Spaces:
Running
on
Zero
Running
on
Zero
Andrzej Kryszpiniuk
commited on
Commit
·
25c6554
1
Parent(s):
7c1d300
Complete FaceLift deployment with all dependencies
Browse files- app.py +23 -3
- gradio_app.py +196 -112
app.py
CHANGED
|
@@ -1,5 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from gradio_app import create_demo
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
FaceLift + Gemini - HuggingFace Space Entry Point
|
| 3 |
+
This is the main file that HuggingFace Space will run.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
# Set OMP_NUM_THREADS to 1 to avoid libgomp crash in HF Spaces
|
| 8 |
+
os.environ["OMP_NUM_THREADS"] = "1"
|
| 9 |
+
|
| 10 |
+
import gradio as gr
|
| 11 |
from gradio_app import create_demo
|
| 12 |
|
| 13 |
+
# HuggingFace Spaces automatically provides GPU
|
| 14 |
+
# The app will use environment variables for API keys
|
| 15 |
+
|
| 16 |
+
if __name__ == "__main__":
|
| 17 |
+
# Create the Gradio interface
|
| 18 |
+
demo = create_demo()
|
| 19 |
+
|
| 20 |
+
# Launch with HuggingFace Space settings
|
| 21 |
+
demo.queue().launch(
|
| 22 |
+
server_name="0.0.0.0",
|
| 23 |
+
server_port=7860,
|
| 24 |
+
show_error=True
|
| 25 |
+
)
|
gradio_app.py
CHANGED
|
@@ -13,8 +13,8 @@
|
|
| 13 |
# limitations under the License.
|
| 14 |
|
| 15 |
"""
|
| 16 |
-
FaceLift: Single Image 3D Face Reconstruction
|
| 17 |
-
Generates 3D head models from single images using
|
| 18 |
"""
|
| 19 |
|
| 20 |
import json
|
|
@@ -30,45 +30,39 @@ from einops import rearrange
|
|
| 30 |
from PIL import Image
|
| 31 |
from huggingface_hub import snapshot_download
|
| 32 |
|
| 33 |
-
from gslrm.model.gaussians_renderer import render_turntable, imageseq2video
|
| 34 |
-
from mvdiffusion.pipelines.pipeline_mvdiffusion_unclip import StableUnCLIPImg2ImgPipeline
|
| 35 |
from utils_folder.face_utils import preprocess_image, preprocess_image_without_cropping
|
|
|
|
| 36 |
|
| 37 |
# HuggingFace repository configuration
|
| 38 |
HF_REPO_ID = "wlyu/OpenFaceLift"
|
| 39 |
|
| 40 |
def download_weights_from_hf() -> Path:
|
| 41 |
-
"""Download model weights from HuggingFace if not already present.
|
| 42 |
-
|
| 43 |
-
Returns:
|
| 44 |
-
Path to the downloaded repository
|
| 45 |
-
"""
|
| 46 |
workspace_dir = Path(__file__).parent
|
| 47 |
|
| 48 |
# Check if weights already exist locally
|
| 49 |
-
mvdiffusion_path = workspace_dir / "checkpoints/mvdiffusion/pipeckpts"
|
| 50 |
gslrm_path = workspace_dir / "checkpoints/gslrm/ckpt_0000000000021125.pt"
|
| 51 |
-
prompt_embeds_path = workspace_dir / "mvdiffusion/data/fixed_prompt_embeds_6view/clr_embeds.pt"
|
| 52 |
|
| 53 |
-
if
|
| 54 |
print("Using local model weights")
|
| 55 |
return workspace_dir
|
| 56 |
|
| 57 |
print(f"Downloading model weights from HuggingFace: {HF_REPO_ID}")
|
| 58 |
-
print("This may take a few minutes on first run...")
|
| 59 |
|
| 60 |
# Download to checkpoints directory
|
|
|
|
| 61 |
snapshot_download(
|
| 62 |
repo_id=HF_REPO_ID,
|
| 63 |
local_dir=str(workspace_dir / "checkpoints"),
|
| 64 |
local_dir_use_symlinks=False,
|
|
|
|
| 65 |
)
|
| 66 |
|
| 67 |
print("Model weights downloaded successfully!")
|
| 68 |
return workspace_dir
|
| 69 |
|
| 70 |
class FaceLiftPipeline:
|
| 71 |
-
"""Pipeline for FaceLift 3D head generation
|
| 72 |
|
| 73 |
def __init__(self):
|
| 74 |
# Download weights from HuggingFace if needed
|
|
@@ -76,23 +70,18 @@ class FaceLiftPipeline:
|
|
| 76 |
|
| 77 |
# Setup paths
|
| 78 |
self.output_dir = workspace_dir / "outputs"
|
| 79 |
-
self.examples_dir = workspace_dir / "examples"
|
| 80 |
self.output_dir.mkdir(exist_ok=True)
|
| 81 |
|
| 82 |
# Parameters
|
| 83 |
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 84 |
self.image_size = 512
|
| 85 |
-
self.camera_indices = [2, 1, 0, 5, 4, 3]
|
| 86 |
|
| 87 |
-
#
|
| 88 |
-
|
| 89 |
-
self.mvdiffusion_pipeline = StableUnCLIPImg2ImgPipeline.from_pretrained(
|
| 90 |
-
str(workspace_dir / "checkpoints/mvdiffusion/pipeckpts"),
|
| 91 |
-
torch_dtype=torch.float16,
|
| 92 |
-
)
|
| 93 |
-
self.mvdiffusion_pipeline.unet.enable_xformers_memory_efficient_attention()
|
| 94 |
-
self.mvdiffusion_pipeline.to(self.device)
|
| 95 |
|
|
|
|
|
|
|
| 96 |
with open(workspace_dir / "configs/gslrm.yaml", "r") as f:
|
| 97 |
config = edict(yaml.safe_load(f))
|
| 98 |
|
|
@@ -108,84 +97,191 @@ class FaceLiftPipeline:
|
|
| 108 |
self.gs_lrm_model.load_state_dict(checkpoint["model"])
|
| 109 |
self.gs_lrm_model.to(self.device)
|
| 110 |
|
| 111 |
-
self.color_prompt_embedding = torch.load(
|
| 112 |
-
workspace_dir / "mvdiffusion/data/fixed_prompt_embeds_6view/clr_embeds.pt",
|
| 113 |
-
map_location=self.device
|
| 114 |
-
)
|
| 115 |
-
|
| 116 |
with open(workspace_dir / "utils_folder/opencv_cameras.json", 'r') as f:
|
| 117 |
self.cameras_data = json.load(f)["frames"]
|
| 118 |
|
| 119 |
print("Models loaded successfully!")
|
| 120 |
|
| 121 |
-
def generate_3d_head(self, image_path,
|
| 122 |
random_seed=4, num_steps=50):
|
| 123 |
-
"""Generate 3D head from single image
|
| 124 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
# Setup output directory
|
| 126 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 127 |
output_dir = self.output_dir / timestamp
|
| 128 |
output_dir.mkdir(exist_ok=True)
|
| 129 |
|
| 130 |
-
#
|
| 131 |
-
original_img = Image.open(image_path)
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
selected_views = []
|
|
|
|
| 136 |
|
| 137 |
-
if
|
| 138 |
-
print("
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
# Try to resize if aspect ratio is correct
|
| 142 |
-
if abs(original_img.width / original_img.height - 6.0) < 0.1:
|
| 143 |
-
original_img = original_img.resize((self.image_size * 6, self.image_size), Image.LANCZOS)
|
| 144 |
-
else:
|
| 145 |
-
raise ValueError(f"Input must be 6x1 strip (e.g. 3072x512). Got {original_img.size}")
|
| 146 |
-
|
| 147 |
-
# Split views
|
| 148 |
for i in range(6):
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
else:
|
| 158 |
-
#
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
preprocess_image_without_cropping(input_image_arr)
|
| 162 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
if input_image.size != (self.image_size, self.image_size):
|
| 164 |
input_image = input_image.resize((self.image_size, self.image_size))
|
| 165 |
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
|
|
|
|
|
|
| 189 |
|
| 190 |
# Prepare 3D reconstruction input
|
| 191 |
view_arrays = [np.array(view) for view in selected_views]
|
|
@@ -241,58 +337,46 @@ class FaceLiftPipeline:
|
|
| 241 |
output_path = output_dir / "output.png"
|
| 242 |
Image.fromarray(comp_image).save(output_path)
|
| 243 |
|
| 244 |
-
|
| 245 |
-
turntable_frames = render_turntable(gaussians, rendering_resolution=self.image_size,
|
| 246 |
-
num_views=180)
|
| 247 |
-
turntable_frames = rearrange(turntable_frames, "h (v w) c -> v h w c", v=180)
|
| 248 |
-
turntable_frames = np.ascontiguousarray(turntable_frames)
|
| 249 |
-
|
| 250 |
-
turntable_path = output_dir / "turntable.mp4"
|
| 251 |
-
imageseq2video(turntable_frames, str(turntable_path), fps=30)
|
| 252 |
-
|
| 253 |
-
return str(input_path), str(multiview_path), str(output_path), \
|
| 254 |
-
str(turntable_path), str(ply_path)
|
| 255 |
|
| 256 |
except Exception as e:
|
| 257 |
raise gr.Error(f"Generation failed: {str(e)}")
|
| 258 |
|
| 259 |
|
| 260 |
-
def
|
| 261 |
-
"""
|
| 262 |
pipeline = FaceLiftPipeline()
|
| 263 |
|
| 264 |
-
# Load examples (Filtered for Single Image)
|
| 265 |
-
examples = []
|
| 266 |
-
if pipeline.examples_dir.exists():
|
| 267 |
-
examples = [[str(f)] for f in sorted(pipeline.examples_dir.iterdir())
|
| 268 |
-
if f.suffix.lower() in {'.png', '.jpg', '.jpeg'}]
|
| 269 |
-
|
| 270 |
-
# Create interface
|
| 271 |
demo = gr.Interface(
|
| 272 |
fn=pipeline.generate_3d_head,
|
| 273 |
-
title="FaceLift: Single Image 3D Face Reconstruction",
|
| 274 |
description="""
|
| 275 |
-
Transform a single portrait
|
| 276 |
""",
|
| 277 |
inputs=[
|
| 278 |
-
gr.Image(type="filepath", label="Input
|
| 279 |
-
gr.
|
| 280 |
-
gr.
|
| 281 |
-
gr.
|
| 282 |
-
gr.
|
| 283 |
-
gr.
|
|
|
|
| 284 |
],
|
| 285 |
outputs=[
|
| 286 |
gr.Image(label="Processed Input"),
|
| 287 |
gr.Image(label="Multi-view Generation"),
|
| 288 |
gr.Image(label="3D Reconstruction"),
|
| 289 |
-
gr.Video(label="Turntable Animation"),
|
| 290 |
gr.File(label="3D Model (.ply)"),
|
| 291 |
],
|
| 292 |
-
examples=examples,
|
| 293 |
allow_flagging="never",
|
| 294 |
)
|
| 295 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
demo.queue(max_size=10)
|
| 297 |
demo.launch(share=True, server_name="0.0.0.0", server_port=7860, show_error=True)
|
| 298 |
|
|
|
|
| 13 |
# limitations under the License.
|
| 14 |
|
| 15 |
"""
|
| 16 |
+
FaceLift: Single Image 3D Face Reconstruction (Gemini Edition)
|
| 17 |
+
Generates 3D head models from single images using Gemini 2.0 Flash and GS-LRM.
|
| 18 |
"""
|
| 19 |
|
| 20 |
import json
|
|
|
|
| 30 |
from PIL import Image
|
| 31 |
from huggingface_hub import snapshot_download
|
| 32 |
|
|
|
|
|
|
|
| 33 |
from utils_folder.face_utils import preprocess_image, preprocess_image_without_cropping
|
| 34 |
+
from gemini_generator import GeminiGenerator
|
| 35 |
|
| 36 |
# HuggingFace repository configuration
|
| 37 |
HF_REPO_ID = "wlyu/OpenFaceLift"
|
| 38 |
|
| 39 |
def download_weights_from_hf() -> Path:
|
| 40 |
+
"""Download model weights from HuggingFace if not already present."""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
workspace_dir = Path(__file__).parent
|
| 42 |
|
| 43 |
# Check if weights already exist locally
|
|
|
|
| 44 |
gslrm_path = workspace_dir / "checkpoints/gslrm/ckpt_0000000000021125.pt"
|
|
|
|
| 45 |
|
| 46 |
+
if gslrm_path.exists():
|
| 47 |
print("Using local model weights")
|
| 48 |
return workspace_dir
|
| 49 |
|
| 50 |
print(f"Downloading model weights from HuggingFace: {HF_REPO_ID}")
|
|
|
|
| 51 |
|
| 52 |
# Download to checkpoints directory
|
| 53 |
+
# Repo structure is 'gslrm/ckpt...', so we download to 'checkpoints' folder to get 'checkpoints/gslrm/ckpt...'
|
| 54 |
snapshot_download(
|
| 55 |
repo_id=HF_REPO_ID,
|
| 56 |
local_dir=str(workspace_dir / "checkpoints"),
|
| 57 |
local_dir_use_symlinks=False,
|
| 58 |
+
allow_patterns=["gslrm/*"] # Only download GS-LRM
|
| 59 |
)
|
| 60 |
|
| 61 |
print("Model weights downloaded successfully!")
|
| 62 |
return workspace_dir
|
| 63 |
|
| 64 |
class FaceLiftPipeline:
|
| 65 |
+
"""Pipeline for FaceLift 3D head generation (Gemini Only)."""
|
| 66 |
|
| 67 |
def __init__(self):
|
| 68 |
# Download weights from HuggingFace if needed
|
|
|
|
| 70 |
|
| 71 |
# Setup paths
|
| 72 |
self.output_dir = workspace_dir / "outputs"
|
|
|
|
| 73 |
self.output_dir.mkdir(exist_ok=True)
|
| 74 |
|
| 75 |
# Parameters
|
| 76 |
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 77 |
self.image_size = 512
|
| 78 |
+
self.camera_indices = [2, 1, 0, 5, 4, 3] # Front, Back, Left, Right, Top, Bottom
|
| 79 |
|
| 80 |
+
# Initialize Gemini Generator
|
| 81 |
+
self.gemini_generator = GeminiGenerator()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
+
# Load GS-LRM model (Reconstruction only)
|
| 84 |
+
print("Loading GS-LRM model...")
|
| 85 |
with open(workspace_dir / "configs/gslrm.yaml", "r") as f:
|
| 86 |
config = edict(yaml.safe_load(f))
|
| 87 |
|
|
|
|
| 97 |
self.gs_lrm_model.load_state_dict(checkpoint["model"])
|
| 98 |
self.gs_lrm_model.to(self.device)
|
| 99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
with open(workspace_dir / "utils_folder/opencv_cameras.json", 'r') as f:
|
| 101 |
self.cameras_data = json.load(f)["frames"]
|
| 102 |
|
| 103 |
print("Models loaded successfully!")
|
| 104 |
|
| 105 |
+
def generate_3d_head(self, image_path, api_key, model_type="Gemini", auto_crop=True, guidance_scale=3.0,
|
| 106 |
random_seed=4, num_steps=50):
|
| 107 |
+
"""Generate 3D head from single image."""
|
| 108 |
try:
|
| 109 |
+
# Update API Key if provided
|
| 110 |
+
if api_key:
|
| 111 |
+
self.gemini_generator.configure_key(api_key)
|
| 112 |
+
|
| 113 |
# Setup output directory
|
| 114 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 115 |
output_dir = self.output_dir / timestamp
|
| 116 |
output_dir.mkdir(exist_ok=True)
|
| 117 |
|
| 118 |
+
# Preprocess input
|
| 119 |
+
original_img = np.array(Image.open(image_path))
|
| 120 |
+
|
| 121 |
+
# Check for pre-generated multiview image (Grid or Strip) BEFORE cropping
|
| 122 |
+
h, w, _ = original_img.shape
|
| 123 |
+
aspect_ratio = w / h
|
| 124 |
+
|
| 125 |
+
print(f"[DEBUG] Image dimensions: {w}x{h}, Aspect ratio: {aspect_ratio:.3f}")
|
| 126 |
+
|
| 127 |
+
is_strip = 5.5 < aspect_ratio < 6.5
|
| 128 |
+
is_grid = 1.1 < aspect_ratio < 2.0 # Widened range to catch cropped/resized grids
|
| 129 |
+
|
| 130 |
+
print(f"[DEBUG] is_strip: {is_strip}, is_grid: {is_grid}")
|
| 131 |
+
|
| 132 |
+
|
| 133 |
selected_views = []
|
| 134 |
+
original_views = [] # Keep original aspect ratios for multiview composite
|
| 135 |
|
| 136 |
+
if is_strip:
|
| 137 |
+
print("Detected pre-generated multiview image (6x1). Skipping generation & cropping.")
|
| 138 |
+
input_image = Image.fromarray(original_img)
|
| 139 |
+
single_view_width = w // 6
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
for i in range(6):
|
| 141 |
+
left = i * single_view_width
|
| 142 |
+
right = (i + 1) * single_view_width
|
| 143 |
+
view = input_image.crop((left, 0, right, h))
|
| 144 |
+
|
| 145 |
+
# Pad to square (add white borders)
|
| 146 |
+
view_w, view_h = view.size
|
| 147 |
+
target_size = max(view_w, view_h)
|
| 148 |
+
|
| 149 |
+
# Create white canvas
|
| 150 |
+
view_square = Image.new('RGB', (target_size, target_size), (255, 255, 255))
|
| 151 |
+
# Paste view centered
|
| 152 |
+
paste_x = (target_size - view_w) // 2
|
| 153 |
+
paste_y = (target_size - view_h) // 2
|
| 154 |
+
view_square.paste(view, (paste_x, paste_y))
|
| 155 |
+
|
| 156 |
+
original_views.append(view_square.copy()) # Save square original
|
| 157 |
+
if view_square.size != (self.image_size, self.image_size):
|
| 158 |
+
view_square = view_square.resize((self.image_size, self.image_size))
|
| 159 |
+
selected_views.append(view_square)
|
| 160 |
+
|
| 161 |
+
elif is_grid:
|
| 162 |
+
# Grid layout detected - could be 3x2 or 2x3
|
| 163 |
+
# Determine which based on dimensions
|
| 164 |
+
if w > h:
|
| 165 |
+
# Landscape: 3x2 (3 columns, 2 rows)
|
| 166 |
+
print(f"Detected 3x2 grid layout. Aspect Ratio: {aspect_ratio}. Skipping generation & cropping.")
|
| 167 |
+
input_image = Image.fromarray(original_img)
|
| 168 |
+
single_view_width = w // 3
|
| 169 |
+
single_view_height = h // 2
|
| 170 |
+
|
| 171 |
+
# Row 1: Top 3 views
|
| 172 |
+
for i in range(3):
|
| 173 |
+
left = i * single_view_width
|
| 174 |
+
right = (i + 1) * single_view_width
|
| 175 |
+
view = input_image.crop((left, 0, right, single_view_height))
|
| 176 |
+
|
| 177 |
+
# Pad to square (add white borders)
|
| 178 |
+
view_w, view_h = view.size
|
| 179 |
+
target_size = max(view_w, view_h)
|
| 180 |
+
|
| 181 |
+
# Create white canvas
|
| 182 |
+
view_square = Image.new('RGB', (target_size, target_size), (255, 255, 255))
|
| 183 |
+
# Paste view centered
|
| 184 |
+
paste_x = (target_size - view_w) // 2
|
| 185 |
+
paste_y = (target_size - view_h) // 2
|
| 186 |
+
view_square.paste(view, (paste_x, paste_y))
|
| 187 |
+
|
| 188 |
+
original_views.append(view_square.copy()) # Save square original
|
| 189 |
+
if view_square.size != (self.image_size, self.image_size):
|
| 190 |
+
view_square = view_square.resize((self.image_size, self.image_size))
|
| 191 |
+
selected_views.append(view_square)
|
| 192 |
+
|
| 193 |
+
# Row 2: Bottom 3 views
|
| 194 |
+
for i in range(3):
|
| 195 |
+
left = i * single_view_width
|
| 196 |
+
right = (i + 1) * single_view_width
|
| 197 |
+
view = input_image.crop((left, single_view_height, right, h))
|
| 198 |
+
|
| 199 |
+
# Pad to square (add white borders)
|
| 200 |
+
view_w, view_h = view.size
|
| 201 |
+
target_size = max(view_w, view_h)
|
| 202 |
+
|
| 203 |
+
# Create white canvas
|
| 204 |
+
view_square = Image.new('RGB', (target_size, target_size), (255, 255, 255))
|
| 205 |
+
# Paste view centered
|
| 206 |
+
paste_x = (target_size - view_w) // 2
|
| 207 |
+
paste_y = (target_size - view_h) // 2
|
| 208 |
+
view_square.paste(view, (paste_x, paste_y))
|
| 209 |
+
|
| 210 |
+
original_views.append(view_square.copy()) # Save square original
|
| 211 |
+
if view_square.size != (self.image_size, self.image_size):
|
| 212 |
+
view_square = view_square.resize((self.image_size, self.image_size))
|
| 213 |
+
selected_views.append(view_square)
|
| 214 |
+
else:
|
| 215 |
+
# Portrait: 2x3 (2 columns, 3 rows)
|
| 216 |
+
print(f"Detected 2x3 grid layout. Aspect Ratio: {aspect_ratio}. Skipping generation & cropping.")
|
| 217 |
+
input_image = Image.fromarray(original_img)
|
| 218 |
+
single_view_width = w // 2
|
| 219 |
+
single_view_height = h // 3
|
| 220 |
+
|
| 221 |
+
# Process all 6 views row by row
|
| 222 |
+
for row in range(3):
|
| 223 |
+
for col in range(2):
|
| 224 |
+
left = col * single_view_width
|
| 225 |
+
right = (col + 1) * single_view_width
|
| 226 |
+
top = row * single_view_height
|
| 227 |
+
bottom = (row + 1) * single_view_height
|
| 228 |
+
view = input_image.crop((left, top, right, bottom))
|
| 229 |
+
|
| 230 |
+
# Pad to square (add white borders)
|
| 231 |
+
view_w, view_h = view.size
|
| 232 |
+
target_size = max(view_w, view_h)
|
| 233 |
+
|
| 234 |
+
# Create white canvas
|
| 235 |
+
view_square = Image.new('RGB', (target_size, target_size), (255, 255, 255))
|
| 236 |
+
# Paste view centered
|
| 237 |
+
paste_x = (target_size - view_w) // 2
|
| 238 |
+
paste_y = (target_size - view_h) // 2
|
| 239 |
+
view_square.paste(view, (paste_x, paste_y))
|
| 240 |
+
|
| 241 |
+
original_views.append(view_square.copy()) # Save original
|
| 242 |
+
if view_square.size != (self.image_size, self.image_size):
|
| 243 |
+
view_square = view_square.resize((self.image_size, self.image_size))
|
| 244 |
+
selected_views.append(view_square)
|
| 245 |
+
|
| 246 |
+
|
| 247 |
else:
|
| 248 |
+
# Normal flow: Preprocess -> Generate
|
| 249 |
+
input_image = preprocess_image(original_img) if auto_crop else \
|
| 250 |
+
preprocess_image_without_cropping(original_img)
|
|
|
|
| 251 |
|
| 252 |
+
# Gemini generation requires API key
|
| 253 |
+
if not api_key:
|
| 254 |
+
raise gr.Error("API Key is required for generating new views. Please provide a Gemini API Key or upload a pre-generated 2x3 or 6x1 grid image.")
|
| 255 |
+
|
| 256 |
+
print("Generating multi-view images with Gemini...")
|
| 257 |
if input_image.size != (self.image_size, self.image_size):
|
| 258 |
input_image = input_image.resize((self.image_size, self.image_size))
|
| 259 |
|
| 260 |
+
try:
|
| 261 |
+
selected_views = self.gemini_generator.generate_multiview(input_image)
|
| 262 |
+
original_views = [v.copy() for v in selected_views] # For Gemini, they're already square
|
| 263 |
+
except Exception as e:
|
| 264 |
+
raise gr.Error(f"Gemini generation failed: {str(e)}. Try uploading a pre-generated 2x3 grid instead.")
|
| 265 |
+
|
| 266 |
+
# Save processed input (for reference)
|
| 267 |
+
input_path = output_dir / "input.png"
|
| 268 |
+
input_image.save(input_path)
|
| 269 |
+
|
| 270 |
+
# Save multi-view composite (preserve original aspect ratios)
|
| 271 |
+
# Use original_views instead of selected_views
|
| 272 |
+
max_height = max(view.size[1] for view in original_views)
|
| 273 |
+
total_width = sum(view.size[0] for view in original_views)
|
| 274 |
+
|
| 275 |
+
multiview_image = Image.new("RGB", (total_width, max_height), (255, 255, 255))
|
| 276 |
+
x_offset = 0
|
| 277 |
+
for view in original_views:
|
| 278 |
+
# Center vertically if view is shorter than max_height
|
| 279 |
+
y_offset = (max_height - view.size[1]) // 2
|
| 280 |
+
multiview_image.paste(view, (x_offset, y_offset))
|
| 281 |
+
x_offset += view.size[0]
|
| 282 |
+
|
| 283 |
+
multiview_path = output_dir / "multiview.png"
|
| 284 |
+
multiview_image.save(multiview_path)
|
| 285 |
|
| 286 |
# Prepare 3D reconstruction input
|
| 287 |
view_arrays = [np.array(view) for view in selected_views]
|
|
|
|
| 337 |
output_path = output_dir / "output.png"
|
| 338 |
Image.fromarray(comp_image).save(output_path)
|
| 339 |
|
| 340 |
+
return str(input_path), str(multiview_path), str(output_path), str(ply_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 341 |
|
| 342 |
except Exception as e:
|
| 343 |
raise gr.Error(f"Generation failed: {str(e)}")
|
| 344 |
|
| 345 |
|
| 346 |
+
def create_demo():
|
| 347 |
+
"""Create and return the Gradio demo interface."""
|
| 348 |
pipeline = FaceLiftPipeline()
|
| 349 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 350 |
demo = gr.Interface(
|
| 351 |
fn=pipeline.generate_3d_head,
|
| 352 |
+
title="FaceLift: Single Image 3D Face Reconstruction (Gemini)",
|
| 353 |
description="""
|
| 354 |
+
Transform a single portrait into a complete 3D head model using Gemini 2.0 Flash and GS-LRM.
|
| 355 |
""",
|
| 356 |
inputs=[
|
| 357 |
+
gr.Image(type="filepath", label="Input Portrait Image"),
|
| 358 |
+
gr.Textbox(label="API Key (Gemini)", type="password", placeholder="Optional - only needed if generating new views", value=""),
|
| 359 |
+
gr.Dropdown(choices=["Gemini"], value="Gemini", label="Generation Model", visible=False),
|
| 360 |
+
gr.Checkbox(value=True, label="Auto Cropping"),
|
| 361 |
+
gr.Slider(1.0, 10.0, 3.0, step=0.1, label="Guidance Scale (Unused)"),
|
| 362 |
+
gr.Number(value=4, label="Random Seed (Unused)"),
|
| 363 |
+
gr.Slider(10, 100, 50, step=5, label="Generation Steps (Unused)"),
|
| 364 |
],
|
| 365 |
outputs=[
|
| 366 |
gr.Image(label="Processed Input"),
|
| 367 |
gr.Image(label="Multi-view Generation"),
|
| 368 |
gr.Image(label="3D Reconstruction"),
|
|
|
|
| 369 |
gr.File(label="3D Model (.ply)"),
|
| 370 |
],
|
|
|
|
| 371 |
allow_flagging="never",
|
| 372 |
)
|
| 373 |
|
| 374 |
+
return demo
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
def main():
|
| 378 |
+
"""Main function for local development."""
|
| 379 |
+
demo = create_demo()
|
| 380 |
demo.queue(max_size=10)
|
| 381 |
demo.launch(share=True, server_name="0.0.0.0", server_port=7860, show_error=True)
|
| 382 |
|