_layer and audio_condition_method == "cross_attn" and not custom_audio_layer:
222
+ self.audio_cross_attn = AudioCrossAttn(
223
+ dim=dim,
224
+ cross_attention_dim=cross_attention_dim,
225
+ num_attention_heads=num_attention_heads,
226
+ attention_head_dim=attention_head_dim,
227
+ dropout=dropout,
228
+ attention_bias=attention_bias,
229
+ upcast_attention=upcast_attention,
230
+ num_embeds_ada_norm=num_embeds_ada_norm,
231
+ use_ada_layer_norm=self.use_ada_layer_norm,
232
+ zero_proj_out=False,
233
+ )
234
+ else:
235
+ self.audio_cross_attn = None
236
+
237
+ # Feed-forward
238
+ self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
239
+ self.norm3 = nn.LayerNorm(dim)
240
+
241
+ # Temp-Attn
242
+ assert unet_use_temporal_attention is not None
243
+ if unet_use_temporal_attention:
244
+ self.attn_temp = CrossAttention(
245
+ query_dim=dim,
246
+ heads=num_attention_heads,
247
+ dim_head=attention_head_dim,
248
+ dropout=dropout,
249
+ bias=attention_bias,
250
+ upcast_attention=upcast_attention,
251
+ )
252
+ nn.init.zeros_(self.attn_temp.to_out[0].weight.data)
253
+ self.norm_temp = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
254
+
255
+ def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
256
+ if not is_xformers_available():
257
+ print("Here is how to install it")
258
+ raise ModuleNotFoundError(
259
+ "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
260
+ " xformers",
261
+ name="xformers",
262
+ )
263
+ elif not torch.cuda.is_available():
264
+ raise ValueError(
265
+ "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
266
+ " available for GPU "
267
+ )
268
+ else:
269
+ try:
270
+ # Make sure we can run the memory efficient attention
271
+ _ = xformers.ops.memory_efficient_attention(
272
+ torch.randn((1, 2, 40), device="cuda"),
273
+ torch.randn((1, 2, 40), device="cuda"),
274
+ torch.randn((1, 2, 40), device="cuda"),
275
+ )
276
+ except Exception as e:
277
+ raise e
278
+ self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
279
+ if self.audio_cross_attn is not None:
280
+ self.audio_cross_attn.attn._use_memory_efficient_attention_xformers = (
281
+ use_memory_efficient_attention_xformers
282
+ )
283
+ # self.attn_temp._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
284
+
285
+ def forward(
286
+ self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None
287
+ ):
288
+ # SparseCausal-Attention
289
+ norm_hidden_states = (
290
+ self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
291
+ )
292
+
293
+ # if self.only_cross_attention:
294
+ # hidden_states = (
295
+ # self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states
296
+ # )
297
+ # else:
298
+ # hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states
299
+
300
+ # pdb.set_trace()
301
+ if self.unet_use_cross_frame_attention:
302
+ hidden_states = (
303
+ self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length)
304
+ + hidden_states
305
+ )
306
+ else:
307
+ hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask) + hidden_states
308
+
309
+ if self.audio_cross_attn is not None and encoder_hidden_states is not None:
310
+ hidden_states = self.audio_cross_attn(
311
+ hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
312
+ )
313
+
314
+ # Feed-forward
315
+ hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
316
+
317
+ # Temporal-Attention
318
+ if self.unet_use_temporal_attention:
319
+ d = hidden_states.shape[1]
320
+ hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
321
+ norm_hidden_states = (
322
+ self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states)
323
+ )
324
+ hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
325
+ hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
326
+
327
+ return hidden_states
328
+
329
+
330
+ class AudioTransformerBlock(nn.Module):
331
+ def __init__(
332
+ self,
333
+ dim: int,
334
+ num_attention_heads: int,
335
+ attention_head_dim: int,
336
+ dropout=0.0,
337
+ cross_attention_dim: Optional[int] = None,
338
+ activation_fn: str = "geglu",
339
+ num_embeds_ada_norm: Optional[int] = None,
340
+ attention_bias: bool = False,
341
+ only_cross_attention: bool = False,
342
+ upcast_attention: bool = False,
343
+ use_motion_module: bool = False,
344
+ unet_use_cross_frame_attention=None,
345
+ unet_use_temporal_attention=None,
346
+ add_audio_layer=False,
347
+ ):
348
+ super().__init__()
349
+ self.only_cross_attention = only_cross_attention
350
+ self.use_ada_layer_norm = num_embeds_ada_norm is not None
351
+ self.unet_use_cross_frame_attention = unet_use_cross_frame_attention
352
+ self.unet_use_temporal_attention = unet_use_temporal_attention
353
+ self.use_motion_module = use_motion_module
354
+ self.add_audio_layer = add_audio_layer
355
+
356
+ # SC-Attn
357
+ assert unet_use_cross_frame_attention is not None
358
+ if unet_use_cross_frame_attention:
359
+ raise NotImplementedError("SparseCausalAttention2D not implemented yet.")
360
+ else:
361
+ self.attn1 = CrossAttention(
362
+ query_dim=dim,
363
+ heads=num_attention_heads,
364
+ dim_head=attention_head_dim,
365
+ dropout=dropout,
366
+ bias=attention_bias,
367
+ upcast_attention=upcast_attention,
368
+ )
369
+ self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
370
+
371
+ self.audio_cross_attn = AudioCrossAttn(
372
+ dim=dim,
373
+ cross_attention_dim=cross_attention_dim,
374
+ num_attention_heads=num_attention_heads,
375
+ attention_head_dim=attention_head_dim,
376
+ dropout=dropout,
377
+ attention_bias=attention_bias,
378
+ upcast_attention=upcast_attention,
379
+ num_embeds_ada_norm=num_embeds_ada_norm,
380
+ use_ada_layer_norm=self.use_ada_layer_norm,
381
+ zero_proj_out=False,
382
+ )
383
+
384
+ # Feed-forward
385
+ self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
386
+ self.norm3 = nn.LayerNorm(dim)
387
+
388
+ def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
389
+ if not is_xformers_available():
390
+ print("Here is how to install it")
391
+ raise ModuleNotFoundError(
392
+ "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
393
+ " xformers",
394
+ name="xformers",
395
+ )
396
+ elif not torch.cuda.is_available():
397
+ raise ValueError(
398
+ "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
399
+ " available for GPU "
400
+ )
401
+ else:
402
+ try:
403
+ # Make sure we can run the memory efficient attention
404
+ _ = xformers.ops.memory_efficient_attention(
405
+ torch.randn((1, 2, 40), device="cuda"),
406
+ torch.randn((1, 2, 40), device="cuda"),
407
+ torch.randn((1, 2, 40), device="cuda"),
408
+ )
409
+ except Exception as e:
410
+ raise e
411
+ self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
412
+ if self.audio_cross_attn is not None:
413
+ self.audio_cross_attn.attn._use_memory_efficient_attention_xformers = (
414
+ use_memory_efficient_attention_xformers
415
+ )
416
+ # self.attn_temp._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
417
+
418
+ def forward(
419
+ self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None
420
+ ):
421
+ # SparseCausal-Attention
422
+ norm_hidden_states = (
423
+ self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
424
+ )
425
+
426
+ # pdb.set_trace()
427
+ if self.unet_use_cross_frame_attention:
428
+ hidden_states = (
429
+ self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length)
430
+ + hidden_states
431
+ )
432
+ else:
433
+ hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask) + hidden_states
434
+
435
+ if self.audio_cross_attn is not None and encoder_hidden_states is not None:
436
+ hidden_states = self.audio_cross_attn(
437
+ hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
438
+ )
439
+
440
+ # Feed-forward
441
+ hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
442
+
443
+ return hidden_states
444
+
445
+
446
+ class AudioCrossAttn(nn.Module):
447
+ def __init__(
448
+ self,
449
+ dim,
450
+ cross_attention_dim,
451
+ num_attention_heads,
452
+ attention_head_dim,
453
+ dropout,
454
+ attention_bias,
455
+ upcast_attention,
456
+ num_embeds_ada_norm,
457
+ use_ada_layer_norm,
458
+ zero_proj_out=False,
459
+ ):
460
+ super().__init__()
461
+
462
+ self.norm = AdaLayerNorm(dim, num_embeds_ada_norm) if use_ada_layer_norm else nn.LayerNorm(dim)
463
+ self.attn = CrossAttention(
464
+ query_dim=dim,
465
+ cross_attention_dim=cross_attention_dim,
466
+ heads=num_attention_heads,
467
+ dim_head=attention_head_dim,
468
+ dropout=dropout,
469
+ bias=attention_bias,
470
+ upcast_attention=upcast_attention,
471
+ )
472
+
473
+ if zero_proj_out:
474
+ self.proj_out = zero_module(nn.Linear(dim, dim))
475
+
476
+ self.zero_proj_out = zero_proj_out
477
+ self.use_ada_layer_norm = use_ada_layer_norm
478
+
479
+ def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None):
480
+ previous_hidden_states = hidden_states
481
+ hidden_states = self.norm(hidden_states, timestep) if self.use_ada_layer_norm else self.norm(hidden_states)
482
+
483
+ if encoder_hidden_states.dim() == 4:
484
+ encoder_hidden_states = rearrange(encoder_hidden_states, "b f n d -> (b f) n d")
485
+
486
+ hidden_states = self.attn(
487
+ hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
488
+ )
489
+
490
+ if self.zero_proj_out:
491
+ hidden_states = self.proj_out(hidden_states)
492
+ return hidden_states + previous_hidden_states
LatentSync/latentsync/models/motion_module.py ADDED
@@ -0,0 +1,332 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/models/motion_module.py
2
+
3
+ # Actually we don't use the motion module in the final version of LatentSync
4
+ # When we started the project, we used the codebase of AnimateDiff and tried motion module
5
+ # But the results are poor, and we decied to leave the code here for possible future usage
6
+
7
+ from dataclasses import dataclass
8
+
9
+ import torch
10
+ import torch.nn.functional as F
11
+ from torch import nn
12
+
13
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
14
+ from diffusers.models.modeling_utils import ModelMixin
15
+ from diffusers.utils import BaseOutput
16
+ from diffusers.utils.import_utils import is_xformers_available
17
+ from diffusers.models.attention import Attention as CrossAttention, FeedForward
18
+
19
+ from einops import rearrange, repeat
20
+ import math
21
+ from .utils import zero_module
22
+
23
+
24
+ @dataclass
25
+ class TemporalTransformer3DModelOutput(BaseOutput):
26
+ sample: torch.FloatTensor
27
+
28
+
29
+ if is_xformers_available():
30
+ import xformers
31
+ import xformers.ops
32
+ else:
33
+ xformers = None
34
+
35
+
36
+ def get_motion_module(in_channels, motion_module_type: str, motion_module_kwargs: dict):
37
+ if motion_module_type == "Vanilla":
38
+ return VanillaTemporalModule(
39
+ in_channels=in_channels,
40
+ **motion_module_kwargs,
41
+ )
42
+ else:
43
+ raise ValueError
44
+
45
+
46
+ class VanillaTemporalModule(nn.Module):
47
+ def __init__(
48
+ self,
49
+ in_channels,
50
+ num_attention_heads=8,
51
+ num_transformer_block=2,
52
+ attention_block_types=("Temporal_Self", "Temporal_Self"),
53
+ cross_frame_attention_mode=None,
54
+ temporal_position_encoding=False,
55
+ temporal_position_encoding_max_len=24,
56
+ temporal_attention_dim_div=1,
57
+ zero_initialize=True,
58
+ ):
59
+ super().__init__()
60
+
61
+ self.temporal_transformer = TemporalTransformer3DModel(
62
+ in_channels=in_channels,
63
+ num_attention_heads=num_attention_heads,
64
+ attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div,
65
+ num_layers=num_transformer_block,
66
+ attention_block_types=attention_block_types,
67
+ cross_frame_attention_mode=cross_frame_attention_mode,
68
+ temporal_position_encoding=temporal_position_encoding,
69
+ temporal_position_encoding_max_len=temporal_position_encoding_max_len,
70
+ )
71
+
72
+ if zero_initialize:
73
+ self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out)
74
+
75
+ def forward(self, input_tensor, temb, encoder_hidden_states, attention_mask=None, anchor_frame_idx=None):
76
+ hidden_states = input_tensor
77
+ hidden_states = self.temporal_transformer(hidden_states, encoder_hidden_states, attention_mask)
78
+
79
+ output = hidden_states
80
+ return output
81
+
82
+
83
+ class TemporalTransformer3DModel(nn.Module):
84
+ def __init__(
85
+ self,
86
+ in_channels,
87
+ num_attention_heads,
88
+ attention_head_dim,
89
+ num_layers,
90
+ attention_block_types=(
91
+ "Temporal_Self",
92
+ "Temporal_Self",
93
+ ),
94
+ dropout=0.0,
95
+ norm_num_groups=32,
96
+ cross_attention_dim=768,
97
+ activation_fn="geglu",
98
+ attention_bias=False,
99
+ upcast_attention=False,
100
+ cross_frame_attention_mode=None,
101
+ temporal_position_encoding=False,
102
+ temporal_position_encoding_max_len=24,
103
+ ):
104
+ super().__init__()
105
+
106
+ inner_dim = num_attention_heads * attention_head_dim
107
+
108
+ self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
109
+ self.proj_in = nn.Linear(in_channels, inner_dim)
110
+
111
+ self.transformer_blocks = nn.ModuleList(
112
+ [
113
+ TemporalTransformerBlock(
114
+ dim=inner_dim,
115
+ num_attention_heads=num_attention_heads,
116
+ attention_head_dim=attention_head_dim,
117
+ attention_block_types=attention_block_types,
118
+ dropout=dropout,
119
+ norm_num_groups=norm_num_groups,
120
+ cross_attention_dim=cross_attention_dim,
121
+ activation_fn=activation_fn,
122
+ attention_bias=attention_bias,
123
+ upcast_attention=upcast_attention,
124
+ cross_frame_attention_mode=cross_frame_attention_mode,
125
+ temporal_position_encoding=temporal_position_encoding,
126
+ temporal_position_encoding_max_len=temporal_position_encoding_max_len,
127
+ )
128
+ for d in range(num_layers)
129
+ ]
130
+ )
131
+ self.proj_out = nn.Linear(inner_dim, in_channels)
132
+
133
+ def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None):
134
+ assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
135
+ video_length = hidden_states.shape[2]
136
+ hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
137
+
138
+ batch, channel, height, weight = hidden_states.shape
139
+ residual = hidden_states
140
+
141
+ hidden_states = self.norm(hidden_states)
142
+ hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, channel)
143
+ hidden_states = self.proj_in(hidden_states)
144
+
145
+ # Transformer Blocks
146
+ for block in self.transformer_blocks:
147
+ hidden_states = block(
148
+ hidden_states, encoder_hidden_states=encoder_hidden_states, video_length=video_length
149
+ )
150
+
151
+ # output
152
+ hidden_states = self.proj_out(hidden_states)
153
+ hidden_states = hidden_states.reshape(batch, height, weight, channel).permute(0, 3, 1, 2).contiguous()
154
+
155
+ output = hidden_states + residual
156
+ output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
157
+
158
+ return output
159
+
160
+
161
+ class TemporalTransformerBlock(nn.Module):
162
+ def __init__(
163
+ self,
164
+ dim,
165
+ num_attention_heads,
166
+ attention_head_dim,
167
+ attention_block_types=(
168
+ "Temporal_Self",
169
+ "Temporal_Self",
170
+ ),
171
+ dropout=0.0,
172
+ norm_num_groups=32,
173
+ cross_attention_dim=768,
174
+ activation_fn="geglu",
175
+ attention_bias=False,
176
+ upcast_attention=False,
177
+ cross_frame_attention_mode=None,
178
+ temporal_position_encoding=False,
179
+ temporal_position_encoding_max_len=24,
180
+ ):
181
+ super().__init__()
182
+
183
+ attention_blocks = []
184
+ norms = []
185
+
186
+ for block_name in attention_block_types:
187
+ attention_blocks.append(
188
+ VersatileAttention(
189
+ attention_mode=block_name.split("_")[0],
190
+ cross_attention_dim=cross_attention_dim if block_name.endswith("_Cross") else None,
191
+ query_dim=dim,
192
+ heads=num_attention_heads,
193
+ dim_head=attention_head_dim,
194
+ dropout=dropout,
195
+ bias=attention_bias,
196
+ upcast_attention=upcast_attention,
197
+ cross_frame_attention_mode=cross_frame_attention_mode,
198
+ temporal_position_encoding=temporal_position_encoding,
199
+ temporal_position_encoding_max_len=temporal_position_encoding_max_len,
200
+ )
201
+ )
202
+ norms.append(nn.LayerNorm(dim))
203
+
204
+ self.attention_blocks = nn.ModuleList(attention_blocks)
205
+ self.norms = nn.ModuleList(norms)
206
+
207
+ self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
208
+ self.ff_norm = nn.LayerNorm(dim)
209
+
210
+ def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
211
+ for attention_block, norm in zip(self.attention_blocks, self.norms):
212
+ norm_hidden_states = norm(hidden_states)
213
+ hidden_states = (
214
+ attention_block(
215
+ norm_hidden_states,
216
+ encoder_hidden_states=encoder_hidden_states if attention_block.is_cross_attention else None,
217
+ video_length=video_length,
218
+ )
219
+ + hidden_states
220
+ )
221
+
222
+ hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states
223
+
224
+ output = hidden_states
225
+ return output
226
+
227
+
228
+ class PositionalEncoding(nn.Module):
229
+ def __init__(self, d_model, dropout=0.0, max_len=24):
230
+ super().__init__()
231
+ self.dropout = nn.Dropout(p=dropout)
232
+ position = torch.arange(max_len).unsqueeze(1)
233
+ div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
234
+ pe = torch.zeros(1, max_len, d_model)
235
+ pe[0, :, 0::2] = torch.sin(position * div_term)
236
+ pe[0, :, 1::2] = torch.cos(position * div_term)
237
+ self.register_buffer("pe", pe)
238
+
239
+ def forward(self, x):
240
+ x = x + self.pe[:, : x.size(1)]
241
+ return self.dropout(x)
242
+
243
+
244
+ class VersatileAttention(CrossAttention):
245
+ def __init__(
246
+ self,
247
+ attention_mode=None,
248
+ cross_frame_attention_mode=None,
249
+ temporal_position_encoding=False,
250
+ temporal_position_encoding_max_len=24,
251
+ *args,
252
+ **kwargs,
253
+ ):
254
+ super().__init__(*args, **kwargs)
255
+ assert attention_mode == "Temporal"
256
+
257
+ self.attention_mode = attention_mode
258
+ self.is_cross_attention = kwargs["cross_attention_dim"] is not None
259
+
260
+ self.pos_encoder = (
261
+ PositionalEncoding(kwargs["query_dim"], dropout=0.0, max_len=temporal_position_encoding_max_len)
262
+ if (temporal_position_encoding and attention_mode == "Temporal")
263
+ else None
264
+ )
265
+
266
+ def extra_repr(self):
267
+ return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}"
268
+
269
+ def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
270
+ batch_size, sequence_length, _ = hidden_states.shape
271
+
272
+ if self.attention_mode == "Temporal":
273
+ d = hidden_states.shape[1]
274
+ hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
275
+
276
+ if self.pos_encoder is not None:
277
+ hidden_states = self.pos_encoder(hidden_states)
278
+
279
+ encoder_hidden_states = (
280
+ repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d)
281
+ if encoder_hidden_states is not None
282
+ else encoder_hidden_states
283
+ )
284
+ else:
285
+ raise NotImplementedError
286
+
287
+ # encoder_hidden_states = encoder_hidden_states
288
+
289
+ if self.group_norm is not None:
290
+ hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
291
+
292
+ query = self.to_q(hidden_states)
293
+ dim = query.shape[-1]
294
+ query = self.reshape_heads_to_batch_dim(query)
295
+
296
+ if self.added_kv_proj_dim is not None:
297
+ raise NotImplementedError
298
+
299
+ encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
300
+ key = self.to_k(encoder_hidden_states)
301
+ value = self.to_v(encoder_hidden_states)
302
+
303
+ key = self.reshape_heads_to_batch_dim(key)
304
+ value = self.reshape_heads_to_batch_dim(value)
305
+
306
+ if attention_mask is not None:
307
+ if attention_mask.shape[-1] != query.shape[1]:
308
+ target_length = query.shape[1]
309
+ attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
310
+ attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
311
+
312
+ # attention, what we cannot get enough of
313
+ if self._use_memory_efficient_attention_xformers:
314
+ hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
315
+ # Some versions of xformers return output in fp32, cast it back to the dtype of the input
316
+ hidden_states = hidden_states.to(query.dtype)
317
+ else:
318
+ if self._slice_size is None or query.shape[0] // self._slice_size == 1:
319
+ hidden_states = self._attention(query, key, value, attention_mask)
320
+ else:
321
+ hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
322
+
323
+ # linear proj
324
+ hidden_states = self.to_out[0](hidden_states)
325
+
326
+ # dropout
327
+ hidden_states = self.to_out[1](hidden_states)
328
+
329
+ if self.attention_mode == "Temporal":
330
+ hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
331
+
332
+ return hidden_states
LatentSync/latentsync/models/resnet.py ADDED
@@ -0,0 +1,234 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.nn.functional as F
6
+
7
+ from einops import rearrange
8
+
9
+
10
+ class InflatedConv3d(nn.Conv2d):
11
+ def forward(self, x):
12
+ video_length = x.shape[2]
13
+
14
+ x = rearrange(x, "b c f h w -> (b f) c h w")
15
+ x = super().forward(x)
16
+ x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
17
+
18
+ return x
19
+
20
+
21
+ class InflatedGroupNorm(nn.GroupNorm):
22
+ def forward(self, x):
23
+ video_length = x.shape[2]
24
+
25
+ x = rearrange(x, "b c f h w -> (b f) c h w")
26
+ x = super().forward(x)
27
+ x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
28
+
29
+ return x
30
+
31
+
32
+ class Upsample3D(nn.Module):
33
+ def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
34
+ super().__init__()
35
+ self.channels = channels
36
+ self.out_channels = out_channels or channels
37
+ self.use_conv = use_conv
38
+ self.use_conv_transpose = use_conv_transpose
39
+ self.name = name
40
+
41
+ conv = None
42
+ if use_conv_transpose:
43
+ raise NotImplementedError
44
+ elif use_conv:
45
+ self.conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1)
46
+
47
+ def forward(self, hidden_states, output_size=None):
48
+ assert hidden_states.shape[1] == self.channels
49
+
50
+ if self.use_conv_transpose:
51
+ raise NotImplementedError
52
+
53
+ # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
54
+ dtype = hidden_states.dtype
55
+ if dtype == torch.bfloat16:
56
+ hidden_states = hidden_states.to(torch.float32)
57
+
58
+ # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
59
+ if hidden_states.shape[0] >= 64:
60
+ hidden_states = hidden_states.contiguous()
61
+
62
+ # if `output_size` is passed we force the interpolation output
63
+ # size and do not make use of `scale_factor=2`
64
+ if output_size is None:
65
+ hidden_states = F.interpolate(hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest")
66
+ else:
67
+ hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
68
+
69
+ # If the input is bfloat16, we cast back to bfloat16
70
+ if dtype == torch.bfloat16:
71
+ hidden_states = hidden_states.to(dtype)
72
+
73
+ # if self.use_conv:
74
+ # if self.name == "conv":
75
+ # hidden_states = self.conv(hidden_states)
76
+ # else:
77
+ # hidden_states = self.Conv2d_0(hidden_states)
78
+ hidden_states = self.conv(hidden_states)
79
+
80
+ return hidden_states
81
+
82
+
83
+ class Downsample3D(nn.Module):
84
+ def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
85
+ super().__init__()
86
+ self.channels = channels
87
+ self.out_channels = out_channels or channels
88
+ self.use_conv = use_conv
89
+ self.padding = padding
90
+ stride = 2
91
+ self.name = name
92
+
93
+ if use_conv:
94
+ self.conv = InflatedConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
95
+ else:
96
+ raise NotImplementedError
97
+
98
+ def forward(self, hidden_states):
99
+ assert hidden_states.shape[1] == self.channels
100
+ if self.use_conv and self.padding == 0:
101
+ raise NotImplementedError
102
+
103
+ assert hidden_states.shape[1] == self.channels
104
+ hidden_states = self.conv(hidden_states)
105
+
106
+ return hidden_states
107
+
108
+
109
+ class ResnetBlock3D(nn.Module):
110
+ def __init__(
111
+ self,
112
+ *,
113
+ in_channels,
114
+ out_channels=None,
115
+ conv_shortcut=False,
116
+ dropout=0.0,
117
+ temb_channels=512,
118
+ groups=32,
119
+ groups_out=None,
120
+ pre_norm=True,
121
+ eps=1e-6,
122
+ non_linearity="swish",
123
+ time_embedding_norm="default",
124
+ output_scale_factor=1.0,
125
+ use_in_shortcut=None,
126
+ use_inflated_groupnorm=False,
127
+ ):
128
+ super().__init__()
129
+ self.pre_norm = pre_norm
130
+ self.pre_norm = True
131
+ self.in_channels = in_channels
132
+ out_channels = in_channels if out_channels is None else out_channels
133
+ self.out_channels = out_channels
134
+ self.use_conv_shortcut = conv_shortcut
135
+ self.time_embedding_norm = time_embedding_norm
136
+ self.output_scale_factor = output_scale_factor
137
+
138
+ if groups_out is None:
139
+ groups_out = groups
140
+
141
+ assert use_inflated_groupnorm != None
142
+ if use_inflated_groupnorm:
143
+ self.norm1 = InflatedGroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
144
+ else:
145
+ self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
146
+
147
+ self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
148
+
149
+ if temb_channels is not None:
150
+ time_emb_proj_out_channels = out_channels
151
+ # if self.time_embedding_norm == "default":
152
+ # time_emb_proj_out_channels = out_channels
153
+ # elif self.time_embedding_norm == "scale_shift":
154
+ # time_emb_proj_out_channels = out_channels * 2
155
+ # else:
156
+ # raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
157
+
158
+ self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels)
159
+ else:
160
+ self.time_emb_proj = None
161
+
162
+ if self.time_embedding_norm == "scale_shift":
163
+ self.double_len_linear = torch.nn.Linear(time_emb_proj_out_channels, 2 * time_emb_proj_out_channels)
164
+ else:
165
+ self.double_len_linear = None
166
+
167
+ if use_inflated_groupnorm:
168
+ self.norm2 = InflatedGroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
169
+ else:
170
+ self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
171
+
172
+ self.dropout = torch.nn.Dropout(dropout)
173
+ self.conv2 = InflatedConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
174
+
175
+ if non_linearity == "swish":
176
+ self.nonlinearity = lambda x: F.silu(x)
177
+ elif non_linearity == "mish":
178
+ self.nonlinearity = Mish()
179
+ elif non_linearity == "silu":
180
+ self.nonlinearity = nn.SiLU()
181
+
182
+ self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut
183
+
184
+ self.conv_shortcut = None
185
+ if self.use_in_shortcut:
186
+ self.conv_shortcut = InflatedConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
187
+
188
+ def forward(self, input_tensor, temb):
189
+ hidden_states = input_tensor
190
+
191
+ hidden_states = self.norm1(hidden_states)
192
+ hidden_states = self.nonlinearity(hidden_states)
193
+
194
+ hidden_states = self.conv1(hidden_states)
195
+
196
+ if temb is not None:
197
+ if temb.dim() == 2:
198
+ # input (1, 1280)
199
+ temb = self.time_emb_proj(self.nonlinearity(temb))
200
+ temb = temb[:, :, None, None, None] # unsqueeze
201
+ else:
202
+ # input (1, 1280, 16)
203
+ temb = temb.permute(0, 2, 1)
204
+ temb = self.time_emb_proj(self.nonlinearity(temb))
205
+ if self.double_len_linear is not None:
206
+ temb = self.double_len_linear(self.nonlinearity(temb))
207
+ temb = temb.permute(0, 2, 1)
208
+ temb = temb[:, :, :, None, None]
209
+
210
+ if temb is not None and self.time_embedding_norm == "default":
211
+ hidden_states = hidden_states + temb
212
+
213
+ hidden_states = self.norm2(hidden_states)
214
+
215
+ if temb is not None and self.time_embedding_norm == "scale_shift":
216
+ scale, shift = torch.chunk(temb, 2, dim=1)
217
+ hidden_states = hidden_states * (1 + scale) + shift
218
+
219
+ hidden_states = self.nonlinearity(hidden_states)
220
+
221
+ hidden_states = self.dropout(hidden_states)
222
+ hidden_states = self.conv2(hidden_states)
223
+
224
+ if self.conv_shortcut is not None:
225
+ input_tensor = self.conv_shortcut(input_tensor)
226
+
227
+ output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
228
+
229
+ return output_tensor
230
+
231
+
232
+ class Mish(torch.nn.Module):
233
+ def forward(self, hidden_states):
234
+ return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
LatentSync/latentsync/models/syncnet.py ADDED
@@ -0,0 +1,233 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import torch
16
+ from torch import nn
17
+ from einops import rearrange
18
+ from torch.nn import functional as F
19
+ from ..utils.util import cosine_loss
20
+
21
+ import torch.nn as nn
22
+ import torch.nn.functional as F
23
+
24
+ from diffusers.models.attention import CrossAttention, FeedForward
25
+ from diffusers.utils.import_utils import is_xformers_available
26
+ from einops import rearrange
27
+
28
+
29
+ class SyncNet(nn.Module):
30
+ def __init__(self, config):
31
+ super().__init__()
32
+ self.audio_encoder = DownEncoder2D(
33
+ in_channels=config["audio_encoder"]["in_channels"],
34
+ block_out_channels=config["audio_encoder"]["block_out_channels"],
35
+ downsample_factors=config["audio_encoder"]["downsample_factors"],
36
+ dropout=config["audio_encoder"]["dropout"],
37
+ attn_blocks=config["audio_encoder"]["attn_blocks"],
38
+ )
39
+
40
+ self.visual_encoder = DownEncoder2D(
41
+ in_channels=config["visual_encoder"]["in_channels"],
42
+ block_out_channels=config["visual_encoder"]["block_out_channels"],
43
+ downsample_factors=config["visual_encoder"]["downsample_factors"],
44
+ dropout=config["visual_encoder"]["dropout"],
45
+ attn_blocks=config["visual_encoder"]["attn_blocks"],
46
+ )
47
+
48
+ self.eval()
49
+
50
+ def forward(self, image_sequences, audio_sequences):
51
+ vision_embeds = self.visual_encoder(image_sequences) # (b, c, 1, 1)
52
+ audio_embeds = self.audio_encoder(audio_sequences) # (b, c, 1, 1)
53
+
54
+ vision_embeds = vision_embeds.reshape(vision_embeds.shape[0], -1) # (b, c)
55
+ audio_embeds = audio_embeds.reshape(audio_embeds.shape[0], -1) # (b, c)
56
+
57
+ # Make them unit vectors
58
+ vision_embeds = F.normalize(vision_embeds, p=2, dim=1)
59
+ audio_embeds = F.normalize(audio_embeds, p=2, dim=1)
60
+
61
+ return vision_embeds, audio_embeds
62
+
63
+
64
+ class ResnetBlock2D(nn.Module):
65
+ def __init__(
66
+ self,
67
+ in_channels: int,
68
+ out_channels: int,
69
+ dropout: float = 0.0,
70
+ norm_num_groups: int = 32,
71
+ eps: float = 1e-6,
72
+ act_fn: str = "silu",
73
+ downsample_factor=2,
74
+ ):
75
+ super().__init__()
76
+
77
+ self.norm1 = nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=eps, affine=True)
78
+ self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
79
+
80
+ self.norm2 = nn.GroupNorm(num_groups=norm_num_groups, num_channels=out_channels, eps=eps, affine=True)
81
+ self.dropout = nn.Dropout(dropout)
82
+ self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
83
+
84
+ if act_fn == "relu":
85
+ self.act_fn = nn.ReLU()
86
+ elif act_fn == "silu":
87
+ self.act_fn = nn.SiLU()
88
+
89
+ if in_channels != out_channels:
90
+ self.conv_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
91
+ else:
92
+ self.conv_shortcut = None
93
+
94
+ if isinstance(downsample_factor, list):
95
+ downsample_factor = tuple(downsample_factor)
96
+
97
+ if downsample_factor == 1:
98
+ self.downsample_conv = None
99
+ else:
100
+ self.downsample_conv = nn.Conv2d(
101
+ out_channels, out_channels, kernel_size=3, stride=downsample_factor, padding=0
102
+ )
103
+ self.pad = (0, 1, 0, 1)
104
+ if isinstance(downsample_factor, tuple):
105
+ if downsample_factor[0] == 1:
106
+ self.pad = (0, 1, 1, 1) # The padding order is from back to front
107
+ elif downsample_factor[1] == 1:
108
+ self.pad = (1, 1, 0, 1)
109
+
110
+ def forward(self, input_tensor):
111
+ hidden_states = input_tensor
112
+
113
+ hidden_states = self.norm1(hidden_states)
114
+ hidden_states = self.act_fn(hidden_states)
115
+
116
+ hidden_states = self.conv1(hidden_states)
117
+ hidden_states = self.norm2(hidden_states)
118
+ hidden_states = self.act_fn(hidden_states)
119
+
120
+ hidden_states = self.dropout(hidden_states)
121
+ hidden_states = self.conv2(hidden_states)
122
+
123
+ if self.conv_shortcut is not None:
124
+ input_tensor = self.conv_shortcut(input_tensor)
125
+
126
+ hidden_states += input_tensor
127
+
128
+ if self.downsample_conv is not None:
129
+ hidden_states = F.pad(hidden_states, self.pad, mode="constant", value=0)
130
+ hidden_states = self.downsample_conv(hidden_states)
131
+
132
+ return hidden_states
133
+
134
+
135
+ class AttentionBlock2D(nn.Module):
136
+ def __init__(self, query_dim, norm_num_groups=32, dropout=0.0):
137
+ super().__init__()
138
+ if not is_xformers_available():
139
+ raise ModuleNotFoundError(
140
+ "You have to install xformers to enable memory efficient attetion", name="xformers"
141
+ )
142
+ # inner_dim = dim_head * heads
143
+ self.norm1 = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=query_dim, eps=1e-6, affine=True)
144
+ self.norm2 = nn.LayerNorm(query_dim)
145
+ self.norm3 = nn.LayerNorm(query_dim)
146
+
147
+ self.ff = FeedForward(query_dim, dropout=dropout, activation_fn="geglu")
148
+
149
+ self.conv_in = nn.Conv2d(query_dim, query_dim, kernel_size=1, stride=1, padding=0)
150
+ self.conv_out = nn.Conv2d(query_dim, query_dim, kernel_size=1, stride=1, padding=0)
151
+
152
+ self.attn = CrossAttention(query_dim=query_dim, heads=8, dim_head=query_dim // 8, dropout=dropout, bias=True)
153
+ self.attn._use_memory_efficient_attention_xformers = True
154
+
155
+ def forward(self, hidden_states):
156
+ assert hidden_states.dim() == 4, f"Expected hidden_states to have ndim=4, but got ndim={hidden_states.dim()}."
157
+
158
+ batch, channel, height, width = hidden_states.shape
159
+ residual = hidden_states
160
+
161
+ hidden_states = self.norm1(hidden_states)
162
+ hidden_states = self.conv_in(hidden_states)
163
+ hidden_states = rearrange(hidden_states, "b c h w -> b (h w) c")
164
+
165
+ norm_hidden_states = self.norm2(hidden_states)
166
+ hidden_states = self.attn(norm_hidden_states, attention_mask=None) + hidden_states
167
+ hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
168
+
169
+ hidden_states = rearrange(hidden_states, "b (h w) c -> b c h w", h=height, w=width)
170
+ hidden_states = self.conv_out(hidden_states)
171
+
172
+ hidden_states = hidden_states + residual
173
+ return hidden_states
174
+
175
+
176
+ class DownEncoder2D(nn.Module):
177
+ def __init__(
178
+ self,
179
+ in_channels=4 * 16,
180
+ block_out_channels=[64, 128, 256, 256],
181
+ downsample_factors=[2, 2, 2, 2],
182
+ layers_per_block=2,
183
+ norm_num_groups=32,
184
+ attn_blocks=[1, 1, 1, 1],
185
+ dropout: float = 0.0,
186
+ act_fn="silu",
187
+ ):
188
+ super().__init__()
189
+ self.layers_per_block = layers_per_block
190
+
191
+ # in
192
+ self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1)
193
+
194
+ # down
195
+ self.down_blocks = nn.ModuleList([])
196
+
197
+ output_channels = block_out_channels[0]
198
+ for i, block_out_channel in enumerate(block_out_channels):
199
+ input_channels = output_channels
200
+ output_channels = block_out_channel
201
+ # is_final_block = i == len(block_out_channels) - 1
202
+
203
+ down_block = ResnetBlock2D(
204
+ in_channels=input_channels,
205
+ out_channels=output_channels,
206
+ downsample_factor=downsample_factors[i],
207
+ norm_num_groups=norm_num_groups,
208
+ dropout=dropout,
209
+ act_fn=act_fn,
210
+ )
211
+
212
+ self.down_blocks.append(down_block)
213
+
214
+ if attn_blocks[i] == 1:
215
+ attention_block = AttentionBlock2D(query_dim=output_channels, dropout=dropout)
216
+ self.down_blocks.append(attention_block)
217
+
218
+ # out
219
+ self.norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
220
+ self.act_fn_out = nn.ReLU()
221
+
222
+ def forward(self, hidden_states):
223
+ hidden_states = self.conv_in(hidden_states)
224
+
225
+ # down
226
+ for down_block in self.down_blocks:
227
+ hidden_states = down_block(hidden_states)
228
+
229
+ # post-process
230
+ hidden_states = self.norm_out(hidden_states)
231
+ hidden_states = self.act_fn_out(hidden_states)
232
+
233
+ return hidden_states
LatentSync/latentsync/models/syncnet_wav2lip.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/primepake/wav2lip_288x288/blob/master/models/syncnetv2.py
2
+ # The code here is for ablation study.
3
+
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+
8
+ class SyncNetWav2Lip(nn.Module):
9
+ def __init__(self, act_fn="leaky"):
10
+ super().__init__()
11
+
12
+ # input image sequences: (15, 128, 256)
13
+ self.visual_encoder = nn.Sequential(
14
+ Conv2d(15, 32, kernel_size=(7, 7), stride=1, padding=3, act_fn=act_fn), # (128, 256)
15
+ Conv2d(32, 64, kernel_size=5, stride=(1, 2), padding=1, act_fn=act_fn), # (126, 127)
16
+ Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
17
+ Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
18
+ Conv2d(64, 128, kernel_size=3, stride=2, padding=1, act_fn=act_fn), # (63, 64)
19
+ Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
20
+ Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
21
+ Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
22
+ Conv2d(128, 256, kernel_size=3, stride=3, padding=1, act_fn=act_fn), # (21, 22)
23
+ Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
24
+ Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
25
+ Conv2d(256, 512, kernel_size=3, stride=2, padding=1, act_fn=act_fn), # (11, 11)
26
+ Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
27
+ Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
28
+ Conv2d(512, 1024, kernel_size=3, stride=2, padding=1, act_fn=act_fn), # (6, 6)
29
+ Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
30
+ Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
31
+ Conv2d(1024, 1024, kernel_size=3, stride=2, padding=1, act_fn="relu"), # (3, 3)
32
+ Conv2d(1024, 1024, kernel_size=3, stride=1, padding=0, act_fn="relu"), # (1, 1)
33
+ Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0, act_fn="relu"),
34
+ )
35
+
36
+ # input audio sequences: (1, 80, 16)
37
+ self.audio_encoder = nn.Sequential(
38
+ Conv2d(1, 32, kernel_size=3, stride=1, padding=1, act_fn=act_fn),
39
+ Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
40
+ Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
41
+ Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1, act_fn=act_fn), # (27, 16)
42
+ Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
43
+ Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
44
+ Conv2d(64, 128, kernel_size=3, stride=3, padding=1, act_fn=act_fn), # (9, 6)
45
+ Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
46
+ Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
47
+ Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1, act_fn=act_fn), # (3, 3)
48
+ Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
49
+ Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
50
+ Conv2d(256, 512, kernel_size=3, stride=1, padding=1, act_fn=act_fn),
51
+ Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
52
+ Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
53
+ Conv2d(512, 1024, kernel_size=3, stride=1, padding=0, act_fn="relu"), # (1, 1)
54
+ Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0, act_fn="relu"),
55
+ )
56
+
57
+ def forward(self, image_sequences, audio_sequences):
58
+ vision_embeds = self.visual_encoder(image_sequences) # (b, c, 1, 1)
59
+ audio_embeds = self.audio_encoder(audio_sequences) # (b, c, 1, 1)
60
+
61
+ vision_embeds = vision_embeds.reshape(vision_embeds.shape[0], -1) # (b, c)
62
+ audio_embeds = audio_embeds.reshape(audio_embeds.shape[0], -1) # (b, c)
63
+
64
+ # Make them unit vectors
65
+ vision_embeds = F.normalize(vision_embeds, p=2, dim=1)
66
+ audio_embeds = F.normalize(audio_embeds, p=2, dim=1)
67
+
68
+ return vision_embeds, audio_embeds
69
+
70
+
71
+ class Conv2d(nn.Module):
72
+ def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, act_fn="relu", *args, **kwargs):
73
+ super().__init__(*args, **kwargs)
74
+ self.conv_block = nn.Sequential(nn.Conv2d(cin, cout, kernel_size, stride, padding), nn.BatchNorm2d(cout))
75
+ if act_fn == "relu":
76
+ self.act_fn = nn.ReLU()
77
+ elif act_fn == "tanh":
78
+ self.act_fn = nn.Tanh()
79
+ elif act_fn == "silu":
80
+ self.act_fn = nn.SiLU()
81
+ elif act_fn == "leaky":
82
+ self.act_fn = nn.LeakyReLU(0.2, inplace=True)
83
+
84
+ self.residual = residual
85
+
86
+ def forward(self, x):
87
+ out = self.conv_block(x)
88
+ if self.residual:
89
+ out += x
90
+ return self.act_fn(out)
LatentSync/latentsync/models/unet.py ADDED
@@ -0,0 +1,528 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/models/unet.py
2
+
3
+ from dataclasses import dataclass
4
+ from typing import List, Optional, Tuple, Union
5
+ import copy
6
+
7
+ import torch
8
+ import torch.nn as nn
9
+ import torch.utils.checkpoint
10
+
11
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
12
+ from diffusers.models.modeling_utils import ModelMixin
13
+ from diffusers import UNet2DConditionModel
14
+ from diffusers.utils import BaseOutput, logging
15
+ from diffusers.models.embeddings import TimestepEmbedding, Timesteps
16
+ from .unet_blocks import (
17
+ CrossAttnDownBlock3D,
18
+ CrossAttnUpBlock3D,
19
+ DownBlock3D,
20
+ UNetMidBlock3DCrossAttn,
21
+ UpBlock3D,
22
+ get_down_block,
23
+ get_up_block,
24
+ )
25
+ from .resnet import InflatedConv3d, InflatedGroupNorm
26
+
27
+ from ..utils.util import zero_rank_log
28
+ from einops import rearrange
29
+ from .utils import zero_module
30
+
31
+
32
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
33
+
34
+
35
+ @dataclass
36
+ class UNet3DConditionOutput(BaseOutput):
37
+ sample: torch.FloatTensor
38
+
39
+
40
+ class UNet3DConditionModel(ModelMixin, ConfigMixin):
41
+ _supports_gradient_checkpointing = True
42
+
43
+ @register_to_config
44
+ def __init__(
45
+ self,
46
+ sample_size: Optional[int] = None,
47
+ in_channels: int = 4,
48
+ out_channels: int = 4,
49
+ center_input_sample: bool = False,
50
+ flip_sin_to_cos: bool = True,
51
+ freq_shift: int = 0,
52
+ down_block_types: Tuple[str] = (
53
+ "CrossAttnDownBlock3D",
54
+ "CrossAttnDownBlock3D",
55
+ "CrossAttnDownBlock3D",
56
+ "DownBlock3D",
57
+ ),
58
+ mid_block_type: str = "UNetMidBlock3DCrossAttn",
59
+ up_block_types: Tuple[str] = ("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D"),
60
+ only_cross_attention: Union[bool, Tuple[bool]] = False,
61
+ block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
62
+ layers_per_block: int = 2,
63
+ downsample_padding: int = 1,
64
+ mid_block_scale_factor: float = 1,
65
+ act_fn: str = "silu",
66
+ norm_num_groups: int = 32,
67
+ norm_eps: float = 1e-5,
68
+ cross_attention_dim: int = 1280,
69
+ attention_head_dim: Union[int, Tuple[int]] = 8,
70
+ dual_cross_attention: bool = False,
71
+ use_linear_projection: bool = False,
72
+ class_embed_type: Optional[str] = None,
73
+ num_class_embeds: Optional[int] = None,
74
+ upcast_attention: bool = False,
75
+ resnet_time_scale_shift: str = "default",
76
+ use_inflated_groupnorm=False,
77
+ # Additional
78
+ use_motion_module=False,
79
+ motion_module_resolutions=(1, 2, 4, 8),
80
+ motion_module_mid_block=False,
81
+ motion_module_decoder_only=False,
82
+ motion_module_type=None,
83
+ motion_module_kwargs={},
84
+ unet_use_cross_frame_attention=False,
85
+ unet_use_temporal_attention=False,
86
+ add_audio_layer=False,
87
+ audio_condition_method: str = "cross_attn",
88
+ custom_audio_layer=False,
89
+ ):
90
+ super().__init__()
91
+
92
+ self.sample_size = sample_size
93
+ time_embed_dim = block_out_channels[0] * 4
94
+ self.use_motion_module = use_motion_module
95
+ self.add_audio_layer = add_audio_layer
96
+
97
+ self.conv_in = zero_module(InflatedConv3d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1)))
98
+
99
+ # time
100
+ self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
101
+ timestep_input_dim = block_out_channels[0]
102
+
103
+ self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
104
+
105
+ # class embedding
106
+ if class_embed_type is None and num_class_embeds is not None:
107
+ self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
108
+ elif class_embed_type == "timestep":
109
+ self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
110
+ elif class_embed_type == "identity":
111
+ self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
112
+ else:
113
+ self.class_embedding = None
114
+
115
+ self.down_blocks = nn.ModuleList([])
116
+ self.mid_block = None
117
+ self.up_blocks = nn.ModuleList([])
118
+
119
+ if isinstance(only_cross_attention, bool):
120
+ only_cross_attention = [only_cross_attention] * len(down_block_types)
121
+
122
+ if isinstance(attention_head_dim, int):
123
+ attention_head_dim = (attention_head_dim,) * len(down_block_types)
124
+
125
+ # down
126
+ output_channel = block_out_channels[0]
127
+ for i, down_block_type in enumerate(down_block_types):
128
+ res = 2**i
129
+ input_channel = output_channel
130
+ output_channel = block_out_channels[i]
131
+ is_final_block = i == len(block_out_channels) - 1
132
+
133
+ down_block = get_down_block(
134
+ down_block_type,
135
+ num_layers=layers_per_block,
136
+ in_channels=input_channel,
137
+ out_channels=output_channel,
138
+ temb_channels=time_embed_dim,
139
+ add_downsample=not is_final_block,
140
+ resnet_eps=norm_eps,
141
+ resnet_act_fn=act_fn,
142
+ resnet_groups=norm_num_groups,
143
+ cross_attention_dim=cross_attention_dim,
144
+ attn_num_head_channels=attention_head_dim[i],
145
+ downsample_padding=downsample_padding,
146
+ dual_cross_attention=dual_cross_attention,
147
+ use_linear_projection=use_linear_projection,
148
+ only_cross_attention=only_cross_attention[i],
149
+ upcast_attention=upcast_attention,
150
+ resnet_time_scale_shift=resnet_time_scale_shift,
151
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
152
+ unet_use_temporal_attention=unet_use_temporal_attention,
153
+ use_inflated_groupnorm=use_inflated_groupnorm,
154
+ use_motion_module=use_motion_module
155
+ and (res in motion_module_resolutions)
156
+ and (not motion_module_decoder_only),
157
+ motion_module_type=motion_module_type,
158
+ motion_module_kwargs=motion_module_kwargs,
159
+ add_audio_layer=add_audio_layer,
160
+ audio_condition_method=audio_condition_method,
161
+ custom_audio_layer=custom_audio_layer,
162
+ )
163
+ self.down_blocks.append(down_block)
164
+
165
+ # mid
166
+ if mid_block_type == "UNetMidBlock3DCrossAttn":
167
+ self.mid_block = UNetMidBlock3DCrossAttn(
168
+ in_channels=block_out_channels[-1],
169
+ temb_channels=time_embed_dim,
170
+ resnet_eps=norm_eps,
171
+ resnet_act_fn=act_fn,
172
+ output_scale_factor=mid_block_scale_factor,
173
+ resnet_time_scale_shift=resnet_time_scale_shift,
174
+ cross_attention_dim=cross_attention_dim,
175
+ attn_num_head_channels=attention_head_dim[-1],
176
+ resnet_groups=norm_num_groups,
177
+ dual_cross_attention=dual_cross_attention,
178
+ use_linear_projection=use_linear_projection,
179
+ upcast_attention=upcast_attention,
180
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
181
+ unet_use_temporal_attention=unet_use_temporal_attention,
182
+ use_inflated_groupnorm=use_inflated_groupnorm,
183
+ use_motion_module=use_motion_module and motion_module_mid_block,
184
+ motion_module_type=motion_module_type,
185
+ motion_module_kwargs=motion_module_kwargs,
186
+ add_audio_layer=add_audio_layer,
187
+ audio_condition_method=audio_condition_method,
188
+ custom_audio_layer=custom_audio_layer,
189
+ )
190
+ else:
191
+ raise ValueError(f"unknown mid_block_type : {mid_block_type}")
192
+
193
+ # count how many layers upsample the videos
194
+ self.num_upsamplers = 0
195
+
196
+ # up
197
+ reversed_block_out_channels = list(reversed(block_out_channels))
198
+ reversed_attention_head_dim = list(reversed(attention_head_dim))
199
+ only_cross_attention = list(reversed(only_cross_attention))
200
+ output_channel = reversed_block_out_channels[0]
201
+ for i, up_block_type in enumerate(up_block_types):
202
+ res = 2 ** (3 - i)
203
+ is_final_block = i == len(block_out_channels) - 1
204
+
205
+ prev_output_channel = output_channel
206
+ output_channel = reversed_block_out_channels[i]
207
+ input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
208
+
209
+ # add upsample block for all BUT final layer
210
+ if not is_final_block:
211
+ add_upsample = True
212
+ self.num_upsamplers += 1
213
+ else:
214
+ add_upsample = False
215
+
216
+ up_block = get_up_block(
217
+ up_block_type,
218
+ num_layers=layers_per_block + 1,
219
+ in_channels=input_channel,
220
+ out_channels=output_channel,
221
+ prev_output_channel=prev_output_channel,
222
+ temb_channels=time_embed_dim,
223
+ add_upsample=add_upsample,
224
+ resnet_eps=norm_eps,
225
+ resnet_act_fn=act_fn,
226
+ resnet_groups=norm_num_groups,
227
+ cross_attention_dim=cross_attention_dim,
228
+ attn_num_head_channels=reversed_attention_head_dim[i],
229
+ dual_cross_attention=dual_cross_attention,
230
+ use_linear_projection=use_linear_projection,
231
+ only_cross_attention=only_cross_attention[i],
232
+ upcast_attention=upcast_attention,
233
+ resnet_time_scale_shift=resnet_time_scale_shift,
234
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
235
+ unet_use_temporal_attention=unet_use_temporal_attention,
236
+ use_inflated_groupnorm=use_inflated_groupnorm,
237
+ use_motion_module=use_motion_module and (res in motion_module_resolutions),
238
+ motion_module_type=motion_module_type,
239
+ motion_module_kwargs=motion_module_kwargs,
240
+ add_audio_layer=add_audio_layer,
241
+ audio_condition_method=audio_condition_method,
242
+ custom_audio_layer=custom_audio_layer,
243
+ )
244
+ self.up_blocks.append(up_block)
245
+ prev_output_channel = output_channel
246
+
247
+ # out
248
+ if use_inflated_groupnorm:
249
+ self.conv_norm_out = InflatedGroupNorm(
250
+ num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
251
+ )
252
+ else:
253
+ self.conv_norm_out = nn.GroupNorm(
254
+ num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
255
+ )
256
+ self.conv_act = nn.SiLU()
257
+
258
+ self.conv_out = zero_module(InflatedConv3d(block_out_channels[0], out_channels, kernel_size=3, padding=1))
259
+
260
+ def set_attention_slice(self, slice_size):
261
+ r"""
262
+ Enable sliced attention computation.
263
+
264
+ When this option is enabled, the attention module will split the input tensor in slices, to compute attention
265
+ in several steps. This is useful to save some memory in exchange for a small speed decrease.
266
+
267
+ Args:
268
+ slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
269
+ When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
270
+ `"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
271
+ provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
272
+ must be a multiple of `slice_size`.
273
+ """
274
+ sliceable_head_dims = []
275
+
276
+ def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
277
+ if hasattr(module, "set_attention_slice"):
278
+ sliceable_head_dims.append(module.sliceable_head_dim)
279
+
280
+ for child in module.children():
281
+ fn_recursive_retrieve_slicable_dims(child)
282
+
283
+ # retrieve number of attention layers
284
+ for module in self.children():
285
+ fn_recursive_retrieve_slicable_dims(module)
286
+
287
+ num_slicable_layers = len(sliceable_head_dims)
288
+
289
+ if slice_size == "auto":
290
+ # half the attention head size is usually a good trade-off between
291
+ # speed and memory
292
+ slice_size = [dim // 2 for dim in sliceable_head_dims]
293
+ elif slice_size == "max":
294
+ # make smallest slice possible
295
+ slice_size = num_slicable_layers * [1]
296
+
297
+ slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
298
+
299
+ if len(slice_size) != len(sliceable_head_dims):
300
+ raise ValueError(
301
+ f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
302
+ f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
303
+ )
304
+
305
+ for i in range(len(slice_size)):
306
+ size = slice_size[i]
307
+ dim = sliceable_head_dims[i]
308
+ if size is not None and size > dim:
309
+ raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
310
+
311
+ # Recursively walk through all the children.
312
+ # Any children which exposes the set_attention_slice method
313
+ # gets the message
314
+ def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
315
+ if hasattr(module, "set_attention_slice"):
316
+ module.set_attention_slice(slice_size.pop())
317
+
318
+ for child in module.children():
319
+ fn_recursive_set_attention_slice(child, slice_size)
320
+
321
+ reversed_slice_size = list(reversed(slice_size))
322
+ for module in self.children():
323
+ fn_recursive_set_attention_slice(module, reversed_slice_size)
324
+
325
+ def _set_gradient_checkpointing(self, module, value=False):
326
+ if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)):
327
+ module.gradient_checkpointing = value
328
+
329
+ def forward(
330
+ self,
331
+ sample: torch.FloatTensor,
332
+ timestep: Union[torch.Tensor, float, int],
333
+ encoder_hidden_states: torch.Tensor,
334
+ class_labels: Optional[torch.Tensor] = None,
335
+ attention_mask: Optional[torch.Tensor] = None,
336
+ # support controlnet
337
+ down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
338
+ mid_block_additional_residual: Optional[torch.Tensor] = None,
339
+ return_dict: bool = True,
340
+ ) -> Union[UNet3DConditionOutput, Tuple]:
341
+ r"""
342
+ Args:
343
+ sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
344
+ timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
345
+ encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
346
+ return_dict (`bool`, *optional*, defaults to `True`):
347
+ Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
348
+
349
+ Returns:
350
+ [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
351
+ [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
352
+ returning a tuple, the first element is the sample tensor.
353
+ """
354
+ # By default samples have to be AT least a multiple of the overall upsampling factor.
355
+ # The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
356
+ # However, the upsampling interpolation output size can be forced to fit any upsampling size
357
+ # on the fly if necessary.
358
+ default_overall_up_factor = 2**self.num_upsamplers
359
+
360
+ # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
361
+ forward_upsample_size = False
362
+ upsample_size = None
363
+
364
+ if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
365
+ logger.info("Forward upsample size to force interpolation output size.")
366
+ forward_upsample_size = True
367
+
368
+ # prepare attention_mask
369
+ if attention_mask is not None:
370
+ attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
371
+ attention_mask = attention_mask.unsqueeze(1)
372
+
373
+ # center input if necessary
374
+ if self.config.center_input_sample:
375
+ sample = 2 * sample - 1.0
376
+
377
+ # time
378
+ timesteps = timestep
379
+ if not torch.is_tensor(timesteps):
380
+ # This would be a good case for the `match` statement (Python 3.10+)
381
+ is_mps = sample.device.type == "mps"
382
+ if isinstance(timestep, float):
383
+ dtype = torch.float32 if is_mps else torch.float64
384
+ else:
385
+ dtype = torch.int32 if is_mps else torch.int64
386
+ timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
387
+ elif len(timesteps.shape) == 0:
388
+ timesteps = timesteps[None].to(sample.device)
389
+
390
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
391
+ timesteps = timesteps.expand(sample.shape[0])
392
+
393
+ t_emb = self.time_proj(timesteps)
394
+
395
+ # timesteps does not contain any weights and will always return f32 tensors
396
+ # but time_embedding might actually be running in fp16. so we need to cast here.
397
+ # there might be better ways to encapsulate this.
398
+ t_emb = t_emb.to(dtype=self.dtype)
399
+ emb = self.time_embedding(t_emb)
400
+
401
+ if self.class_embedding is not None:
402
+ if class_labels is None:
403
+ raise ValueError("class_labels should be provided when num_class_embeds > 0")
404
+
405
+ if self.config.class_embed_type == "timestep":
406
+ class_labels = self.time_proj(class_labels)
407
+
408
+ class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
409
+ emb = emb + class_emb
410
+
411
+ # pre-process
412
+ sample = self.conv_in(sample)
413
+
414
+ # down
415
+ down_block_res_samples = (sample,)
416
+ for downsample_block in self.down_blocks:
417
+ if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
418
+ sample, res_samples = downsample_block(
419
+ hidden_states=sample,
420
+ temb=emb,
421
+ encoder_hidden_states=encoder_hidden_states,
422
+ attention_mask=attention_mask,
423
+ )
424
+ else:
425
+ sample, res_samples = downsample_block(
426
+ hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states
427
+ )
428
+
429
+ down_block_res_samples += res_samples
430
+
431
+ # support controlnet
432
+ down_block_res_samples = list(down_block_res_samples)
433
+ if down_block_additional_residuals is not None:
434
+ for i, down_block_additional_residual in enumerate(down_block_additional_residuals):
435
+ if down_block_additional_residual.dim() == 4: # boardcast
436
+ down_block_additional_residual = down_block_additional_residual.unsqueeze(2)
437
+ down_block_res_samples[i] = down_block_res_samples[i] + down_block_additional_residual
438
+
439
+ # mid
440
+ sample = self.mid_block(
441
+ sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
442
+ )
443
+
444
+ # support controlnet
445
+ if mid_block_additional_residual is not None:
446
+ if mid_block_additional_residual.dim() == 4: # boardcast
447
+ mid_block_additional_residual = mid_block_additional_residual.unsqueeze(2)
448
+ sample = sample + mid_block_additional_residual
449
+
450
+ # up
451
+ for i, upsample_block in enumerate(self.up_blocks):
452
+ is_final_block = i == len(self.up_blocks) - 1
453
+
454
+ res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
455
+ down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
456
+
457
+ # if we have not reached the final block and need to forward the
458
+ # upsample size, we do it here
459
+ if not is_final_block and forward_upsample_size:
460
+ upsample_size = down_block_res_samples[-1].shape[2:]
461
+
462
+ if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
463
+ sample = upsample_block(
464
+ hidden_states=sample,
465
+ temb=emb,
466
+ res_hidden_states_tuple=res_samples,
467
+ encoder_hidden_states=encoder_hidden_states,
468
+ upsample_size=upsample_size,
469
+ attention_mask=attention_mask,
470
+ )
471
+ else:
472
+ sample = upsample_block(
473
+ hidden_states=sample,
474
+ temb=emb,
475
+ res_hidden_states_tuple=res_samples,
476
+ upsample_size=upsample_size,
477
+ encoder_hidden_states=encoder_hidden_states,
478
+ )
479
+
480
+ # post-process
481
+ sample = self.conv_norm_out(sample)
482
+ sample = self.conv_act(sample)
483
+ sample = self.conv_out(sample)
484
+
485
+ if not return_dict:
486
+ return (sample,)
487
+
488
+ return UNet3DConditionOutput(sample=sample)
489
+
490
+ def load_state_dict(self, state_dict, strict=True):
491
+ # If the loaded checkpoint's in_channels or out_channels are different from config
492
+ temp_state_dict = copy.deepcopy(state_dict)
493
+ if temp_state_dict["conv_in.weight"].shape[1] != self.config.in_channels:
494
+ del temp_state_dict["conv_in.weight"]
495
+ del temp_state_dict["conv_in.bias"]
496
+ if temp_state_dict["conv_out.weight"].shape[0] != self.config.out_channels:
497
+ del temp_state_dict["conv_out.weight"]
498
+ del temp_state_dict["conv_out.bias"]
499
+
500
+ # If the loaded checkpoint's cross_attention_dim is different from config
501
+ keys_to_remove = []
502
+ for key in temp_state_dict:
503
+ if "audio_cross_attn.attn.to_k." in key or "audio_cross_attn.attn.to_v." in key:
504
+ if temp_state_dict[key].shape[1] != self.config.cross_attention_dim:
505
+ keys_to_remove.append(key)
506
+
507
+ for key in keys_to_remove:
508
+ del temp_state_dict[key]
509
+
510
+ return super().load_state_dict(state_dict=temp_state_dict, strict=strict)
511
+
512
+ @classmethod
513
+ def from_pretrained(cls, model_config: dict, ckpt_path: str, device="cpu"):
514
+ unet = cls.from_config(model_config).to(device)
515
+ if ckpt_path != "":
516
+ zero_rank_log(logger, f"Load from checkpoint: {ckpt_path}")
517
+ ckpt = torch.load(ckpt_path, map_location=device)
518
+ if "global_step" in ckpt:
519
+ zero_rank_log(logger, f"resume from global_step: {ckpt['global_step']}")
520
+ resume_global_step = ckpt["global_step"]
521
+ else:
522
+ resume_global_step = 0
523
+ state_dict = ckpt["state_dict"] if "state_dict" in ckpt else ckpt
524
+ unet.load_state_dict(state_dict, strict=False)
525
+ else:
526
+ resume_global_step = 0
527
+
528
+ return unet, resume_global_step
LatentSync/latentsync/models/unet_blocks.py ADDED
@@ -0,0 +1,903 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/models/unet_blocks.py
2
+
3
+ import torch
4
+ from torch import nn
5
+
6
+ from .attention import Transformer3DModel
7
+ from .resnet import Downsample3D, ResnetBlock3D, Upsample3D
8
+ from .motion_module import get_motion_module
9
+
10
+
11
+ def get_down_block(
12
+ down_block_type,
13
+ num_layers,
14
+ in_channels,
15
+ out_channels,
16
+ temb_channels,
17
+ add_downsample,
18
+ resnet_eps,
19
+ resnet_act_fn,
20
+ attn_num_head_channels,
21
+ resnet_groups=None,
22
+ cross_attention_dim=None,
23
+ downsample_padding=None,
24
+ dual_cross_attention=False,
25
+ use_linear_projection=False,
26
+ only_cross_attention=False,
27
+ upcast_attention=False,
28
+ resnet_time_scale_shift="default",
29
+ unet_use_cross_frame_attention=False,
30
+ unet_use_temporal_attention=False,
31
+ use_inflated_groupnorm=False,
32
+ use_motion_module=None,
33
+ motion_module_type=None,
34
+ motion_module_kwargs=None,
35
+ add_audio_layer=False,
36
+ audio_condition_method="cross_attn",
37
+ custom_audio_layer=False,
38
+ ):
39
+ down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
40
+ if down_block_type == "DownBlock3D":
41
+ return DownBlock3D(
42
+ num_layers=num_layers,
43
+ in_channels=in_channels,
44
+ out_channels=out_channels,
45
+ temb_channels=temb_channels,
46
+ add_downsample=add_downsample,
47
+ resnet_eps=resnet_eps,
48
+ resnet_act_fn=resnet_act_fn,
49
+ resnet_groups=resnet_groups,
50
+ downsample_padding=downsample_padding,
51
+ resnet_time_scale_shift=resnet_time_scale_shift,
52
+ use_inflated_groupnorm=use_inflated_groupnorm,
53
+ use_motion_module=use_motion_module,
54
+ motion_module_type=motion_module_type,
55
+ motion_module_kwargs=motion_module_kwargs,
56
+ )
57
+ elif down_block_type == "CrossAttnDownBlock3D":
58
+ if cross_attention_dim is None:
59
+ raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D")
60
+ return CrossAttnDownBlock3D(
61
+ num_layers=num_layers,
62
+ in_channels=in_channels,
63
+ out_channels=out_channels,
64
+ temb_channels=temb_channels,
65
+ add_downsample=add_downsample,
66
+ resnet_eps=resnet_eps,
67
+ resnet_act_fn=resnet_act_fn,
68
+ resnet_groups=resnet_groups,
69
+ downsample_padding=downsample_padding,
70
+ cross_attention_dim=cross_attention_dim,
71
+ attn_num_head_channels=attn_num_head_channels,
72
+ dual_cross_attention=dual_cross_attention,
73
+ use_linear_projection=use_linear_projection,
74
+ only_cross_attention=only_cross_attention,
75
+ upcast_attention=upcast_attention,
76
+ resnet_time_scale_shift=resnet_time_scale_shift,
77
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
78
+ unet_use_temporal_attention=unet_use_temporal_attention,
79
+ use_inflated_groupnorm=use_inflated_groupnorm,
80
+ use_motion_module=use_motion_module,
81
+ motion_module_type=motion_module_type,
82
+ motion_module_kwargs=motion_module_kwargs,
83
+ add_audio_layer=add_audio_layer,
84
+ audio_condition_method=audio_condition_method,
85
+ custom_audio_layer=custom_audio_layer,
86
+ )
87
+ raise ValueError(f"{down_block_type} does not exist.")
88
+
89
+
90
+ def get_up_block(
91
+ up_block_type,
92
+ num_layers,
93
+ in_channels,
94
+ out_channels,
95
+ prev_output_channel,
96
+ temb_channels,
97
+ add_upsample,
98
+ resnet_eps,
99
+ resnet_act_fn,
100
+ attn_num_head_channels,
101
+ resnet_groups=None,
102
+ cross_attention_dim=None,
103
+ dual_cross_attention=False,
104
+ use_linear_projection=False,
105
+ only_cross_attention=False,
106
+ upcast_attention=False,
107
+ resnet_time_scale_shift="default",
108
+ unet_use_cross_frame_attention=False,
109
+ unet_use_temporal_attention=False,
110
+ use_inflated_groupnorm=False,
111
+ use_motion_module=None,
112
+ motion_module_type=None,
113
+ motion_module_kwargs=None,
114
+ add_audio_layer=False,
115
+ audio_condition_method="cross_attn",
116
+ custom_audio_layer=False,
117
+ ):
118
+ up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
119
+ if up_block_type == "UpBlock3D":
120
+ return UpBlock3D(
121
+ num_layers=num_layers,
122
+ in_channels=in_channels,
123
+ out_channels=out_channels,
124
+ prev_output_channel=prev_output_channel,
125
+ temb_channels=temb_channels,
126
+ add_upsample=add_upsample,
127
+ resnet_eps=resnet_eps,
128
+ resnet_act_fn=resnet_act_fn,
129
+ resnet_groups=resnet_groups,
130
+ resnet_time_scale_shift=resnet_time_scale_shift,
131
+ use_inflated_groupnorm=use_inflated_groupnorm,
132
+ use_motion_module=use_motion_module,
133
+ motion_module_type=motion_module_type,
134
+ motion_module_kwargs=motion_module_kwargs,
135
+ )
136
+ elif up_block_type == "CrossAttnUpBlock3D":
137
+ if cross_attention_dim is None:
138
+ raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D")
139
+ return CrossAttnUpBlock3D(
140
+ num_layers=num_layers,
141
+ in_channels=in_channels,
142
+ out_channels=out_channels,
143
+ prev_output_channel=prev_output_channel,
144
+ temb_channels=temb_channels,
145
+ add_upsample=add_upsample,
146
+ resnet_eps=resnet_eps,
147
+ resnet_act_fn=resnet_act_fn,
148
+ resnet_groups=resnet_groups,
149
+ cross_attention_dim=cross_attention_dim,
150
+ attn_num_head_channels=attn_num_head_channels,
151
+ dual_cross_attention=dual_cross_attention,
152
+ use_linear_projection=use_linear_projection,
153
+ only_cross_attention=only_cross_attention,
154
+ upcast_attention=upcast_attention,
155
+ resnet_time_scale_shift=resnet_time_scale_shift,
156
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
157
+ unet_use_temporal_attention=unet_use_temporal_attention,
158
+ use_inflated_groupnorm=use_inflated_groupnorm,
159
+ use_motion_module=use_motion_module,
160
+ motion_module_type=motion_module_type,
161
+ motion_module_kwargs=motion_module_kwargs,
162
+ add_audio_layer=add_audio_layer,
163
+ audio_condition_method=audio_condition_method,
164
+ custom_audio_layer=custom_audio_layer,
165
+ )
166
+ raise ValueError(f"{up_block_type} does not exist.")
167
+
168
+
169
+ class UNetMidBlock3DCrossAttn(nn.Module):
170
+ def __init__(
171
+ self,
172
+ in_channels: int,
173
+ temb_channels: int,
174
+ dropout: float = 0.0,
175
+ num_layers: int = 1,
176
+ resnet_eps: float = 1e-6,
177
+ resnet_time_scale_shift: str = "default",
178
+ resnet_act_fn: str = "swish",
179
+ resnet_groups: int = 32,
180
+ resnet_pre_norm: bool = True,
181
+ attn_num_head_channels=1,
182
+ output_scale_factor=1.0,
183
+ cross_attention_dim=1280,
184
+ dual_cross_attention=False,
185
+ use_linear_projection=False,
186
+ upcast_attention=False,
187
+ unet_use_cross_frame_attention=False,
188
+ unet_use_temporal_attention=False,
189
+ use_inflated_groupnorm=False,
190
+ use_motion_module=None,
191
+ motion_module_type=None,
192
+ motion_module_kwargs=None,
193
+ add_audio_layer=False,
194
+ audio_condition_method="cross_attn",
195
+ custom_audio_layer: bool = False,
196
+ ):
197
+ super().__init__()
198
+
199
+ self.has_cross_attention = True
200
+ self.attn_num_head_channels = attn_num_head_channels
201
+ resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
202
+
203
+ # there is always at least one resnet
204
+ resnets = [
205
+ ResnetBlock3D(
206
+ in_channels=in_channels,
207
+ out_channels=in_channels,
208
+ temb_channels=temb_channels,
209
+ eps=resnet_eps,
210
+ groups=resnet_groups,
211
+ dropout=dropout,
212
+ time_embedding_norm=resnet_time_scale_shift,
213
+ non_linearity=resnet_act_fn,
214
+ output_scale_factor=output_scale_factor,
215
+ pre_norm=resnet_pre_norm,
216
+ use_inflated_groupnorm=use_inflated_groupnorm,
217
+ )
218
+ ]
219
+ attentions = []
220
+ audio_attentions = []
221
+ motion_modules = []
222
+
223
+ for _ in range(num_layers):
224
+ if dual_cross_attention:
225
+ raise NotImplementedError
226
+ attentions.append(
227
+ Transformer3DModel(
228
+ attn_num_head_channels,
229
+ in_channels // attn_num_head_channels,
230
+ in_channels=in_channels,
231
+ num_layers=1,
232
+ cross_attention_dim=cross_attention_dim,
233
+ norm_num_groups=resnet_groups,
234
+ use_linear_projection=use_linear_projection,
235
+ upcast_attention=upcast_attention,
236
+ use_motion_module=use_motion_module,
237
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
238
+ unet_use_temporal_attention=unet_use_temporal_attention,
239
+ add_audio_layer=add_audio_layer,
240
+ audio_condition_method=audio_condition_method,
241
+ )
242
+ )
243
+ audio_attentions.append(
244
+ Transformer3DModel(
245
+ attn_num_head_channels,
246
+ in_channels // attn_num_head_channels,
247
+ in_channels=in_channels,
248
+ num_layers=1,
249
+ cross_attention_dim=cross_attention_dim,
250
+ norm_num_groups=resnet_groups,
251
+ use_linear_projection=use_linear_projection,
252
+ upcast_attention=upcast_attention,
253
+ use_motion_module=use_motion_module,
254
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
255
+ unet_use_temporal_attention=unet_use_temporal_attention,
256
+ add_audio_layer=add_audio_layer,
257
+ audio_condition_method=audio_condition_method,
258
+ custom_audio_layer=True,
259
+ )
260
+ if custom_audio_layer
261
+ else None
262
+ )
263
+ motion_modules.append(
264
+ get_motion_module(
265
+ in_channels=in_channels,
266
+ motion_module_type=motion_module_type,
267
+ motion_module_kwargs=motion_module_kwargs,
268
+ )
269
+ if use_motion_module
270
+ else None
271
+ )
272
+ resnets.append(
273
+ ResnetBlock3D(
274
+ in_channels=in_channels,
275
+ out_channels=in_channels,
276
+ temb_channels=temb_channels,
277
+ eps=resnet_eps,
278
+ groups=resnet_groups,
279
+ dropout=dropout,
280
+ time_embedding_norm=resnet_time_scale_shift,
281
+ non_linearity=resnet_act_fn,
282
+ output_scale_factor=output_scale_factor,
283
+ pre_norm=resnet_pre_norm,
284
+ use_inflated_groupnorm=use_inflated_groupnorm,
285
+ )
286
+ )
287
+
288
+ self.attentions = nn.ModuleList(attentions)
289
+ self.audio_attentions = nn.ModuleList(audio_attentions)
290
+ self.resnets = nn.ModuleList(resnets)
291
+ self.motion_modules = nn.ModuleList(motion_modules)
292
+
293
+ def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
294
+ hidden_states = self.resnets[0](hidden_states, temb)
295
+ for attn, audio_attn, resnet, motion_module in zip(
296
+ self.attentions, self.audio_attentions, self.resnets[1:], self.motion_modules
297
+ ):
298
+ hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
299
+ hidden_states = (
300
+ audio_attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
301
+ if audio_attn is not None
302
+ else hidden_states
303
+ )
304
+ hidden_states = (
305
+ motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states)
306
+ if motion_module is not None
307
+ else hidden_states
308
+ )
309
+ hidden_states = resnet(hidden_states, temb)
310
+
311
+ return hidden_states
312
+
313
+
314
+ class CrossAttnDownBlock3D(nn.Module):
315
+ def __init__(
316
+ self,
317
+ in_channels: int,
318
+ out_channels: int,
319
+ temb_channels: int,
320
+ dropout: float = 0.0,
321
+ num_layers: int = 1,
322
+ resnet_eps: float = 1e-6,
323
+ resnet_time_scale_shift: str = "default",
324
+ resnet_act_fn: str = "swish",
325
+ resnet_groups: int = 32,
326
+ resnet_pre_norm: bool = True,
327
+ attn_num_head_channels=1,
328
+ cross_attention_dim=1280,
329
+ output_scale_factor=1.0,
330
+ downsample_padding=1,
331
+ add_downsample=True,
332
+ dual_cross_attention=False,
333
+ use_linear_projection=False,
334
+ only_cross_attention=False,
335
+ upcast_attention=False,
336
+ unet_use_cross_frame_attention=False,
337
+ unet_use_temporal_attention=False,
338
+ use_inflated_groupnorm=False,
339
+ use_motion_module=None,
340
+ motion_module_type=None,
341
+ motion_module_kwargs=None,
342
+ add_audio_layer=False,
343
+ audio_condition_method="cross_attn",
344
+ custom_audio_layer: bool = False,
345
+ ):
346
+ super().__init__()
347
+ resnets = []
348
+ attentions = []
349
+ audio_attentions = []
350
+ motion_modules = []
351
+
352
+ self.has_cross_attention = True
353
+ self.attn_num_head_channels = attn_num_head_channels
354
+
355
+ for i in range(num_layers):
356
+ in_channels = in_channels if i == 0 else out_channels
357
+ resnets.append(
358
+ ResnetBlock3D(
359
+ in_channels=in_channels,
360
+ out_channels=out_channels,
361
+ temb_channels=temb_channels,
362
+ eps=resnet_eps,
363
+ groups=resnet_groups,
364
+ dropout=dropout,
365
+ time_embedding_norm=resnet_time_scale_shift,
366
+ non_linearity=resnet_act_fn,
367
+ output_scale_factor=output_scale_factor,
368
+ pre_norm=resnet_pre_norm,
369
+ use_inflated_groupnorm=use_inflated_groupnorm,
370
+ )
371
+ )
372
+ if dual_cross_attention:
373
+ raise NotImplementedError
374
+ attentions.append(
375
+ Transformer3DModel(
376
+ attn_num_head_channels,
377
+ out_channels // attn_num_head_channels,
378
+ in_channels=out_channels,
379
+ num_layers=1,
380
+ cross_attention_dim=cross_attention_dim,
381
+ norm_num_groups=resnet_groups,
382
+ use_linear_projection=use_linear_projection,
383
+ only_cross_attention=only_cross_attention,
384
+ upcast_attention=upcast_attention,
385
+ use_motion_module=use_motion_module,
386
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
387
+ unet_use_temporal_attention=unet_use_temporal_attention,
388
+ add_audio_layer=add_audio_layer,
389
+ audio_condition_method=audio_condition_method,
390
+ )
391
+ )
392
+ audio_attentions.append(
393
+ Transformer3DModel(
394
+ attn_num_head_channels,
395
+ out_channels // attn_num_head_channels,
396
+ in_channels=out_channels,
397
+ num_layers=1,
398
+ cross_attention_dim=cross_attention_dim,
399
+ norm_num_groups=resnet_groups,
400
+ use_linear_projection=use_linear_projection,
401
+ only_cross_attention=only_cross_attention,
402
+ upcast_attention=upcast_attention,
403
+ use_motion_module=use_motion_module,
404
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
405
+ unet_use_temporal_attention=unet_use_temporal_attention,
406
+ add_audio_layer=add_audio_layer,
407
+ audio_condition_method=audio_condition_method,
408
+ custom_audio_layer=True,
409
+ )
410
+ if custom_audio_layer
411
+ else None
412
+ )
413
+ motion_modules.append(
414
+ get_motion_module(
415
+ in_channels=out_channels,
416
+ motion_module_type=motion_module_type,
417
+ motion_module_kwargs=motion_module_kwargs,
418
+ )
419
+ if use_motion_module
420
+ else None
421
+ )
422
+
423
+ self.attentions = nn.ModuleList(attentions)
424
+ self.audio_attentions = nn.ModuleList(audio_attentions)
425
+ self.resnets = nn.ModuleList(resnets)
426
+ self.motion_modules = nn.ModuleList(motion_modules)
427
+
428
+ if add_downsample:
429
+ self.downsamplers = nn.ModuleList(
430
+ [
431
+ Downsample3D(
432
+ out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
433
+ )
434
+ ]
435
+ )
436
+ else:
437
+ self.downsamplers = None
438
+
439
+ self.gradient_checkpointing = False
440
+
441
+ def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
442
+ output_states = ()
443
+
444
+ for resnet, attn, audio_attn, motion_module in zip(
445
+ self.resnets, self.attentions, self.audio_attentions, self.motion_modules
446
+ ):
447
+ if self.training and self.gradient_checkpointing:
448
+
449
+ def create_custom_forward(module, return_dict=None):
450
+ def custom_forward(*inputs):
451
+ if return_dict is not None:
452
+ return module(*inputs, return_dict=return_dict)
453
+ else:
454
+ return module(*inputs)
455
+
456
+ return custom_forward
457
+
458
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
459
+ hidden_states = torch.utils.checkpoint.checkpoint(
460
+ create_custom_forward(attn, return_dict=False),
461
+ hidden_states,
462
+ encoder_hidden_states,
463
+ )[0]
464
+ if motion_module is not None:
465
+ hidden_states = torch.utils.checkpoint.checkpoint(
466
+ create_custom_forward(motion_module),
467
+ hidden_states.requires_grad_(),
468
+ temb,
469
+ encoder_hidden_states,
470
+ )
471
+
472
+ else:
473
+ hidden_states = resnet(hidden_states, temb)
474
+ hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
475
+
476
+ hidden_states = (
477
+ audio_attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
478
+ if audio_attn is not None
479
+ else hidden_states
480
+ )
481
+
482
+ # add motion module
483
+ hidden_states = (
484
+ motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states)
485
+ if motion_module is not None
486
+ else hidden_states
487
+ )
488
+
489
+ output_states += (hidden_states,)
490
+
491
+ if self.downsamplers is not None:
492
+ for downsampler in self.downsamplers:
493
+ hidden_states = downsampler(hidden_states)
494
+
495
+ output_states += (hidden_states,)
496
+
497
+ return hidden_states, output_states
498
+
499
+
500
+ class DownBlock3D(nn.Module):
501
+ def __init__(
502
+ self,
503
+ in_channels: int,
504
+ out_channels: int,
505
+ temb_channels: int,
506
+ dropout: float = 0.0,
507
+ num_layers: int = 1,
508
+ resnet_eps: float = 1e-6,
509
+ resnet_time_scale_shift: str = "default",
510
+ resnet_act_fn: str = "swish",
511
+ resnet_groups: int = 32,
512
+ resnet_pre_norm: bool = True,
513
+ output_scale_factor=1.0,
514
+ add_downsample=True,
515
+ downsample_padding=1,
516
+ use_inflated_groupnorm=False,
517
+ use_motion_module=None,
518
+ motion_module_type=None,
519
+ motion_module_kwargs=None,
520
+ ):
521
+ super().__init__()
522
+ resnets = []
523
+ motion_modules = []
524
+
525
+ for i in range(num_layers):
526
+ in_channels = in_channels if i == 0 else out_channels
527
+ resnets.append(
528
+ ResnetBlock3D(
529
+ in_channels=in_channels,
530
+ out_channels=out_channels,
531
+ temb_channels=temb_channels,
532
+ eps=resnet_eps,
533
+ groups=resnet_groups,
534
+ dropout=dropout,
535
+ time_embedding_norm=resnet_time_scale_shift,
536
+ non_linearity=resnet_act_fn,
537
+ output_scale_factor=output_scale_factor,
538
+ pre_norm=resnet_pre_norm,
539
+ use_inflated_groupnorm=use_inflated_groupnorm,
540
+ )
541
+ )
542
+ motion_modules.append(
543
+ get_motion_module(
544
+ in_channels=out_channels,
545
+ motion_module_type=motion_module_type,
546
+ motion_module_kwargs=motion_module_kwargs,
547
+ )
548
+ if use_motion_module
549
+ else None
550
+ )
551
+
552
+ self.resnets = nn.ModuleList(resnets)
553
+ self.motion_modules = nn.ModuleList(motion_modules)
554
+
555
+ if add_downsample:
556
+ self.downsamplers = nn.ModuleList(
557
+ [
558
+ Downsample3D(
559
+ out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
560
+ )
561
+ ]
562
+ )
563
+ else:
564
+ self.downsamplers = None
565
+
566
+ self.gradient_checkpointing = False
567
+
568
+ def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
569
+ output_states = ()
570
+
571
+ for resnet, motion_module in zip(self.resnets, self.motion_modules):
572
+ if self.training and self.gradient_checkpointing:
573
+
574
+ def create_custom_forward(module):
575
+ def custom_forward(*inputs):
576
+ return module(*inputs)
577
+
578
+ return custom_forward
579
+
580
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
581
+ if motion_module is not None:
582
+ hidden_states = torch.utils.checkpoint.checkpoint(
583
+ create_custom_forward(motion_module),
584
+ hidden_states.requires_grad_(),
585
+ temb,
586
+ encoder_hidden_states,
587
+ )
588
+ else:
589
+ hidden_states = resnet(hidden_states, temb)
590
+
591
+ # add motion module
592
+ hidden_states = (
593
+ motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states)
594
+ if motion_module is not None
595
+ else hidden_states
596
+ )
597
+
598
+ output_states += (hidden_states,)
599
+
600
+ if self.downsamplers is not None:
601
+ for downsampler in self.downsamplers:
602
+ hidden_states = downsampler(hidden_states)
603
+
604
+ output_states += (hidden_states,)
605
+
606
+ return hidden_states, output_states
607
+
608
+
609
+ class CrossAttnUpBlock3D(nn.Module):
610
+ def __init__(
611
+ self,
612
+ in_channels: int,
613
+ out_channels: int,
614
+ prev_output_channel: int,
615
+ temb_channels: int,
616
+ dropout: float = 0.0,
617
+ num_layers: int = 1,
618
+ resnet_eps: float = 1e-6,
619
+ resnet_time_scale_shift: str = "default",
620
+ resnet_act_fn: str = "swish",
621
+ resnet_groups: int = 32,
622
+ resnet_pre_norm: bool = True,
623
+ attn_num_head_channels=1,
624
+ cross_attention_dim=1280,
625
+ output_scale_factor=1.0,
626
+ add_upsample=True,
627
+ dual_cross_attention=False,
628
+ use_linear_projection=False,
629
+ only_cross_attention=False,
630
+ upcast_attention=False,
631
+ unet_use_cross_frame_attention=False,
632
+ unet_use_temporal_attention=False,
633
+ use_inflated_groupnorm=False,
634
+ use_motion_module=None,
635
+ motion_module_type=None,
636
+ motion_module_kwargs=None,
637
+ add_audio_layer=False,
638
+ audio_condition_method="cross_attn",
639
+ custom_audio_layer=False,
640
+ ):
641
+ super().__init__()
642
+ resnets = []
643
+ attentions = []
644
+ audio_attentions = []
645
+ motion_modules = []
646
+
647
+ self.has_cross_attention = True
648
+ self.attn_num_head_channels = attn_num_head_channels
649
+
650
+ for i in range(num_layers):
651
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
652
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
653
+
654
+ resnets.append(
655
+ ResnetBlock3D(
656
+ in_channels=resnet_in_channels + res_skip_channels,
657
+ out_channels=out_channels,
658
+ temb_channels=temb_channels,
659
+ eps=resnet_eps,
660
+ groups=resnet_groups,
661
+ dropout=dropout,
662
+ time_embedding_norm=resnet_time_scale_shift,
663
+ non_linearity=resnet_act_fn,
664
+ output_scale_factor=output_scale_factor,
665
+ pre_norm=resnet_pre_norm,
666
+ use_inflated_groupnorm=use_inflated_groupnorm,
667
+ )
668
+ )
669
+ if dual_cross_attention:
670
+ raise NotImplementedError
671
+ attentions.append(
672
+ Transformer3DModel(
673
+ attn_num_head_channels,
674
+ out_channels // attn_num_head_channels,
675
+ in_channels=out_channels,
676
+ num_layers=1,
677
+ cross_attention_dim=cross_attention_dim,
678
+ norm_num_groups=resnet_groups,
679
+ use_linear_projection=use_linear_projection,
680
+ only_cross_attention=only_cross_attention,
681
+ upcast_attention=upcast_attention,
682
+ use_motion_module=use_motion_module,
683
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
684
+ unet_use_temporal_attention=unet_use_temporal_attention,
685
+ add_audio_layer=add_audio_layer,
686
+ audio_condition_method=audio_condition_method,
687
+ )
688
+ )
689
+ audio_attentions.append(
690
+ Transformer3DModel(
691
+ attn_num_head_channels,
692
+ out_channels // attn_num_head_channels,
693
+ in_channels=out_channels,
694
+ num_layers=1,
695
+ cross_attention_dim=cross_attention_dim,
696
+ norm_num_groups=resnet_groups,
697
+ use_linear_projection=use_linear_projection,
698
+ only_cross_attention=only_cross_attention,
699
+ upcast_attention=upcast_attention,
700
+ use_motion_module=use_motion_module,
701
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
702
+ unet_use_temporal_attention=unet_use_temporal_attention,
703
+ add_audio_layer=add_audio_layer,
704
+ audio_condition_method=audio_condition_method,
705
+ custom_audio_layer=True,
706
+ )
707
+ if custom_audio_layer
708
+ else None
709
+ )
710
+ motion_modules.append(
711
+ get_motion_module(
712
+ in_channels=out_channels,
713
+ motion_module_type=motion_module_type,
714
+ motion_module_kwargs=motion_module_kwargs,
715
+ )
716
+ if use_motion_module
717
+ else None
718
+ )
719
+
720
+ self.attentions = nn.ModuleList(attentions)
721
+ self.audio_attentions = nn.ModuleList(audio_attentions)
722
+ self.resnets = nn.ModuleList(resnets)
723
+ self.motion_modules = nn.ModuleList(motion_modules)
724
+
725
+ if add_upsample:
726
+ self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
727
+ else:
728
+ self.upsamplers = None
729
+
730
+ self.gradient_checkpointing = False
731
+
732
+ def forward(
733
+ self,
734
+ hidden_states,
735
+ res_hidden_states_tuple,
736
+ temb=None,
737
+ encoder_hidden_states=None,
738
+ upsample_size=None,
739
+ attention_mask=None,
740
+ ):
741
+ for resnet, attn, audio_attn, motion_module in zip(
742
+ self.resnets, self.attentions, self.audio_attentions, self.motion_modules
743
+ ):
744
+ # pop res hidden states
745
+ res_hidden_states = res_hidden_states_tuple[-1]
746
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
747
+ hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
748
+
749
+ if self.training and self.gradient_checkpointing:
750
+
751
+ def create_custom_forward(module, return_dict=None):
752
+ def custom_forward(*inputs):
753
+ if return_dict is not None:
754
+ return module(*inputs, return_dict=return_dict)
755
+ else:
756
+ return module(*inputs)
757
+
758
+ return custom_forward
759
+
760
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
761
+ hidden_states = torch.utils.checkpoint.checkpoint(
762
+ create_custom_forward(attn, return_dict=False),
763
+ hidden_states,
764
+ encoder_hidden_states,
765
+ )[0]
766
+ if motion_module is not None:
767
+ hidden_states = torch.utils.checkpoint.checkpoint(
768
+ create_custom_forward(motion_module),
769
+ hidden_states.requires_grad_(),
770
+ temb,
771
+ encoder_hidden_states,
772
+ )
773
+
774
+ else:
775
+ hidden_states = resnet(hidden_states, temb)
776
+ hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
777
+ hidden_states = (
778
+ audio_attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
779
+ if audio_attn is not None
780
+ else hidden_states
781
+ )
782
+
783
+ # add motion module
784
+ hidden_states = (
785
+ motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states)
786
+ if motion_module is not None
787
+ else hidden_states
788
+ )
789
+
790
+ if self.upsamplers is not None:
791
+ for upsampler in self.upsamplers:
792
+ hidden_states = upsampler(hidden_states, upsample_size)
793
+
794
+ return hidden_states
795
+
796
+
797
+ class UpBlock3D(nn.Module):
798
+ def __init__(
799
+ self,
800
+ in_channels: int,
801
+ prev_output_channel: int,
802
+ out_channels: int,
803
+ temb_channels: int,
804
+ dropout: float = 0.0,
805
+ num_layers: int = 1,
806
+ resnet_eps: float = 1e-6,
807
+ resnet_time_scale_shift: str = "default",
808
+ resnet_act_fn: str = "swish",
809
+ resnet_groups: int = 32,
810
+ resnet_pre_norm: bool = True,
811
+ output_scale_factor=1.0,
812
+ add_upsample=True,
813
+ use_inflated_groupnorm=False,
814
+ use_motion_module=None,
815
+ motion_module_type=None,
816
+ motion_module_kwargs=None,
817
+ ):
818
+ super().__init__()
819
+ resnets = []
820
+ motion_modules = []
821
+
822
+ for i in range(num_layers):
823
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
824
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
825
+
826
+ resnets.append(
827
+ ResnetBlock3D(
828
+ in_channels=resnet_in_channels + res_skip_channels,
829
+ out_channels=out_channels,
830
+ temb_channels=temb_channels,
831
+ eps=resnet_eps,
832
+ groups=resnet_groups,
833
+ dropout=dropout,
834
+ time_embedding_norm=resnet_time_scale_shift,
835
+ non_linearity=resnet_act_fn,
836
+ output_scale_factor=output_scale_factor,
837
+ pre_norm=resnet_pre_norm,
838
+ use_inflated_groupnorm=use_inflated_groupnorm,
839
+ )
840
+ )
841
+ motion_modules.append(
842
+ get_motion_module(
843
+ in_channels=out_channels,
844
+ motion_module_type=motion_module_type,
845
+ motion_module_kwargs=motion_module_kwargs,
846
+ )
847
+ if use_motion_module
848
+ else None
849
+ )
850
+
851
+ self.resnets = nn.ModuleList(resnets)
852
+ self.motion_modules = nn.ModuleList(motion_modules)
853
+
854
+ if add_upsample:
855
+ self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
856
+ else:
857
+ self.upsamplers = None
858
+
859
+ self.gradient_checkpointing = False
860
+
861
+ def forward(
862
+ self,
863
+ hidden_states,
864
+ res_hidden_states_tuple,
865
+ temb=None,
866
+ upsample_size=None,
867
+ encoder_hidden_states=None,
868
+ ):
869
+ for resnet, motion_module in zip(self.resnets, self.motion_modules):
870
+ # pop res hidden states
871
+ res_hidden_states = res_hidden_states_tuple[-1]
872
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
873
+ hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
874
+
875
+ if self.training and self.gradient_checkpointing:
876
+
877
+ def create_custom_forward(module):
878
+ def custom_forward(*inputs):
879
+ return module(*inputs)
880
+
881
+ return custom_forward
882
+
883
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
884
+ if motion_module is not None:
885
+ hidden_states = torch.utils.checkpoint.checkpoint(
886
+ create_custom_forward(motion_module),
887
+ hidden_states.requires_grad_(),
888
+ temb,
889
+ encoder_hidden_states,
890
+ )
891
+ else:
892
+ hidden_states = resnet(hidden_states, temb)
893
+ hidden_states = (
894
+ motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states)
895
+ if motion_module is not None
896
+ else hidden_states
897
+ )
898
+
899
+ if self.upsamplers is not None:
900
+ for upsampler in self.upsamplers:
901
+ hidden_states = upsampler(hidden_states, upsample_size)
902
+
903
+ return hidden_states