Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,930 Bytes
b7f83b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
# Copyright (c) HKUST SAIL-Lab and Horizon Robotics.
#
# This source code is licensed under the Apache License, Version 2.0
# found in the LICENSE file in the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Apache License, Version 2.0
# found in the LICENSE file in the root directory of this source tree.
import argparse
import os
import torch
from tqdm import tqdm
from eval.utils.device import to_cpu
from eval.utils.eval_utils import uniform_sample
from sailrecon.models.sail_recon import SailRecon
from sailrecon.utils.load_fn import load_and_preprocess_images
device = "cuda" if torch.cuda.is_available() else "cpu"
# bfloat16 is supported on Ampere GPUs (Compute Capability 8.0+)
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] >= 8 else torch.float16
def demo(args):
# Initialize the model and load the pretrained weights.
# This will automatically download the model weights the first time it's run, which may take a while.
_URL = "https://huggingface.co/HKUST-SAIL/SAIL-Recon/resolve/main/sailrecon.pt"
model_dir = args.ckpt
# model.load_state_dict(torch.hub.load_state_dict_from_url(_URL))
model = SailRecon(kv_cache=True)
if model_dir is not None:
model.load_state_dict(torch.load(model_dir))
else:
model.load_state_dict(
torch.hub.load_state_dict_from_url(_URL, model_dir=model_dir)
)
model = model.to(device=device)
model.eval()
# Load and preprocess example images
scene_name = "1"
if args.vid_dir is not None:
import cv2
image_names = []
video_path = args.vid_dir
vs = cv2.VideoCapture(video_path)
fps = vs.get(cv2.CAP_PROP_FPS)
tmp_file = os.path.join("tmp_video", os.path.basename(video_path).split(".")[0])
os.makedirs(tmp_file, exist_ok=True)
count = 0
video_frame_num = 0
while True:
gotit, frame = vs.read()
if not gotit:
break
count += 1
image_path = os.path.join(tmp_file, f"{video_frame_num:06}.png")
cv2.imwrite(image_path, frame)
image_names.append(image_path)
video_frame_num += 1
images = load_and_preprocess_images(image_names).to(device)
scene_name = os.path.basename(video_path).split(".")[0]
else:
image_names = os.listdir(args.img_dir)
image_names = [os.path.join(args.img_dir, f) for f in sorted(image_names)]
images = load_and_preprocess_images(image_names).to(device)
scene_name = os.path.basename(args.img_dir)
# anchor image selection
select_indices = uniform_sample(len(image_names), min(100, len(image_names)))
anchor_images = images[select_indices]
os.makedirs(os.path.join(args.out_dir, scene_name), exist_ok=True)
with torch.no_grad():
with torch.cuda.amp.autocast(dtype=dtype):
# processing anchor images to build scene representation (kv_cache)
print("Processing anchor images ...")
model.tmp_forward(anchor_images)
# remove the global transformer blocks to save memory during relocalization
del model.aggregator.global_blocks
# relocalization on all images
predictions = []
with tqdm(total=len(image_names), desc="Relocalizing") as pbar:
for img_split in images.split(20, dim=0):
pbar.update(20)
predictions += to_cpu(model.reloc(img_split))
# save the predicted point cloud and camera poses
from eval.utils.geometry import save_pointcloud_with_plyfile
save_pointcloud_with_plyfile(
predictions, os.path.join(args.out_dir, scene_name, "pred.ply")
)
import numpy as np
from eval.utils.eval_utils import save_kitti_poses
poses_w2c_estimated = [
one_result["extrinsic"][0].cpu().numpy() for one_result in predictions
]
poses_c2w_estimated = [
np.linalg.inv(np.vstack([pose, np.array([0, 0, 0, 1])]))
for pose in poses_w2c_estimated
]
save_kitti_poses(
poses_c2w_estimated,
os.path.join(args.out_dir, scene_name, "pred.txt"),
)
if __name__ == "__main__":
args = argparse.ArgumentParser()
args.add_argument(
"--img_dir", type=str, default="samples/kitchen", help="input image folder"
)
args.add_argument("--vid_dir", type=str, default=None, help="input video path")
args.add_argument("--out_dir", type=str, default="outputs", help="output folder")
args.add_argument(
"--ckpt", type=str, default=None, help="pretrained model checkpoint"
)
args = args.parse_args()
demo(args)
|