Upload main.py
Browse files- backend/app/main.py +48 -105
backend/app/main.py
CHANGED
|
@@ -1,22 +1,19 @@
|
|
| 1 |
import os
|
| 2 |
from typing import List, Literal, Optional
|
|
|
|
| 3 |
|
| 4 |
from fastapi import FastAPI, HTTPException
|
| 5 |
from fastapi.middleware.cors import CORSMiddleware
|
| 6 |
from fastapi.staticfiles import StaticFiles
|
| 7 |
from pydantic import BaseModel
|
| 8 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 9 |
-
import torch
|
| 10 |
|
| 11 |
-
APP_TITLE = "HF Chat (Fathom-R1-14B)"
|
| 12 |
APP_VERSION = "0.2.0"
|
| 13 |
|
| 14 |
MODEL_ID = os.getenv("MODEL_ID", "FractalAIResearch/Fathom-R1-14B")
|
| 15 |
-
PIPELINE_TASK = os.getenv("PIPELINE_TASK", "text-generation")
|
| 16 |
-
MAX_INPUT_TOKENS = int(os.getenv("MAX_INPUT_TOKENS", "8192"))
|
| 17 |
STATIC_DIR = os.getenv("STATIC_DIR", "/app/static")
|
| 18 |
ALLOWED_ORIGINS = os.getenv("ALLOWED_ORIGINS", "")
|
| 19 |
-
|
| 20 |
|
| 21 |
app = FastAPI(title=APP_TITLE, version=APP_VERSION)
|
| 22 |
|
|
@@ -46,121 +43,67 @@ class ChatResponse(BaseModel):
|
|
| 46 |
reply: str
|
| 47 |
model: str
|
| 48 |
|
| 49 |
-
tokenizer = None
|
| 50 |
-
model = None
|
| 51 |
-
generator = None
|
| 52 |
-
|
| 53 |
-
def load_pipeline():
|
| 54 |
-
global tokenizer, model, generator
|
| 55 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 56 |
-
|
| 57 |
-
# Load tokenizer
|
| 58 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=True)
|
| 59 |
-
if tokenizer.pad_token is None and tokenizer.eos_token is not None:
|
| 60 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 61 |
-
|
| 62 |
-
# Determine load strategy
|
| 63 |
-
load_kwargs = {}
|
| 64 |
-
dtype = torch.bfloat16 if device == "cuda" else torch.float32
|
| 65 |
-
|
| 66 |
-
if device == "cuda":
|
| 67 |
-
# try quantization if requested
|
| 68 |
-
if QUANTIZE.lower() in ("4bit", "8bit", "auto"):
|
| 69 |
-
try:
|
| 70 |
-
import bitsandbytes as bnb # noqa: F401
|
| 71 |
-
if QUANTIZE.lower() == "8bit":
|
| 72 |
-
load_kwargs.update(dict(load_in_8bit=True))
|
| 73 |
-
else:
|
| 74 |
-
# 4bit or auto (prefer 4bit)
|
| 75 |
-
load_kwargs.update(dict(load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16))
|
| 76 |
-
except Exception:
|
| 77 |
-
# bitsandbytes not available; fall back to full precision on GPU
|
| 78 |
-
pass
|
| 79 |
-
load_kwargs.setdefault("torch_dtype", dtype)
|
| 80 |
-
load_kwargs.setdefault("device_map", "auto")
|
| 81 |
-
else:
|
| 82 |
-
# CPU fallback
|
| 83 |
-
load_kwargs.setdefault("torch_dtype", dtype)
|
| 84 |
-
|
| 85 |
-
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, **load_kwargs)
|
| 86 |
-
|
| 87 |
-
generator = pipeline(
|
| 88 |
-
PIPELINE_TASK,
|
| 89 |
-
model=model,
|
| 90 |
-
tokenizer=tokenizer,
|
| 91 |
-
device_map=load_kwargs.get("device_map", None) or (0 if device == "cuda" else -1),
|
| 92 |
-
)
|
| 93 |
-
|
| 94 |
-
@app.on_event("startup")
|
| 95 |
-
def _startup():
|
| 96 |
-
load_pipeline()
|
| 97 |
-
|
| 98 |
def messages_to_prompt(messages: List[Message]) -> str:
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
for m in messages:
|
| 110 |
-
if m.role == "system":
|
| 111 |
-
parts.append(f"System: {m.content}")
|
| 112 |
-
elif m.role == "user":
|
| 113 |
-
parts.append(f"User: {m.content}")
|
| 114 |
-
else:
|
| 115 |
-
parts.append(f"Assistant: {m.content}")
|
| 116 |
-
parts.append("Assistant:")
|
| 117 |
-
return "".join(parts)
|
| 118 |
-
|
| 119 |
-
def truncate_prompt(prompt: str, max_tokens: int) -> str:
|
| 120 |
-
ids = tokenizer(prompt, return_tensors="pt", truncation=False)["input_ids"][0]
|
| 121 |
-
if len(ids) <= max_tokens:
|
| 122 |
-
return prompt
|
| 123 |
-
trimmed = ids[-max_tokens:]
|
| 124 |
-
return tokenizer.decode(trimmed, skip_special_tokens=True)
|
| 125 |
|
| 126 |
@app.get("/api/health")
|
| 127 |
def health():
|
| 128 |
-
|
| 129 |
-
return {"status": "ok", "model": MODEL_ID, "task": PIPELINE_TASK, "device": device}
|
| 130 |
|
| 131 |
@app.post("/api/chat", response_model=ChatResponse)
|
| 132 |
def chat(req: ChatRequest):
|
| 133 |
-
if
|
| 134 |
-
raise HTTPException(status_code=
|
|
|
|
| 135 |
if not req.messages:
|
| 136 |
raise HTTPException(status_code=400, detail="messages cannot be empty")
|
| 137 |
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
"max_new_tokens": req.max_new_tokens,
|
| 143 |
-
"do_sample": req.temperature > 0,
|
| 144 |
-
"temperature": req.temperature,
|
| 145 |
-
"top_p": req.top_p,
|
| 146 |
-
"repetition_penalty": req.repetition_penalty,
|
| 147 |
-
"eos_token_id": tokenizer.eos_token_id,
|
| 148 |
-
"pad_token_id": tokenizer.pad_token_id,
|
| 149 |
-
"return_full_text": True,
|
| 150 |
}
|
| 151 |
-
if req.stop:
|
| 152 |
-
gen_kwargs["stop"] = req.stop
|
| 153 |
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
reply = full[len(prompt):].strip() if full.startswith(prompt) else full
|
| 158 |
else:
|
| 159 |
-
reply = str(
|
|
|
|
| 160 |
if not reply:
|
| 161 |
reply = "(No response generated.)"
|
|
|
|
| 162 |
return ChatResponse(reply=reply, model=MODEL_ID)
|
| 163 |
|
| 164 |
-
# Serve frontend build (if present)
|
| 165 |
if os.path.isdir(STATIC_DIR):
|
| 166 |
-
app.mount("/", StaticFiles(directory=STATIC_DIR, html=True), name="static")
|
|
|
|
| 1 |
import os
|
| 2 |
from typing import List, Literal, Optional
|
| 3 |
+
import requests
|
| 4 |
|
| 5 |
from fastapi import FastAPI, HTTPException
|
| 6 |
from fastapi.middleware.cors import CORSMiddleware
|
| 7 |
from fastapi.staticfiles import StaticFiles
|
| 8 |
from pydantic import BaseModel
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
APP_TITLE = "HF Chat (Fathom-R1-14B via API)"
|
| 11 |
APP_VERSION = "0.2.0"
|
| 12 |
|
| 13 |
MODEL_ID = os.getenv("MODEL_ID", "FractalAIResearch/Fathom-R1-14B")
|
|
|
|
|
|
|
| 14 |
STATIC_DIR = os.getenv("STATIC_DIR", "/app/static")
|
| 15 |
ALLOWED_ORIGINS = os.getenv("ALLOWED_ORIGINS", "")
|
| 16 |
+
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
| 17 |
|
| 18 |
app = FastAPI(title=APP_TITLE, version=APP_VERSION)
|
| 19 |
|
|
|
|
| 43 |
reply: str
|
| 44 |
model: str
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
def messages_to_prompt(messages: List[Message]) -> str:
|
| 47 |
+
parts = []
|
| 48 |
+
for m in messages:
|
| 49 |
+
if m.role == "system":
|
| 50 |
+
parts.append(f"System: {m.content}")
|
| 51 |
+
elif m.role == "user":
|
| 52 |
+
parts.append(f"User: {m.content}")
|
| 53 |
+
else:
|
| 54 |
+
parts.append(f"Assistant: {m.content}")
|
| 55 |
+
parts.append("Assistant:")
|
| 56 |
+
return "\n".join(parts)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
@app.get("/api/health")
|
| 59 |
def health():
|
| 60 |
+
return {"status": "ok", "model": MODEL_ID, "source": "huggingface-inference-api"}
|
|
|
|
| 61 |
|
| 62 |
@app.post("/api/chat", response_model=ChatResponse)
|
| 63 |
def chat(req: ChatRequest):
|
| 64 |
+
if not HF_API_TOKEN:
|
| 65 |
+
raise HTTPException(status_code=500, detail="HF_API_TOKEN not set")
|
| 66 |
+
|
| 67 |
if not req.messages:
|
| 68 |
raise HTTPException(status_code=400, detail="messages cannot be empty")
|
| 69 |
|
| 70 |
+
prompt = messages_to_prompt(req.messages)
|
| 71 |
+
|
| 72 |
+
headers = {
|
| 73 |
+
"Authorization": f"Bearer {HF_API_TOKEN}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
}
|
|
|
|
|
|
|
| 75 |
|
| 76 |
+
payload = {
|
| 77 |
+
"inputs": prompt,
|
| 78 |
+
"parameters": {
|
| 79 |
+
"max_new_tokens": req.max_new_tokens,
|
| 80 |
+
"temperature": req.temperature,
|
| 81 |
+
"top_p": req.top_p,
|
| 82 |
+
"repetition_penalty": req.repetition_penalty,
|
| 83 |
+
"return_full_text": True,
|
| 84 |
+
}
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
+
response = requests.post(
|
| 88 |
+
f"https://api-inference.huggingface.co/models/{MODEL_ID}",
|
| 89 |
+
headers=headers,
|
| 90 |
+
json=payload
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
if response.status_code != 200:
|
| 94 |
+
raise HTTPException(status_code=response.status_code, detail=response.text)
|
| 95 |
+
|
| 96 |
+
result = response.json()
|
| 97 |
+
if isinstance(result, list) and result and "generated_text" in result[0]:
|
| 98 |
+
full = result[0]["generated_text"]
|
| 99 |
reply = full[len(prompt):].strip() if full.startswith(prompt) else full
|
| 100 |
else:
|
| 101 |
+
reply = str(result)
|
| 102 |
+
|
| 103 |
if not reply:
|
| 104 |
reply = "(No response generated.)"
|
| 105 |
+
|
| 106 |
return ChatResponse(reply=reply, model=MODEL_ID)
|
| 107 |
|
|
|
|
| 108 |
if os.path.isdir(STATIC_DIR):
|
| 109 |
+
app.mount("/", StaticFiles(directory=STATIC_DIR, html=True), name="static")
|