Commit
·
c1f8ab9
1
Parent(s):
ca88810
api update
Browse files
app.py
CHANGED
|
@@ -12,8 +12,9 @@ import time
|
|
| 12 |
from enum import Enum
|
| 13 |
import gradio as gr
|
| 14 |
from huggingface_hub import InferenceClient
|
|
|
|
| 15 |
|
| 16 |
-
# Environment variables
|
| 17 |
HF_TOKEN = os.getenv("HF_TOKEN") # Required for Llama model access
|
| 18 |
MODEL_NAME = "meta-llama/Llama-3.1-8B-Instruct"
|
| 19 |
MAX_PROMPT_LENGTH = int(os.getenv("MAX_PROMPT_LENGTH", "2000"))
|
|
@@ -21,7 +22,7 @@ RECOMMENDATION_TIMEOUT = int(os.getenv("RECOMMENDATION_TIMEOUT", "60"))
|
|
| 21 |
MAX_RETRIES = int(os.getenv("MAX_RETRIES", "2"))
|
| 22 |
ENABLE_CACHING = os.getenv("ENABLE_CACHING", "true").lower() == "true"
|
| 23 |
|
| 24 |
-
# Logging setup
|
| 25 |
logging.basicConfig(
|
| 26 |
level=logging.INFO,
|
| 27 |
format='%(asctime)s [%(levelname)s] %(name)s: %(message)s',
|
|
@@ -29,7 +30,7 @@ logging.basicConfig(
|
|
| 29 |
)
|
| 30 |
logger = logging.getLogger("hindi_emotion_recommendation")
|
| 31 |
|
| 32 |
-
# Initialize HuggingFace Inference Client
|
| 33 |
try:
|
| 34 |
client = InferenceClient(token=HF_TOKEN)
|
| 35 |
logger.info(f"✓ HuggingFace client initialized with model: {MODEL_NAME}")
|
|
@@ -37,11 +38,24 @@ except Exception as e:
|
|
| 37 |
logger.error(f"Failed to initialize HuggingFace client: {str(e)}")
|
| 38 |
client = None
|
| 39 |
|
| 40 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
recommendation_cache = {}
|
| 42 |
CACHE_TTL_SECONDS = 3600
|
| 43 |
|
| 44 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
class ValidationStatus(str, Enum):
|
| 46 |
VALID = "valid"
|
| 47 |
WARNING = "warning"
|
|
@@ -162,6 +176,7 @@ class ResponseValidator:
|
|
| 162 |
|
| 163 |
return recommendation
|
| 164 |
|
|
|
|
| 165 |
def get_cache_key(emotion_result: dict) -> str:
|
| 166 |
"""Generate cache key from emotion result"""
|
| 167 |
cache_data = {
|
|
@@ -190,6 +205,7 @@ def save_to_cache(cache_key: str, data: Dict[str, Any]):
|
|
| 190 |
if ENABLE_CACHING:
|
| 191 |
recommendation_cache[cache_key] = (data, time.time())
|
| 192 |
|
|
|
|
| 193 |
@lru_cache(maxsize=1)
|
| 194 |
def load_few_shot_examples() -> str:
|
| 195 |
"""Load few-shot examples"""
|
|
@@ -345,6 +361,15 @@ def get_fallback_recommendation(emotion_result: dict) -> str:
|
|
| 345 |
|
| 346 |
return "यदि आपको सहायता चाहिए तो किसी विश्वसनीय व्यक्ति से संपर्क करें। आपकी भावनाएं महत्वपूर्ण हैं।"
|
| 347 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 348 |
def process_emotion_analysis(
|
| 349 |
transcript: str,
|
| 350 |
sentiment: str,
|
|
@@ -355,7 +380,7 @@ def process_emotion_analysis(
|
|
| 355 |
is_mental_health: bool,
|
| 356 |
is_grief_loss: bool,
|
| 357 |
is_relationship: bool
|
| 358 |
-
) -> Tuple[str, str, str, str, str]:
|
| 359 |
"""Process emotion analysis and generate recommendation"""
|
| 360 |
|
| 361 |
start_time = time.time()
|
|
@@ -377,7 +402,7 @@ def process_emotion_analysis(
|
|
| 377 |
'is_relationship_distress': is_relationship
|
| 378 |
}
|
| 379 |
},
|
| 380 |
-
'prosodic_features': {}
|
| 381 |
}
|
| 382 |
|
| 383 |
# Check cache
|
|
@@ -392,6 +417,7 @@ def process_emotion_analysis(
|
|
| 392 |
cached = True
|
| 393 |
else:
|
| 394 |
# Generate new recommendation
|
|
|
|
| 395 |
action = get_llama_recommendation(emotion_result)
|
| 396 |
|
| 397 |
# Validate the recommendation
|
|
@@ -407,6 +433,7 @@ def process_emotion_analysis(
|
|
| 407 |
if action != original_action:
|
| 408 |
enhanced = True
|
| 409 |
logger.info("Recommendation auto-enhanced")
|
|
|
|
| 410 |
validation_result = ResponseValidator.validate_recommendation(action, emotion_result)
|
| 411 |
|
| 412 |
# Cache the result
|
|
@@ -441,12 +468,95 @@ def process_emotion_analysis(
|
|
| 441 |
**Processing Time:** {processing_time}ms
|
| 442 |
**Cached:** {'Yes ♻️' if cached else 'No 🆕'}
|
| 443 |
**Enhanced:** {'Yes 🔧' if enhanced else 'No'}
|
| 444 |
-
**Confidence:** {confidence:.2%}
|
| 445 |
"""
|
| 446 |
|
| 447 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 448 |
|
| 449 |
-
# Gradio Interface
|
| 450 |
def create_interface():
|
| 451 |
"""Create Gradio interface"""
|
| 452 |
|
|
@@ -461,58 +571,33 @@ def create_interface():
|
|
| 461 |
AI-powered emotional analysis and action recommendations for Indian women's support.
|
| 462 |
Powered by **Meta Llama 3.1 8B Instruct** with intelligent validation and enhancement.
|
| 463 |
|
| 464 |
-
|
| 465 |
-
- 🚨 **Emergency/Police:** 112
|
| 466 |
-
- 👩 **Women's Helpline:** 181, 1091
|
| 467 |
-
- 🧠 **Mental Health:** 9152987821 (Vandrevala), 08046110007 (NIMHANS)
|
| 468 |
-
- 💙 **Suicide Prevention:** 9820466726 (AASRA)
|
| 469 |
""")
|
| 470 |
|
| 471 |
with gr.Row():
|
| 472 |
with gr.Column(scale=1):
|
| 473 |
-
gr.Markdown("###
|
| 474 |
-
|
| 475 |
-
transcript = gr.Textbox(
|
| 476 |
-
label="Transcript (Hindi/English)",
|
| 477 |
-
placeholder="मुझे बहुत डर लग रहा है...",
|
| 478 |
-
lines=3
|
| 479 |
-
)
|
| 480 |
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
|
|
|
| 485 |
)
|
| 486 |
|
| 487 |
-
|
| 488 |
-
primary_emotion = gr.Dropdown(
|
| 489 |
-
label="Primary Emotion",
|
| 490 |
-
choices=["fear", "sadness", "anger", "joy", "surprise", "disgust", "neutral", "despair", "anxiety"],
|
| 491 |
-
value="sadness"
|
| 492 |
-
)
|
| 493 |
-
|
| 494 |
-
secondary_emotion = gr.Dropdown(
|
| 495 |
-
label="Secondary Emotion",
|
| 496 |
-
choices=["", "distress", "frustration", "hopelessness", "worry", "relief"],
|
| 497 |
-
value=""
|
| 498 |
-
)
|
| 499 |
-
|
| 500 |
-
confidence = gr.Slider(
|
| 501 |
-
label="Confidence Score",
|
| 502 |
-
minimum=0.0,
|
| 503 |
-
maximum=1.0,
|
| 504 |
-
value=0.8,
|
| 505 |
-
step=0.05
|
| 506 |
-
)
|
| 507 |
-
|
| 508 |
-
gr.Markdown("### 🎯 Situation Flags")
|
| 509 |
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 514 |
|
| 515 |
-
|
|
|
|
| 516 |
|
| 517 |
with gr.Column(scale=1):
|
| 518 |
gr.Markdown("### 💡 Recommendation Output")
|
|
@@ -535,54 +620,42 @@ def create_interface():
|
|
| 535 |
metadata = gr.Markdown(
|
| 536 |
label="Metadata"
|
| 537 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 538 |
|
| 539 |
-
#
|
| 540 |
-
gr.Markdown("### 📚 Example Inputs")
|
| 541 |
-
gr.Examples(
|
| 542 |
-
examples=[
|
| 543 |
-
["मुझे बचाओ! कोई मुझे मार रहा है।", "Negative", "fear", "distress", 0.95, True, False, False, False],
|
| 544 |
-
["मैं बहुत अकेला और उदास महसूस कर रहा हूँ।", "Negative", "sadness", "neutral", 0.78, False, True, False, False],
|
| 545 |
-
["मेरी पत्नी ने मुझे छोड़ दिया है।", "Negative", "sadness", "distress", 0.82, False, False, False, True],
|
| 546 |
-
["मैं अपने जीवन को खत्म करना चाहती हूं।", "Negative", "despair", "hopelessness", 0.92, True, True, False, False],
|
| 547 |
-
["आज मौसम बहुत अच्छा है।", "Positive", "joy", "", 0.85, False, False, False, False],
|
| 548 |
-
],
|
| 549 |
-
inputs=[transcript, sentiment, primary_emotion, secondary_emotion, confidence, is_crisis, is_mental_health, is_grief_loss, is_relationship],
|
| 550 |
-
)
|
| 551 |
-
|
| 552 |
-
# Connect button
|
| 553 |
submit_btn.click(
|
| 554 |
-
fn=
|
| 555 |
-
inputs=[
|
| 556 |
-
|
| 557 |
-
confidence, is_crisis, is_mental_health, is_grief_loss, is_relationship
|
| 558 |
-
],
|
| 559 |
-
outputs=[recommendation, risk_level, validation, metadata]
|
| 560 |
)
|
| 561 |
|
|
|
|
| 562 |
gr.Markdown("""
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
- **Meta Llama 3.1 8B Instruct** for generating empathetic recommendations
|
| 568 |
-
- **Multi-criteria validation** to ensure quality and safety
|
| 569 |
-
- **Auto-enhancement** to add missing critical information
|
| 570 |
-
- **Caching** for faster repeated queries
|
| 571 |
-
|
| 572 |
-
**Note:** This is an AI assistant. In emergencies, always call emergency services immediately.
|
| 573 |
""")
|
| 574 |
|
| 575 |
return demo
|
| 576 |
|
| 577 |
-
# Launch the app
|
| 578 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 579 |
logger.info("Starting Gradio interface...")
|
| 580 |
-
logger.info(f"Model: {MODEL_NAME}")
|
| 581 |
-
logger.info(f"HF Token Available: {'Yes' if HF_TOKEN else 'No'}")
|
| 582 |
|
| 583 |
demo = create_interface()
|
| 584 |
demo.launch(
|
| 585 |
server_name="0.0.0.0",
|
| 586 |
server_port=7860,
|
| 587 |
-
share=False
|
| 588 |
)
|
|
|
|
| 12 |
from enum import Enum
|
| 13 |
import gradio as gr
|
| 14 |
from huggingface_hub import InferenceClient
|
| 15 |
+
from gradio_client import Client, handle_file # <-- REQUIRED IMPORT
|
| 16 |
|
| 17 |
+
# --- Environment variables ---
|
| 18 |
HF_TOKEN = os.getenv("HF_TOKEN") # Required for Llama model access
|
| 19 |
MODEL_NAME = "meta-llama/Llama-3.1-8B-Instruct"
|
| 20 |
MAX_PROMPT_LENGTH = int(os.getenv("MAX_PROMPT_LENGTH", "2000"))
|
|
|
|
| 22 |
MAX_RETRIES = int(os.getenv("MAX_RETRIES", "2"))
|
| 23 |
ENABLE_CACHING = os.getenv("ENABLE_CACHING", "true").lower() == "true"
|
| 24 |
|
| 25 |
+
# --- Logging setup ---
|
| 26 |
logging.basicConfig(
|
| 27 |
level=logging.INFO,
|
| 28 |
format='%(asctime)s [%(levelname)s] %(name)s: %(message)s',
|
|
|
|
| 30 |
)
|
| 31 |
logger = logging.getLogger("hindi_emotion_recommendation")
|
| 32 |
|
| 33 |
+
# --- Initialize HuggingFace Inference Client (for Llama 3.1) ---
|
| 34 |
try:
|
| 35 |
client = InferenceClient(token=HF_TOKEN)
|
| 36 |
logger.info(f"✓ HuggingFace client initialized with model: {MODEL_NAME}")
|
|
|
|
| 38 |
logger.error(f"Failed to initialize HuggingFace client: {str(e)}")
|
| 39 |
client = None
|
| 40 |
|
| 41 |
+
# --- Initialize Audio Analysis Client (for your Emotion API) ---
|
| 42 |
+
# This client points to your *other* Hugging Face Space
|
| 43 |
+
try:
|
| 44 |
+
audio_analysis_client = Client("JustNikunj/Sentimental_Analysis")
|
| 45 |
+
logger.info("✓ Audio Analysis API client initialized for 'JustNikunj/Sentimental_Analysis'")
|
| 46 |
+
except Exception as e:
|
| 47 |
+
logger.error(f"Failed to initialize Audio Analysis API client: {str(e)}")
|
| 48 |
+
audio_analysis_client = None
|
| 49 |
+
|
| 50 |
+
# --- Cache for recommendations ---
|
| 51 |
recommendation_cache = {}
|
| 52 |
CACHE_TTL_SECONDS = 3600
|
| 53 |
|
| 54 |
+
# =========================================================================
|
| 55 |
+
# === START: ORIGINAL HELPER FUNCTIONS (FROM YOUR MAIN CODE) ===
|
| 56 |
+
# =========================================================================
|
| 57 |
+
|
| 58 |
+
# --- Response validation enums ---
|
| 59 |
class ValidationStatus(str, Enum):
|
| 60 |
VALID = "valid"
|
| 61 |
WARNING = "warning"
|
|
|
|
| 176 |
|
| 177 |
return recommendation
|
| 178 |
|
| 179 |
+
# --- Caching functions ---
|
| 180 |
def get_cache_key(emotion_result: dict) -> str:
|
| 181 |
"""Generate cache key from emotion result"""
|
| 182 |
cache_data = {
|
|
|
|
| 205 |
if ENABLE_CACHING:
|
| 206 |
recommendation_cache[cache_key] = (data, time.time())
|
| 207 |
|
| 208 |
+
# --- LLM Prompting functions ---
|
| 209 |
@lru_cache(maxsize=1)
|
| 210 |
def load_few_shot_examples() -> str:
|
| 211 |
"""Load few-shot examples"""
|
|
|
|
| 361 |
|
| 362 |
return "यदि आपको सहायता चाहिए तो किसी विश्वसनीय व्यक्ति से संपर्क करें। आपकी भावनाएं महत्वपूर्ण हैं।"
|
| 363 |
|
| 364 |
+
# =========================================================================
|
| 365 |
+
# === END: ORIGINAL HELPER FUNCTIONS ===
|
| 366 |
+
# =========================================================================
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
# --- CORE LOGIC: Function to process emotion data and get LLM response ---
|
| 370 |
+
# This is your original 'process_emotion_analysis' function.
|
| 371 |
+
# It is now called by the new 'get_recommendation_from_audio' function.
|
| 372 |
+
|
| 373 |
def process_emotion_analysis(
|
| 374 |
transcript: str,
|
| 375 |
sentiment: str,
|
|
|
|
| 380 |
is_mental_health: bool,
|
| 381 |
is_grief_loss: bool,
|
| 382 |
is_relationship: bool
|
| 383 |
+
) -> Tuple[str, str, str, str, str]: # Returns 5 values for the 5 Gradio outputs
|
| 384 |
"""Process emotion analysis and generate recommendation"""
|
| 385 |
|
| 386 |
start_time = time.time()
|
|
|
|
| 402 |
'is_relationship_distress': is_relationship
|
| 403 |
}
|
| 404 |
},
|
| 405 |
+
'prosodic_features': {} # Prosodic features are not used in the prompt
|
| 406 |
}
|
| 407 |
|
| 408 |
# Check cache
|
|
|
|
| 417 |
cached = True
|
| 418 |
else:
|
| 419 |
# Generate new recommendation
|
| 420 |
+
logger.info("Generating new LLM recommendation...")
|
| 421 |
action = get_llama_recommendation(emotion_result)
|
| 422 |
|
| 423 |
# Validate the recommendation
|
|
|
|
| 433 |
if action != original_action:
|
| 434 |
enhanced = True
|
| 435 |
logger.info("Recommendation auto-enhanced")
|
| 436 |
+
# Re-validate after enhancement
|
| 437 |
validation_result = ResponseValidator.validate_recommendation(action, emotion_result)
|
| 438 |
|
| 439 |
# Cache the result
|
|
|
|
| 468 |
**Processing Time:** {processing_time}ms
|
| 469 |
**Cached:** {'Yes ♻️' if cached else 'No 🆕'}
|
| 470 |
**Enhanced:** {'Yes 🔧' if enhanced else 'No'}
|
|
|
|
| 471 |
"""
|
| 472 |
|
| 473 |
+
# This string will show the raw API data in the UI
|
| 474 |
+
api_debug_info = f"""
|
| 475 |
+
**Transcript:** {transcript}
|
| 476 |
+
**Emotion:** {primary_emotion} (Conf: {confidence:.1%})
|
| 477 |
+
**Sentiment:** {sentiment}
|
| 478 |
+
**Crisis:** {is_crisis}
|
| 479 |
+
**Mental Health:** {is_mental_health}
|
| 480 |
+
"""
|
| 481 |
+
|
| 482 |
+
# Return 5 values to match the Gradio output components
|
| 483 |
+
return action, risk_level, validation_info, metadata, api_debug_info
|
| 484 |
+
|
| 485 |
+
|
| 486 |
+
# --- NEW: MASTER FUNCTION TO CONNECT API AND LLM ---
|
| 487 |
+
def get_recommendation_from_audio(audio_filepath: str) -> Tuple[str, str, str, str, str]:
|
| 488 |
+
"""
|
| 489 |
+
This is the new master function for the Gradio interface.
|
| 490 |
+
1. Takes audio input from Gradio.
|
| 491 |
+
2. Calls the 'JustNikunj/Sentimental_Analysis' API.
|
| 492 |
+
3. Parses the result.
|
| 493 |
+
4. Calls 'process_emotion_analysis' to get the LLM recommendation.
|
| 494 |
+
"""
|
| 495 |
+
if not audio_analysis_client:
|
| 496 |
+
error_msg = "Audio Analysis API client ('JustNikunj/Sentimental_Analysis') is not initialized."
|
| 497 |
+
logger.error(error_msg)
|
| 498 |
+
return "Error: " + error_msg, "🔴 ERROR", error_msg, "", ""
|
| 499 |
+
|
| 500 |
+
if not audio_filepath:
|
| 501 |
+
logger.warning("No audio file provided.")
|
| 502 |
+
return "No audio provided. Please record or upload.", "⚪️ N/A", "No input", "", ""
|
| 503 |
+
|
| 504 |
+
logger.info(f"Processing audio file: {audio_filepath}")
|
| 505 |
+
|
| 506 |
+
try:
|
| 507 |
+
# --- STEP 1: Call Audio Analysis API ---
|
| 508 |
+
logger.info("Calling audio analysis API...")
|
| 509 |
+
api_result = audio_analysis_client.predict(
|
| 510 |
+
audio_filepath=handle_file(audio_filepath),
|
| 511 |
+
api_name="/predict"
|
| 512 |
+
)
|
| 513 |
+
logger.info("✓ Audio analysis complete.")
|
| 514 |
+
|
| 515 |
+
# --- STEP 2: Check for API errors ---
|
| 516 |
+
if not isinstance(api_result, dict) or api_result.get('status') != 'success':
|
| 517 |
+
error_msg = api_result.get('message', 'Unknown API error')
|
| 518 |
+
logger.error(f"Audio API failed: {error_msg}")
|
| 519 |
+
# Show the raw error in the "API Debug" box
|
| 520 |
+
return f"Error from Audio API: {error_msg}", "🔴 ERROR", error_msg, "", json.dumps(api_result, indent=2, ensure_ascii=False)
|
| 521 |
+
|
| 522 |
+
# --- STEP 3: Parse the successful API result ---
|
| 523 |
+
transcript = api_result['transcription']
|
| 524 |
+
sentiment = api_result['sentiment']['dominant']
|
| 525 |
+
primary_emotion = api_result['emotion']['primary']
|
| 526 |
+
secondary_emotion = api_result['emotion'].get('secondary')
|
| 527 |
+
confidence = float(api_result['emotion']['confidence'])
|
| 528 |
+
|
| 529 |
+
situations = api_result['analysis']['situations']
|
| 530 |
+
is_crisis = situations['is_crisis']
|
| 531 |
+
is_mental_health = situations['is_mental_health_distress']
|
| 532 |
+
is_grief_loss = situations['is_grief_loss']
|
| 533 |
+
is_relationship = situations['is_relationship_distress']
|
| 534 |
+
|
| 535 |
+
logger.info(f"✓ API Success. Transcript: '{transcript}', Emotion: {primary_emotion}")
|
| 536 |
+
|
| 537 |
+
# --- STEP 4: Call the LLM Recommendation Logic ---
|
| 538 |
+
# This calls your original function with the data we just got
|
| 539 |
+
return process_emotion_analysis(
|
| 540 |
+
transcript=transcript,
|
| 541 |
+
sentiment=sentiment,
|
| 542 |
+
primary_emotion=primary_emotion,
|
| 543 |
+
secondary_emotion=secondary_emotion,
|
| 544 |
+
confidence=confidence,
|
| 545 |
+
is_crisis=is_crisis,
|
| 546 |
+
is_mental_health=is_mental_health,
|
| 547 |
+
is_grief_loss=is_grief_loss,
|
| 548 |
+
is_relationship=is_relationship
|
| 549 |
+
)
|
| 550 |
+
|
| 551 |
+
except Exception as e:
|
| 552 |
+
logger.error(f"Error in 'get_recommendation_from_audio': {str(e)}")
|
| 553 |
+
import traceback
|
| 554 |
+
tb_str = traceback.format_exc()
|
| 555 |
+
logger.error(tb_str)
|
| 556 |
+
return f"A system error occurred: {str(e)}", "🔴 ERROR", str(e), "", tb_str
|
| 557 |
+
|
| 558 |
|
| 559 |
+
# --- MODIFIED: Gradio Interface ---
|
| 560 |
def create_interface():
|
| 561 |
"""Create Gradio interface"""
|
| 562 |
|
|
|
|
| 571 |
AI-powered emotional analysis and action recommendations for Indian women's support.
|
| 572 |
Powered by **Meta Llama 3.1 8B Instruct** with intelligent validation and enhancement.
|
| 573 |
|
| 574 |
+
This app **calls the 'JustNikunj/Sentimental_Analysis' API** to get emotion data from your audio.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 575 |
""")
|
| 576 |
|
| 577 |
with gr.Row():
|
| 578 |
with gr.Column(scale=1):
|
| 579 |
+
gr.Markdown("### 🎙️ Input Audio")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 580 |
|
| 581 |
+
# --- THIS IS THE NEW INPUT ---
|
| 582 |
+
audio_input = gr.Audio(
|
| 583 |
+
label="Record or Upload Audio",
|
| 584 |
+
sources=["microphone", "upload"],
|
| 585 |
+
type="filepath" # Send the file path to the function
|
| 586 |
)
|
| 587 |
|
| 588 |
+
submit_btn = gr.Button("Generate Recommendation 🚀", variant="primary", size="lg")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 589 |
|
| 590 |
+
gr.Markdown("### ℹ️ About This App")
|
| 591 |
+
gr.Markdown("""
|
| 592 |
+
This system uses:
|
| 593 |
+
- **'JustNikunj/Sentimental_Analysis'** for audio-to-emotion analysis.
|
| 594 |
+
- **Meta Llama 3.1 8B Instruct** for generating empathetic recommendations.
|
| 595 |
+
- **Multi-criteria validation** to ensure quality and safety.
|
| 596 |
+
- **Auto-enhancement** to add missing critical information.
|
| 597 |
+
- **Caching** for faster repeated queries.
|
| 598 |
|
| 599 |
+
**Note:** This is an AI assistant. In emergencies, always call emergency services immediately.
|
| 600 |
+
""")
|
| 601 |
|
| 602 |
with gr.Column(scale=1):
|
| 603 |
gr.Markdown("### 💡 Recommendation Output")
|
|
|
|
| 620 |
metadata = gr.Markdown(
|
| 621 |
label="Metadata"
|
| 622 |
)
|
| 623 |
+
|
| 624 |
+
# Added an output to show the data from the audio API
|
| 625 |
+
api_debug = gr.Markdown(
|
| 626 |
+
label="Raw Analysis from Audio API"
|
| 627 |
+
)
|
| 628 |
|
| 629 |
+
# Connect button to the new master function
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 630 |
submit_btn.click(
|
| 631 |
+
fn=get_recommendation_from_audio, # <--- NEW FUNCTION
|
| 632 |
+
inputs=[audio_input], # <--- NEW INPUT
|
| 633 |
+
outputs=[recommendation, risk_level, validation, metadata, api_debug] # <--- 5 OUTPUTS
|
|
|
|
|
|
|
|
|
|
| 634 |
)
|
| 635 |
|
| 636 |
+
gr.Markdown("### Important Helplines")
|
| 637 |
gr.Markdown("""
|
| 638 |
+
- 🚨 **Emergency/Police:** 112
|
| 639 |
+
- 👩 **Women's Helpline:** 181, 1091
|
| 640 |
+
- 🧠 **Mental Health:** 9152987821 (Vandrevala), 08046110007 (NIMHANS)
|
| 641 |
+
- 💙 **Suicide Prevention:** 9820466726 (AASRA)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 642 |
""")
|
| 643 |
|
| 644 |
return demo
|
| 645 |
|
| 646 |
+
# --- Launch the app ---
|
| 647 |
if __name__ == "__main__":
|
| 648 |
+
if not HF_TOKEN:
|
| 649 |
+
logger.warning("HF_TOKEN environment variable is not set. Llama 3.1 calls may fail.")
|
| 650 |
+
if not audio_analysis_client:
|
| 651 |
+
logger.warning("Could not connect to 'JustNikunj/Sentimental_Analysis'. The app will not work.")
|
| 652 |
+
|
| 653 |
logger.info("Starting Gradio interface...")
|
| 654 |
+
logger.info(f"Recommendation Model: {MODEL_NAME}")
|
|
|
|
| 655 |
|
| 656 |
demo = create_interface()
|
| 657 |
demo.launch(
|
| 658 |
server_name="0.0.0.0",
|
| 659 |
server_port=7860,
|
| 660 |
+
share=False # Set to True if you want a public link from your local machine
|
| 661 |
)
|