File size: 10,317 Bytes
8018595
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc034ee
 
 
 
 
8018595
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
"""User profile management page."""

import sys
from pathlib import Path

# Add the project root to the Python path
# This is necessary for Streamlit to find modules in the 'apps' directory
project_root = Path(__file__).resolve().parents[3]
if str(project_root) not in sys.path:
    sys.path.append(str(project_root))

import pandas as pd
import streamlit as st

from apps.streamlit_ui.page_versions.profile import v1, v2
from sentinel.models import (
    ClinicalObservation,
    Demographics,
    FamilyMemberCancer,
    FemaleSpecific,
    Lifestyle,
    PersonalMedicalHistory,
    UserInput,
)
from sentinel.utils import load_user_file


# --- Helper Functions ---
def clear_profile_state():
    """Callback function to reset profile-related session state."""
    st.session_state.user_profile = None
    if "profile_upload" in st.session_state:
        del st.session_state["profile_upload"]


# --- Main Page Layout ---
st.title("👤 User Profile")

# --- Sidebar for Version Selection and Upload ---
with st.sidebar:
    st.header("Controls")

    # Version selection
    version_options = ["V2 (Editable Form)", "V1 (JSON Viewer)"]
    version = st.radio(
        "Select Demo Version",
        version_options,
        help="Choose the version of the profile page to display.",
    )

    st.divider()

    # Example Profile Selector
    examples_dir = project_root / "examples"

    # Collect all example profiles
    profile_files = []
    if examples_dir.exists():
        # Get profiles from dev/
        dev_dir = examples_dir / "dev"
        if dev_dir.exists():
            profile_files.extend(sorted(dev_dir.glob("*.yaml")))
            profile_files.extend(sorted(dev_dir.glob("*.json")))

        # Get profiles from synthetic/
        synthetic_dir = examples_dir / "synthetic"
        if synthetic_dir.exists():
            for subdir in sorted(synthetic_dir.iterdir()):
                if subdir.is_dir():
                    profile_files.extend(sorted(subdir.glob("*.yaml")))
                    profile_files.extend(sorted(subdir.glob("*.json")))

    # Create display names (relative to examples/)
    profile_options = {}
    if profile_files:
        for p in profile_files:
            rel_path = p.relative_to(examples_dir)
            profile_options[str(rel_path)] = p

    # Dropdown selector
    if profile_options:
        selected = st.selectbox(
            "Load Example Profile",
            options=["-- Select a profile --", *profile_options.keys()],
            key="profile_selector",
        )

        if selected != "-- Select a profile --":
            try:
                profile_path = profile_options[selected]
                st.session_state.user_profile = load_user_file(str(profile_path))
                st.success(f"✅ Loaded: {selected}")
            except Exception as e:
                st.error(f"Failed to load profile: {e}")

    # Clear Profile Button
    if st.session_state.get("user_profile"):
        st.button(
            "Clear Loaded Profile",
            on_click=clear_profile_state,
            use_container_width=True,
        )


# --- Page Content Dispatcher ---
# Render the selected page version
if version == "V1 (JSON Viewer)":
    v1.render()
else:  # Default to V2
    v2.render()

# The manual creation form can be a persistent feature at the bottom of the page
with st.expander("Create New Profile Manually"):
    # --- STEP 1: Move the sex selector OUTSIDE the form. ---
    # This allows it to trigger a rerun and update the UI dynamically.
    # Give it a unique key to avoid conflicts with other widgets.
    sex = st.selectbox(
        "Biological Sex", ["Male", "Female", "Other"], key="manual_profile_sex"
    )

    with st.form("manual_profile_form"):
        st.subheader("Demographics")
        age = st.number_input("Age", min_value=0, step=1)
        # The 'sex' variable is now taken from the selector above the form.
        ethnicity = st.text_input("Ethnicity")

        st.subheader("Lifestyle")
        smoking_status = st.selectbox("Smoking Status", ["never", "former", "current"])
        smoking_pack_years = st.number_input("Pack-Years", min_value=0, step=1)
        alcohol_consumption = st.selectbox(
            "Alcohol Consumption", ["none", "light", "moderate", "heavy"]
        )
        dietary_habits = st.text_area("Dietary Habits")
        physical_activity_level = st.text_area("Physical Activity")

        st.subheader("Personal Medical History")
        known_genetic_mutations = st.text_input(
            "Known Genetic Mutations (comma-separated)"
        )
        previous_cancers = st.text_input("Previous Cancers (comma-separated)")
        chronic_illnesses = st.text_input("Chronic Illnesses (comma-separated)")

        st.subheader("Family History")
        fam_cols = ["relative", "cancer_type", "age_at_diagnosis"]
        fam_df = st.data_editor(
            pd.DataFrame(columns=fam_cols),
            num_rows="dynamic",
            key="family_history_editor",
        )

        st.subheader("Clinical Observations")
        obs_cols = ["test_name", "value", "unit", "reference_range", "date"]
        obs_df = st.data_editor(
            pd.DataFrame(columns=obs_cols),
            num_rows="dynamic",
            key="clinical_obs_editor",
        )

        female_specific_data = {}
        # --- STEP 2: The conditional check now works correctly. ---
        # The 'if' statement is evaluated on each rerun when the 'sex' selector changes.
        if sex == "Female":
            st.subheader("Female-Specific")
            female_specific_data["age_at_first_period"] = st.number_input(
                "Age at First Period", min_value=0, step=1
            )
            female_specific_data["age_at_menopause"] = st.number_input(
                "Age at Menopause", min_value=0, step=1
            )
            female_specific_data["num_live_births"] = st.number_input(
                "Number of Live Births", min_value=0, step=1
            )
            female_specific_data["age_at_first_live_birth"] = st.number_input(
                "Age at First Live Birth", min_value=0, step=1
            )
            female_specific_data["hormone_therapy_use"] = st.text_input(
                "Hormone Therapy Use"
            )

        current_concerns = st.text_area("Current Concerns or Symptoms")

        submitted = st.form_submit_button("Save New Profile")
        if submitted:
            # --- STEP 3: Use the 'sex' variable from the external selector during submission. ---
            demographics = Demographics(
                age=int(age), sex=sex, ethnicity=ethnicity or None
            )
            lifestyle = Lifestyle(
                smoking_status=smoking_status,
                smoking_pack_years=int(smoking_pack_years) or None,
                alcohol_consumption=alcohol_consumption,
                dietary_habits=dietary_habits or None,
                physical_activity_level=physical_activity_level or None,
            )
            pmh = PersonalMedicalHistory(
                known_genetic_mutations=[
                    m.strip() for m in known_genetic_mutations.split(",") if m.strip()
                ],
                previous_cancers=[
                    c.strip() for c in previous_cancers.split(",") if c.strip()
                ],
                chronic_illnesses=[
                    i.strip() for i in chronic_illnesses.split(",") if i.strip()
                ],
            )
            family_history = []
            for _, row in fam_df.dropna(how="all").iterrows():
                if row.get("relative") and row.get("cancer_type"):
                    family_history.append(
                        FamilyMemberCancer(
                            relative=str(row["relative"]),
                            cancer_type=str(row["cancer_type"]),
                            age_at_diagnosis=int(row["age_at_diagnosis"])
                            if row["age_at_diagnosis"] not in ["", None]
                            else None,
                        )
                    )

            observations = []
            for _, row in obs_df.dropna(how="all").iterrows():
                if row.get("test_name") and row.get("value") and row.get("unit"):
                    observations.append(
                        ClinicalObservation(
                            test_name=str(row["test_name"]),
                            value=str(row["value"]),
                            unit=str(row["unit"]),
                            reference_range=(
                                str(row["reference_range"])
                                if row["reference_range"] not in ["", None]
                                else None
                            ),
                            date=str(row["date"])
                            if row["date"] not in ["", None]
                            else None,
                        )
                    )

            female_specific = None
            if sex == "Female":
                female_specific = FemaleSpecific(**female_specific_data)

            new_profile = UserInput(
                demographics=demographics,
                lifestyle=lifestyle,
                family_history=family_history,
                personal_medical_history=pmh,
                female_specific=female_specific,
                current_concerns_or_symptoms=current_concerns or None,
                clinical_observations=observations,
            )
            st.success("Profile saved")

            # --- STEP 4: Compute the risk scores ---
            with st.spinner("Calculating risk scores..."):
                from sentinel.risk_models import RISK_MODELS

                risks_scores = []
                for model in RISK_MODELS:
                    risk_score = model().run(new_profile)
                    # Handle models that return multiple scores (e.g., QCancer)
                    if isinstance(risk_score, list):
                        risks_scores.extend(risk_score)
                    else:
                        risks_scores.append(risk_score)

                new_profile.risks_scores = risks_scores

            st.session_state.user_profile = new_profile
            st.success("Risk scores calculated!")
            st.rerun()