File size: 21,070 Bytes
8018595
 
 
 
 
 
 
 
 
 
 
 
 
 
cc034ee
 
 
 
 
8018595
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc034ee
 
 
 
 
 
 
 
 
 
 
8018595
 
cc034ee
 
 
 
 
 
 
 
 
 
 
8018595
 
 
 
cc034ee
8018595
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
"""Command-line interface for running assessments and exporting reports."""

import json
from datetime import datetime
from pathlib import Path

import hydra
from hydra.utils import to_absolute_path
from omegaconf import DictConfig

from sentinel.config import AppConfig, ModelConfig, ResourcePaths
from sentinel.factory import SentinelFactory
from sentinel.models import (
    ConversationResponse,
    InitialAssessment,
)
from sentinel.reporting import generate_excel_report, generate_pdf_report
from sentinel.risk_models import RISK_MODELS
from sentinel.user_input import (
    Demographics,
    FamilyMemberCancer,
    FemaleSpecific,
    Lifestyle,
    PersonalMedicalHistory,
    UserInput,
)
from sentinel.utils import load_user_file


# Color codes for terminal output
class Colors:
    """ANSI color codes for terminal output formatting."""

    HEADER = "\033[95m"
    OKBLUE = "\033[94m"
    OKCYAN = "\033[96m"
    OKGREEN = "\033[92m"
    WARNING = "\033[93m"
    FAIL = "\033[91m"
    ENDC = "\033[0m"
    BOLD = "\033[1m"
    UNDERLINE = "\033[4m"


def _get_input(prompt: str, optional: bool = False) -> str:
    """Get a line of input from the user.

    Args:
        prompt: Message to display to the user.
        optional: If True, allow empty input to be returned as an empty string.

    Returns:
        The raw string entered by the user (may be empty if optional).
    """
    suffix = " (optional, press Enter to skip)" if optional else ""
    return input(f"{Colors.OKCYAN}{prompt}{suffix}:{Colors.ENDC} ")


def _get_int_input(prompt: str, optional: bool = False) -> int | None:
    """Get an integer from the user.

    Args:
        prompt: Message to display to the user.
        optional: If True, allow empty input and return None.

    Returns:
        The parsed integer value, or None if optional and left empty.
    """
    while True:
        val = _get_input(prompt, optional)
        if not val and optional:
            return None
        try:
            return int(val)
        except (ValueError, TypeError):
            print(f"{Colors.WARNING}Please enter a valid number.{Colors.ENDC}")


def collect_user_input() -> UserInput:
    """Collect user profile data interactively.

    Returns:
        UserInput: Structured demographics, lifestyle, and clinical data
        assembled from CLI prompts.
    """
    print(
        f"\n{Colors.HEADER}{Colors.BOLD}=== User Information Collection ==={Colors.ENDC}"
    )
    print("Please provide the following details for your assessment.")

    # --- DEMOGRAPHICS ---
    print(f"\n{Colors.OKBLUE}{Colors.BOLD}--- Demographics ---{Colors.ENDC}")
    age = _get_int_input("Age")
    sex = _get_input("Biological Sex (e.g., Male, Female)")
    ethnicity = _get_input("Ethnicity", optional=True)
    demographics = Demographics(age=age, sex=sex, ethnicity=ethnicity)

    # --- LIFESTYLE ---
    print(f"\n{Colors.OKBLUE}{Colors.BOLD}--- Lifestyle ---{Colors.ENDC}")
    smoking_status = _get_input("Smoking Status (e.g., never, former, current)")
    smoking_pack_years = (
        _get_int_input("Smoking Pack-Years", optional=True)
        if smoking_status in ["former", "current"]
        else None
    )
    alcohol_consumption = _get_input(
        "Alcohol Consumption (e.g., none, light, moderate, heavy)"
    )
    dietary_habits = _get_input("Dietary Habits", optional=True)
    physical_activity_level = _get_input("Physical Activity Level", optional=True)
    lifestyle = Lifestyle(
        smoking_status=smoking_status,
        smoking_pack_years=smoking_pack_years,
        alcohol_consumption=alcohol_consumption,
        dietary_habits=dietary_habits,
        physical_activity_level=physical_activity_level,
    )

    # --- PERSONAL MEDICAL HISTORY ---
    print(
        f"\n{Colors.OKBLUE}{Colors.BOLD}--- Personal Medical History ---{Colors.ENDC}"
    )
    mutations = _get_input("Known genetic mutations (comma-separated)", optional=True)
    cancers = _get_input("Previous cancers (comma-separated)", optional=True)
    illnesses = _get_input(
        "Chronic illnesses (e.g., IBD, comma-separated)", optional=True
    )
    personal_medical_history = PersonalMedicalHistory(
        known_genetic_mutations=[m.strip() for m in mutations.split(",")]
        if mutations
        else [],
        previous_cancers=[c.strip() for c in cancers.split(",")] if cancers else [],
        chronic_illnesses=[i.strip() for i in illnesses.split(",")]
        if illnesses
        else [],
    )

    # --- CLINICAL OBSERVATIONS ---
    print(
        f"\n{Colors.OKBLUE}{Colors.BOLD}--- Clinical Observations / Test Results (Optional) ---{Colors.ENDC}"
    )
    clinical_observations = []
    while True:
        add_test = _get_input(
            "Add a clinical observation or test result? (y/N)"
        ).lower()
        if add_test not in ["y", "yes"]:
            break
        test_name = _get_input("Test/Observation Name")
        value = _get_input("Value")
        unit = _get_input("Unit (e.g., ng/mL, or N/A)")
        reference_range = _get_input("Reference Range", optional=True)
        date = _get_input("Date of Test (YYYY-MM-DD)", optional=True)
        clinical_observations.append(
            {
                "test_name": test_name,
                "value": value,
                "unit": unit,
                "reference_range": reference_range or None,
                "date": date or None,
            }
        )

    # --- FAMILY HISTORY ---
    print(
        f"\n{Colors.OKBLUE}{Colors.BOLD}--- Family History of Cancer ---{Colors.ENDC}"
    )
    family_history = []
    while True:
        add_relative = _get_input("Add a family member with cancer? (y/N)").lower()
        if add_relative not in ["y", "yes"]:
            break
        relative = _get_input("Relative (e.g., mother, sister)")
        cancer_type = _get_input("Cancer Type")
        age_at_diagnosis = _get_int_input("Age at Diagnosis", optional=True)
        family_history.append(
            FamilyMemberCancer(
                relative=relative,
                cancer_type=cancer_type,
                age_at_diagnosis=age_at_diagnosis,
            )
        )

    # --- FEMALE-SPECIFIC ---
    female_specific = None
    if sex.lower() == "female":
        print(
            f"\n{Colors.OKBLUE}{Colors.BOLD}--- Female-Specific Information ---{Colors.ENDC}"
        )
        age_at_first_period = _get_int_input("Age at first period", optional=True)
        age_at_menopause = _get_int_input("Age at menopause", optional=True)
        num_live_births = _get_int_input("Number of live births", optional=True)
        age_at_first_live_birth = _get_int_input(
            "Age at first live birth", optional=True
        )
        hormone_therapy_use = _get_input("Hormone therapy use", optional=True)
        female_specific = FemaleSpecific(
            age_at_first_period=age_at_first_period,
            age_at_menopause=age_at_menopause,
            num_live_births=num_live_births,
            age_at_first_live_birth=age_at_first_live_birth,
            hormone_therapy_use=hormone_therapy_use,
        )

    # --- CURRENT CONCERNS ---
    print(f"\n{Colors.OKBLUE}{Colors.BOLD}--- Current Concerns ---{Colors.ENDC}")
    current_concerns_or_symptoms = _get_input(
        "Current symptoms or health concerns", optional=True
    )

    return UserInput(
        demographics=demographics,
        lifestyle=lifestyle,
        family_history=family_history,
        personal_medical_history=personal_medical_history,
        female_specific=female_specific,
        current_concerns_or_symptoms=current_concerns_or_symptoms,
        clinical_observations=clinical_observations,
    )


def format_risk_assessment(response: InitialAssessment, dev_mode: bool = False) -> None:
    """Pretty-print an initial risk assessment payload.

    Args:
        response (InitialAssessment): Parsed result returned by the assessment
            chain.
        dev_mode (bool): Flag enabling verbose debugging output.
    """
    # In dev mode, show everything
    if dev_mode:
        print(
            f"\n{Colors.WARNING}{Colors.BOLD}--- DEV MODE: RAW MODEL OUTPUT ---{Colors.ENDC}"
        )
        # Use model_dump instead of model_dump_json for direct printing
        print(json.dumps(response.model_dump(), indent=2))
        print(
            f"\n{Colors.WARNING}{Colors.BOLD}--- DEV MODE: PARSED & VALIDATED PYDANTIC OBJECT ---{Colors.ENDC}"
        )
        if response.thinking:
            print(
                f"{Colors.OKCYAN}{Colors.BOLD}πŸ€” Chain of Thought (`<think>` block):{Colors.ENDC}"
            )
            print(response.thinking)
            print(f"{Colors.WARNING}{Colors.BOLD}{'-' * 30}{Colors.ENDC}")
        if response.reasoning:
            print(
                f"{Colors.OKCYAN}{Colors.BOLD}🧠 Reasoning (`<reasoning>` block):{Colors.ENDC}"
            )
            print(response.reasoning)
            print(f"{Colors.WARNING}{Colors.BOLD}{'-' * 30}{Colors.ENDC}")
        print(f"{Colors.OKCYAN}{Colors.BOLD}Full Pydantic Object:{Colors.ENDC}")

        # return
        print(
            f"\n{Colors.WARNING}{Colors.BOLD}--- DEV MODE: FORMATTED MODEL OUTPUT ---{Colors.ENDC}"
        )

    # User-friendly formatting
    print(f"\n{Colors.HEADER}{Colors.BOLD}{'=' * 60}")
    print("πŸ₯ CANCER RISK ASSESSMENT REPORT")
    print(f"{'=' * 60}{Colors.ENDC}")

    # Display the primary user-facing response first
    if response.response:
        print(f"\n{Colors.OKCYAN}{Colors.BOLD}πŸ€– BiOS:{Colors.ENDC}")
        print(response.response)

    # Then display the structured summary and details
    print(f"\n{Colors.OKBLUE}{Colors.BOLD}πŸ“‹ OVERALL SUMMARY{Colors.ENDC}")
    if response.overall_risk_score is not None:
        print(
            f"{Colors.OKCYAN}Overall Risk Score: {Colors.BOLD}{response.overall_risk_score}/100{Colors.ENDC}"
        )
    if response.overall_summary:
        print(f"{Colors.OKCYAN}{response.overall_summary}{Colors.ENDC}")

    # Risk assessments
    risk_assessments = response.risk_assessments
    if risk_assessments:
        print(
            f"\n{Colors.OKBLUE}{Colors.BOLD}🎯 DETAILED RISK ASSESSMENTS{Colors.ENDC}"
        )
        print(f"{Colors.OKBLUE}{'─' * 40}{Colors.ENDC}")

        for i, assessment in enumerate(risk_assessments, 1):
            cancer_type = assessment.cancer_type
            risk_level = assessment.risk_level
            explanation = assessment.explanation

            # Color code risk levels
            if risk_level is None:
                risk_color = Colors.ENDC
            elif risk_level <= 2:
                risk_color = Colors.OKGREEN
            elif risk_level == 3:
                risk_color = Colors.WARNING
            else:  # 4-5
                risk_color = Colors.FAIL

            print(f"\n{Colors.BOLD}{i}. {cancer_type.upper()}{Colors.ENDC}")
            print(
                f"   🎚️  Risk Level: {risk_color}{Colors.BOLD}{risk_level or 'N/A'}{Colors.ENDC}"
            )
            print(f"   πŸ’­ Explanation: {explanation}")

            # Optional fields
            if assessment.recommended_steps:
                print("   πŸ“ Recommended Steps:")
                if isinstance(assessment.recommended_steps, list):
                    for step in assessment.recommended_steps:
                        print(f"      β€’ {step}")
                else:
                    print(f"      β€’ {assessment.recommended_steps}")

            if assessment.lifestyle_advice:
                print(f"   🌟 Lifestyle Advice: {assessment.lifestyle_advice}")

            if i < len(risk_assessments):
                print(f"   {Colors.OKBLUE}{'─' * 40}{Colors.ENDC}")

    # Diagnostic recommendations
    dx_recommendations = response.dx_recommendations
    if dx_recommendations:
        print(
            f"\n{Colors.OKBLUE}{Colors.BOLD}πŸ”¬ DIAGNOSTIC RECOMMENDATIONS{Colors.ENDC}"
        )
        print(f"{Colors.OKBLUE}{'─' * 40}{Colors.ENDC}")

        for i, dx_rec in enumerate(dx_recommendations, 1):
            test_name = dx_rec.test_name
            frequency = dx_rec.frequency
            rationale = dx_rec.rationale
            recommendation_level = dx_rec.recommendation_level

            level_text = ""
            if recommendation_level is not None:
                level_map = {
                    1: "Unsuitable",
                    2: "Unnecessary",
                    3: "Optional",
                    4: "Recommended",
                    5: "Critical - Do not skip",
                }
                level_text = f" ({level_map.get(recommendation_level, 'Unknown')})"

            print(f"\n{Colors.BOLD}{i}. {test_name.upper()}{Colors.ENDC}")
            if recommendation_level is not None:
                print(
                    f"   ⭐ Recommendation Level: {Colors.BOLD}{recommendation_level}/5{level_text}{Colors.ENDC}"
                )
            print(f"   πŸ“… Frequency: {Colors.OKGREEN}{frequency}{Colors.ENDC}")
            print(f"   πŸ’­ Rationale: {rationale}")

            if dx_rec.applicable_guideline:
                print(f"   πŸ“œ Applicable Guideline: {dx_rec.applicable_guideline}")

            if i < len(dx_recommendations):
                print(f"   {Colors.OKBLUE}{'─' * 40}{Colors.ENDC}")

    print(
        f"\n{Colors.WARNING}⚠️  IMPORTANT: This assessment does not replace professional medical advice.{Colors.ENDC}"
    )
    print(f"{Colors.HEADER}{'=' * 60}{Colors.ENDC}")


def format_followup_response(
    response: ConversationResponse, dev_mode: bool = False
) -> None:
    """Display follow-up conversation output.

    Args:
        response (ConversationResponse): Conversation exchange returned by the
            LLM chain.
        dev_mode (bool): Flag enabling verbose debugging output.
    """
    if dev_mode:
        print(
            f"\n{Colors.WARNING}{Colors.BOLD}--- DEV MODE: RAW MODEL OUTPUT ---{Colors.ENDC}"
        )
        # Use model_dump instead of model_dump_json for direct printing
        print(json.dumps(response.model_dump(), indent=2))
        print(
            f"\n{Colors.WARNING}{Colors.BOLD}--- DEV MODE: PARSED RESPONSE ---{Colors.ENDC}"
        )
        if response.thinking:
            print(f"\n{Colors.OKCYAN}{Colors.BOLD}πŸ€” Chain of Thought:{Colors.ENDC}")
            print(f"{Colors.OKCYAN}{response.thinking}{Colors.ENDC}")

    print(f"\n{Colors.OKCYAN}{Colors.BOLD}πŸ€– BiOS:{Colors.ENDC}")
    print(f"{response.response}")


@hydra.main(config_path="../../configs", config_name="config", version_base=None)
def main(cfg: DictConfig) -> None:
    """Entry point for the CLI tool invoked via Hydra.

    Args:
        cfg (DictConfig): Hydra configuration containing model, knowledge base,
            and runtime settings.
    """
    print(
        f"{Colors.HEADER}{Colors.BOLD}Welcome to the Cancer Risk Assessment Tool{Colors.ENDC}"
    )
    print(
        f"{Colors.OKBLUE}This tool provides preliminary cancer risk assessments based on your input.{Colors.ENDC}\n"
    )

    dev_mode = cfg.dev_mode

    if dev_mode:
        print(
            f"{Colors.WARNING}πŸ”§ Running in developer mode - raw JSON output enabled{Colors.ENDC}"
        )
    else:
        print(
            f"{Colors.OKGREEN}πŸ‘€ Running in user mode - formatted output enabled{Colors.ENDC}"
        )

    model = cfg.model.model_name
    provider = cfg.model.provider
    print(f"{Colors.OKBLUE}πŸ€– Using model: {model} from {provider}{Colors.ENDC}")

    # Create ResourcePaths with resolved absolute paths
    knowledge_base_paths = ResourcePaths(
        persona=Path(to_absolute_path("prompts/persona/default.md")),
        instruction_assessment=Path(
            to_absolute_path("prompts/instruction/assessment.md")
        ),
        instruction_conversation=Path(
            to_absolute_path("prompts/instruction/conversation.md")
        ),
        output_format_assessment=Path(
            to_absolute_path("configs/output_format/assessment.yaml")
        ),
        output_format_conversation=Path(
            to_absolute_path("configs/output_format/conversation.yaml")
        ),
        cancer_modules_dir=Path(
            to_absolute_path("configs/knowledge_base/cancer_modules")
        ),
        dx_protocols_dir=Path(to_absolute_path("configs/knowledge_base/dx_protocols")),
    )

    # Create AppConfig from Hydra config
    app_config = AppConfig(
        model=ModelConfig(provider=cfg.model.provider, model_name=cfg.model.model_name),
        knowledge_base_paths=knowledge_base_paths,
        selected_cancer_modules=list(cfg.knowledge_base.cancer_modules),
        selected_dx_protocols=list(cfg.knowledge_base.dx_protocols),
    )

    # Create factory and conversation manager
    factory = SentinelFactory(app_config)
    conversation = factory.create_conversation_manager()

    if cfg.user_file:
        print(f"{Colors.OKBLUE}πŸ“‚ Loading user data from: {cfg.user_file}{Colors.ENDC}")
        user = load_user_file(cfg.user_file)
    else:
        user = collect_user_input()

    print(f"\n{Colors.OKCYAN}πŸ”„ Running risk scoring tools...{Colors.ENDC}")
    risks_scores = []
    for model in RISK_MODELS:
        try:
            risk_score = model().run(user)
            # Handle models that return multiple scores (e.g., QCancer)
            if isinstance(risk_score, list):
                risks_scores.extend(risk_score)
            else:
                risks_scores.append(risk_score)
        except ValueError as e:
            # Skip models that aren't applicable or have validation errors
            print(f"{Colors.WARNING}⚠️  Skipping {model().name}: {e!s}{Colors.ENDC}")
            continue

    for risk_score in risks_scores:
        # Format output based on whether cancer type is specified
        if risk_score.cancer_type and risk_score.cancer_type not in [
            "multiple",
            "Multiple Cancer Sites",
        ]:
            display = (
                f"{risk_score.name} ({risk_score.cancer_type}): {risk_score.score}"
            )
        else:
            display = f"{risk_score.name}: {risk_score.score}"
        print(f"{Colors.OKCYAN}πŸ”„ {display}{Colors.ENDC}")

    print(f"\n{Colors.OKGREEN}πŸ”„ Analyzing your information...{Colors.ENDC}")
    response = None
    try:
        response = conversation.initial_assessment(user, risk_scores=risks_scores)
        format_risk_assessment(response, dev_mode)
    except Exception as e:
        print(f"{Colors.FAIL}❌ Error generating assessment: {e}{Colors.ENDC}")
        return

    if response:
        export_choice = input(
            f"\n{Colors.OKCYAN}Export full report to a file? (pdf/excel/both/N):{Colors.ENDC} "
        ).lower()
        if export_choice in ["pdf", "excel", "both"]:
            output_dir = Path("outputs")
            output_dir.mkdir(exist_ok=True)
            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
            base_filename = f"Cancer_Risk_Report_{timestamp}"

            if export_choice in ["pdf", "both"]:
                pdf_filename = output_dir / f"{base_filename}.pdf"
                try:
                    print(f"{Colors.OKCYAN}Generating PDF report...{Colors.ENDC}")
                    generate_pdf_report(response, user, str(pdf_filename))
                    print(
                        f"{Colors.OKGREEN}βœ… Successfully generated {pdf_filename}{Colors.ENDC}"
                    )
                except Exception as e:
                    print(
                        f"{Colors.FAIL}❌ Error generating PDF report: {e}{Colors.ENDC}"
                    )

            if export_choice in ["excel", "both"]:
                excel_filename = output_dir / f"{base_filename}.xlsx"
                try:
                    print(f"{Colors.OKCYAN}Generating Excel report...{Colors.ENDC}")
                    generate_excel_report(response, user, str(excel_filename))
                    print(
                        f"{Colors.OKGREEN}βœ… Successfully generated {excel_filename}{Colors.ENDC}"
                    )
                except Exception as e:
                    print(
                        f"{Colors.FAIL}❌ Error generating Excel report: {e}{Colors.ENDC}"
                    )

    # Follow-up conversation loop
    print(
        f"\n{Colors.OKBLUE}{Colors.BOLD}πŸ’¬ You can now ask follow-up questions. Type 'quit' to exit.{Colors.ENDC}"
    )
    while True:
        q = input(f"\n{Colors.BOLD}You: {Colors.ENDC}")
        if q.lower() in {"quit", "exit", "q"}:
            print(
                f"{Colors.OKGREEN}πŸ‘‹ Thank you for using the Cancer Risk Assessment Tool!{Colors.ENDC}"
            )
            break

        if not q.strip():
            continue

        try:
            text = conversation.follow_up(q)
            format_followup_response(text, dev_mode)
        except Exception as e:
            print(f"{Colors.FAIL}❌ Error: {e}{Colors.ENDC}")


if __name__ == "__main__":
    main()