Spaces:
Running
Running
File size: 1,742 Bytes
a47545a 8066ccb 0bbf454 f6648b0 8cd7201 a47545a 8cd7201 126e9e4 0bbf454 a47545a 126e9e4 0bbf454 f6648b0 8066ccb 0bbf454 f6648b0 4ab2b56 f73f222 a47545a 0bbf454 f6648b0 609217a f73f222 28a782e 0bbf454 c8871ab 27e4dfd c8871ab 0bbf454 f6648b0 0bbf454 f6648b0 0bbf454 f6648b0 0bbf454 daa972d c8871ab 0bbf454 f6648b0 a47545a 81212b1 0bbf454 b636490 49fbcb5 126e9e4 0bbf454 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
FROM python:3.11-slim
# Install required system dependencies
RUN apt-get update && apt-get install -y \
git curl build-essential cmake \
&& rm -rf /var/lib/apt/lists/*
# Set working directory
WORKDIR /app
# Create writable directories
RUN mkdir -p /app/.cache /app/vector_database && chmod -R 777 /app
# Set environment variables
ENV TRANSFORMERS_CACHE=/app/.cache \
HF_HOME=/app/.cache \
CHROMADB_DISABLE_TELEMETRY=true
# Install dependencies from requirements.txt first
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
# Install nltk and download punkt tokenizer once during build
RUN python -m nltk.downloader punkt punkt_tab
# β
STEP 1: Copy the source data and the Python script into the image
COPY ./combined_context.jsonl .
COPY ./create_granular_chunks.py .
# β
STEP 2: Run the script to generate the chunks file inside the image
RUN python create_granular_chunks.py
# β
STEP 3: The 'granular_chunks_improved.jsonl' now exists inside the image.
# We no longer need to copy it from our local machine.
# Note: As recommended before, 'llama-cpp-python' should be removed from requirements.txt
# to rely on the more stable, version-pinned installation below.
RUN pip install --no-cache-dir llama-cpp-python==0.2.61
# Copy the rest of the application code
COPY ./app ./app
# Download your fine-tuned TinyLlama GGUF model
RUN curl -fL -o /app/tinyllama_dop_q4_k_m.gguf \
https://huggingface.co/Kalpokoch/FinetunedQuantizedTinyLama/resolve/main/tinyllama_dop_q4_k_m.gguf \
&& echo "β
TinyLlama model downloaded."
# Expose the application port
EXPOSE 7860
# Run the FastAPI application
CMD ["uvicorn", "app.app:app", "--host", "0.0.0.0", "--port", "7860"]
|