Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,132 Bytes
b7f83b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# croppping utilities
# --------------------------------------------------------
import PIL.Image
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
import cv2 # noqa
import numpy as np # noqa
from easyvolcap.reloc_eval.utils.device import to_numpy
from easyvolcap.reloc_eval.utils.geometry import ( # noqa
colmap_to_opencv_intrinsics,
geotrf,
inv,
opencv_to_colmap_intrinsics,
)
try:
lanczos = PIL.Image.Resampling.LANCZOS
bicubic = PIL.Image.Resampling.BICUBIC
except AttributeError:
lanczos = PIL.Image.LANCZOS
bicubic = PIL.Image.BICUBIC
class ImageList:
"""Convenience class to aply the same operation to a whole set of images."""
def __init__(self, images):
if not isinstance(images, (tuple, list, set)):
images = [images]
self.images = []
for image in images:
if not isinstance(image, PIL.Image.Image):
image = PIL.Image.fromarray(image)
self.images.append(image)
def __len__(self):
return len(self.images)
def to_pil(self):
return tuple(self.images) if len(self.images) > 1 else self.images[0]
@property
def size(self):
sizes = [im.size for im in self.images]
assert all(sizes[0] == s for s in sizes)
return sizes[0]
def resize(self, *args, **kwargs):
return ImageList(self._dispatch("resize", *args, **kwargs))
def crop(self, *args, **kwargs):
return ImageList(self._dispatch("crop", *args, **kwargs))
def _dispatch(self, func, *args, **kwargs):
return [getattr(im, func)(*args, **kwargs) for im in self.images]
def rescale_image_depthmap(
image, depthmap, camera_intrinsics, output_resolution, force=True
):
"""Jointly rescale a (image, depthmap)
so that (out_width, out_height) >= output_res
"""
image = ImageList(image)
input_resolution = np.array(image.size) # (W,H)
output_resolution = np.array(output_resolution)
if depthmap is not None:
# can also use this with masks instead of depthmaps
assert tuple(depthmap.shape[:2]) == image.size[::-1]
# define output resolution
assert output_resolution.shape == (2,)
scale_final = max(output_resolution / image.size) + 1e-8
if scale_final >= 1 and not force: # image is already smaller than what is asked
return (image.to_pil(), depthmap, camera_intrinsics)
output_resolution = np.floor(input_resolution * scale_final).astype(int)
# first rescale the image so that it contains the crop
image = image.resize(
tuple(output_resolution), resample=lanczos if scale_final < 1 else bicubic
)
if depthmap is not None:
depthmap = cv2.resize(
depthmap,
output_resolution,
fx=scale_final,
fy=scale_final,
interpolation=cv2.INTER_NEAREST,
)
# no offset here; simple rescaling
camera_intrinsics = camera_matrix_of_crop(
camera_intrinsics, input_resolution, output_resolution, scaling=scale_final
)
return image.to_pil(), depthmap, camera_intrinsics
def camera_matrix_of_crop(
input_camera_matrix,
input_resolution,
output_resolution,
scaling=1,
offset_factor=0.5,
offset=None,
):
# Margins to offset the origin
margins = np.asarray(input_resolution) * scaling - output_resolution
assert np.all(margins >= 0.0)
if offset is None:
offset = offset_factor * margins
# Generate new camera parameters
output_camera_matrix_colmap = opencv_to_colmap_intrinsics(input_camera_matrix)
output_camera_matrix_colmap[:2, :] *= scaling
output_camera_matrix_colmap[:2, 2] -= offset
output_camera_matrix = colmap_to_opencv_intrinsics(output_camera_matrix_colmap)
return output_camera_matrix
def crop_image_depthmap(image, depthmap, camera_intrinsics, crop_bbox):
"""
Return a crop of the input view.
"""
image = ImageList(image)
l, t, r, b = crop_bbox
image = image.crop((l, t, r, b))
if depthmap is not None:
depthmap = depthmap[t:b, l:r]
camera_intrinsics = camera_intrinsics.copy()
camera_intrinsics[0, 2] -= l
camera_intrinsics[1, 2] -= t
return image.to_pil(), depthmap, camera_intrinsics
def bbox_from_intrinsics_in_out(
input_camera_matrix, output_camera_matrix, output_resolution
):
out_width, out_height = output_resolution
l, t = np.int32(np.round(input_camera_matrix[:2, 2] - output_camera_matrix[:2, 2]))
crop_bbox = (l, t, l + out_width, t + out_height)
return crop_bbox
def reciprocal_1d(corres_1_to_2, corres_2_to_1, ret_recip=False):
is_reciprocal1 = corres_2_to_1[corres_1_to_2] == np.arange(len(corres_1_to_2))
pos1 = is_reciprocal1.nonzero()[0]
pos2 = corres_1_to_2[pos1]
if ret_recip:
return is_reciprocal1, pos1, pos2
return pos1, pos2
def generate_non_self_pairs(n):
i, j = np.meshgrid(np.arange(n), np.arange(n), indexing="ij")
pairs = np.stack([i.ravel(), j.ravel()], axis=1)
mask = pairs[:, 0] != pairs[:, 1]
filtered_pairs = pairs[mask]
return filtered_pairs
def unravel_xy(pos, shape):
# convert (x+W*y) back to 2d (x,y) coordinates
return np.unravel_index(pos, shape)[0].base[:, ::-1].copy()
def ravel_xy(pos, shape):
H, W = shape
with np.errstate(invalid="ignore"):
qx, qy = pos.reshape(-1, 2).round().astype(np.int32).T
quantized_pos = qx.clip(min=0, max=W - 1, out=qx) + W * qy.clip(
min=0, max=H - 1, out=qy
)
return quantized_pos
def extract_correspondences_from_pts3d(
view1, view2, target_n_corres, rng=np.random, ret_xy=True, nneg=0
):
view1, view2 = to_numpy((view1, view2))
# project pixels from image1 --> 3d points --> image2 pixels
shape1, corres1_to_2 = reproject_view(view1["pts3d"], view2)
shape2, corres2_to_1 = reproject_view(view2["pts3d"], view1)
# compute reciprocal correspondences:
# pos1 == valid pixels (correspondences) in image1
is_reciprocal1, pos1, pos2 = reciprocal_1d(
corres1_to_2, corres2_to_1, ret_recip=True
)
is_reciprocal2 = corres1_to_2[corres2_to_1] == np.arange(len(corres2_to_1))
if target_n_corres is None:
if ret_xy:
pos1 = unravel_xy(pos1, shape1)
pos2 = unravel_xy(pos2, shape2)
return pos1, pos2
available_negatives = min((~is_reciprocal1).sum(), (~is_reciprocal2).sum())
target_n_positives = int(target_n_corres * (1 - nneg))
n_positives = min(len(pos1), target_n_positives)
n_negatives = min(target_n_corres - n_positives, available_negatives)
if n_negatives + n_positives != target_n_corres:
# should be really rare => when there are not enough negatives
# in that case, break nneg and add a few more positives ?
n_positives = target_n_corres - n_negatives
assert n_positives <= len(pos1)
assert n_positives <= len(pos1)
assert n_positives <= len(pos2)
assert n_negatives <= (~is_reciprocal1).sum()
assert n_negatives <= (~is_reciprocal2).sum()
assert n_positives + n_negatives == target_n_corres
valid = np.ones(n_positives, dtype=bool)
if n_positives < len(pos1):
# random sub-sampling of valid correspondences
perm = rng.permutation(len(pos1))[:n_positives]
pos1 = pos1[perm]
pos2 = pos2[perm]
if n_negatives > 0:
# add false correspondences if not enough
def norm(p):
return p / p.sum()
pos1 = np.r_[
pos1,
rng.choice(
shape1[0] * shape1[1],
size=n_negatives,
replace=False,
p=norm(~is_reciprocal1),
),
]
pos2 = np.r_[
pos2,
rng.choice(
shape2[0] * shape2[1],
size=n_negatives,
replace=False,
p=norm(~is_reciprocal2),
),
]
valid = np.r_[valid, np.zeros(n_negatives, dtype=bool)]
# convert (x+W*y) back to 2d (x,y) coordinates
if ret_xy:
pos1 = unravel_xy(pos1, shape1)
pos2 = unravel_xy(pos2, shape2)
return pos1, pos2, valid
def reproject_view(pts3d, view2):
shape = view2["pts3d"].shape[:2]
return reproject(
pts3d, view2["camera_intrinsics"], inv(view2["camera_pose"]), shape
)
def reproject(pts3d, K, world2cam, shape):
H, W, THREE = pts3d.shape
assert THREE == 3
# reproject in camera2 space
with np.errstate(divide="ignore", invalid="ignore"):
pos = geotrf(K @ world2cam[:3], pts3d, norm=1, ncol=2)
# quantize to pixel positions
return (H, W), ravel_xy(pos, shape)
|