Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from huggingface_hub import InferenceClient | |
| from dotenv import load_dotenv | |
| import os | |
| import PyPDF2 as pdf | |
| # Load .env file | |
| load_dotenv() | |
| api_key = os.getenv("HUGGINGFACEHUB_API_TOKEN") | |
| # Hugging Face model | |
| MODEL = "nvidia/Llama-3_1-Nemotron-Ultra-253B-v1" | |
| # Set up page | |
| st.set_page_config(page_title="JD Matcher by Jishnu Setia", page_icon="π") | |
| st.title("π Job Description Matcher") | |
| st.text("Find out if your resume matches the job you're targeting!") | |
| # Input fields | |
| jd = st.text_area("π Paste the Job Description here:") | |
| uploaded_file = st.file_uploader("π Upload Your Resume (PDF only):", type="pdf") | |
| submit = st.button("π Submit") | |
| # Function to read PDF content | |
| def input_pdf_text(uploaded_file): | |
| reader = pdf.PdfReader(uploaded_file) | |
| text = "" | |
| for page in reader.pages: | |
| text += page.extract_text() | |
| return text | |
| # Prompt template | |
| system_prompt = { | |
| "role": "system", | |
| "content": ( | |
| "You are a highly experienced ATS (Applicant Tracking System). Evaluate the resume based on the given job description. " | |
| "Be strict, accurate, and helpful. Job market is very competitive. Return your response in this format:\n\n" | |
| "1. JD Match Percentage: \"%\"\n" | |
| "2. Matching Feedback: (e.g., 'Great match!' or 'Needs improvement')\n" | |
| "3. Missing Keywords: [list]\n" | |
| "4. Tips to Improve the Resume:" | |
| ) | |
| } | |
| # When submit is clicked | |
| if submit: | |
| if uploaded_file and jd: | |
| with st.spinner("Analyzing your resume..."): | |
| resume_text = input_pdf_text(uploaded_file) | |
| # Prepare context | |
| context = [ | |
| system_prompt, | |
| {"role": "user", "content": f"Resume:\n{resume_text}\n\nJob Description:\n{jd}"} | |
| ] | |
| try: | |
| client = InferenceClient( | |
| model=MODEL, | |
| provider="nebius", | |
| api_key=api_key | |
| ) | |
| completion = client.chat.completions.create( | |
| model=MODEL, | |
| messages=context, | |
| max_tokens=2048, | |
| ) | |
| response = completion.choices[0].message.content | |
| st.subheader("π ATS Evaluation Result") | |
| st.markdown(response) | |
| except Exception as e: | |
| st.error(f"β Error: {e}") | |
| else: | |
| st.warning("Please upload a resume and paste a job description!") | |