File size: 4,930 Bytes
b7f83b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Copyright (c) HKUST SAIL-Lab and Horizon Robotics.
#
# This source code is licensed under the Apache License, Version 2.0
# found in the LICENSE file in the root directory of this source tree.

# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Apache License, Version 2.0
# found in the LICENSE file in the root directory of this source tree.

import argparse
import os

import torch
from tqdm import tqdm

from eval.utils.device import to_cpu
from eval.utils.eval_utils import uniform_sample
from sailrecon.models.sail_recon import SailRecon
from sailrecon.utils.load_fn import load_and_preprocess_images

device = "cuda" if torch.cuda.is_available() else "cpu"
# bfloat16 is supported on Ampere GPUs (Compute Capability 8.0+)
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] >= 8 else torch.float16


def demo(args):
    # Initialize the model and load the pretrained weights.
    # This will automatically download the model weights the first time it's run, which may take a while.
    _URL = "https://huggingface.co/HKUST-SAIL/SAIL-Recon/resolve/main/sailrecon.pt"
    model_dir = args.ckpt
    # model.load_state_dict(torch.hub.load_state_dict_from_url(_URL))
    model = SailRecon(kv_cache=True)
    if model_dir is not None:
        model.load_state_dict(torch.load(model_dir))
    else:
        model.load_state_dict(
            torch.hub.load_state_dict_from_url(_URL, model_dir=model_dir)
        )
    model = model.to(device=device)
    model.eval()

    # Load and preprocess example images
    scene_name = "1"
    if args.vid_dir is not None:
        import cv2

        image_names = []
        video_path = args.vid_dir
        vs = cv2.VideoCapture(video_path)
        fps = vs.get(cv2.CAP_PROP_FPS)
        tmp_file = os.path.join("tmp_video", os.path.basename(video_path).split(".")[0])
        os.makedirs(tmp_file, exist_ok=True)
        count = 0
        video_frame_num = 0
        while True:
            gotit, frame = vs.read()
            if not gotit:
                break
            count += 1
            image_path = os.path.join(tmp_file, f"{video_frame_num:06}.png")
            cv2.imwrite(image_path, frame)
            image_names.append(image_path)
            video_frame_num += 1
        images = load_and_preprocess_images(image_names).to(device)
        scene_name = os.path.basename(video_path).split(".")[0]
    else:
        image_names = os.listdir(args.img_dir)
        image_names = [os.path.join(args.img_dir, f) for f in sorted(image_names)]
        images = load_and_preprocess_images(image_names).to(device)
        scene_name = os.path.basename(args.img_dir)

    # anchor image selection
    select_indices = uniform_sample(len(image_names), min(100, len(image_names)))
    anchor_images = images[select_indices]

    os.makedirs(os.path.join(args.out_dir, scene_name), exist_ok=True)

    with torch.no_grad():
        with torch.cuda.amp.autocast(dtype=dtype):
            # processing anchor images to build scene representation (kv_cache)
            print("Processing anchor images ...")
            model.tmp_forward(anchor_images)
            # remove the global transformer blocks to save memory during relocalization
            del model.aggregator.global_blocks
            # relocalization on all images
            predictions = []

            with tqdm(total=len(image_names), desc="Relocalizing") as pbar:
                for img_split in images.split(20, dim=0):
                    pbar.update(20)
                    predictions += to_cpu(model.reloc(img_split))

            # save the predicted point cloud and camera poses

            from eval.utils.geometry import save_pointcloud_with_plyfile

            save_pointcloud_with_plyfile(
                predictions, os.path.join(args.out_dir, scene_name, "pred.ply")
            )

            import numpy as np

            from eval.utils.eval_utils import save_kitti_poses

            poses_w2c_estimated = [
                one_result["extrinsic"][0].cpu().numpy() for one_result in predictions
            ]
            poses_c2w_estimated = [
                np.linalg.inv(np.vstack([pose, np.array([0, 0, 0, 1])]))
                for pose in poses_w2c_estimated
            ]

            save_kitti_poses(
                poses_c2w_estimated,
                os.path.join(args.out_dir, scene_name, "pred.txt"),
            )


if __name__ == "__main__":
    args = argparse.ArgumentParser()
    args.add_argument(
        "--img_dir", type=str, default="samples/kitchen", help="input image folder"
    )
    args.add_argument("--vid_dir", type=str, default=None, help="input video path")
    args.add_argument("--out_dir", type=str, default="outputs", help="output folder")
    args.add_argument(
        "--ckpt", type=str, default=None, help="pretrained model checkpoint"
    )
    args = args.parse_args()
    demo(args)