Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,10 +7,23 @@ import spaces
|
|
| 7 |
import torch
|
| 8 |
from diffusers import FluxPipeline, FluxTransformer2DModel
|
| 9 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
| 10 |
|
| 11 |
# ------------------------------------------------------------------
|
| 12 |
-
# 1. Global Configuration
|
| 13 |
# ------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
DEFAULT_PIPELINE_PATH = "black-forest-labs/FLUX.1-dev"
|
| 15 |
DEFAULT_QWEN_MODEL_PATH = "Qwen/Qwen3-8B"
|
| 16 |
DEFAULT_CUSTOM_WEIGHTS_PATH = "PosterCraft/PosterCraft-v1_RL"
|
|
@@ -46,23 +59,23 @@ def download_model_weights(target_dir, repo_id, subdir=None):
|
|
| 46 |
os.makedirs(tmp_dir, exist_ok=True)
|
| 47 |
|
| 48 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
if subdir:
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
local_dir_use_symlinks=False,
|
| 56 |
-
)
|
| 57 |
-
src_dir = os.path.join(tmp_dir, subdir)
|
| 58 |
-
else:
|
| 59 |
-
snapshot_download(
|
| 60 |
-
repo_id=repo_id,
|
| 61 |
-
repo_type="model",
|
| 62 |
-
local_dir=tmp_dir,
|
| 63 |
-
local_dir_use_symlinks=False,
|
| 64 |
-
)
|
| 65 |
-
src_dir = tmp_dir
|
| 66 |
|
| 67 |
if os.path.exists(src_dir):
|
| 68 |
shutil.copytree(src_dir, target_dir)
|
|
@@ -86,14 +99,20 @@ def ensure_models_downloaded():
|
|
| 86 |
# Download custom weights
|
| 87 |
custom_weights_local = "local_weights/PosterCraft-v1_RL"
|
| 88 |
if not os.path.exists(custom_weights_local):
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
# Download Qwen model
|
| 93 |
qwen_local = "local_weights/Qwen3-8B"
|
| 94 |
if not os.path.exists(qwen_local):
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
logging.info("Model download check completed")
|
| 99 |
|
|
@@ -105,12 +124,17 @@ ensure_models_downloaded()
|
|
| 105 |
# ------------------------------------------------------------------
|
| 106 |
def create_qwen_agent(model_path):
|
| 107 |
"""Create Qwen agent inside GPU context"""
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
return tokenizer, model
|
| 115 |
|
| 116 |
def recap_prompt(tokenizer, model, text):
|
|
@@ -181,7 +205,7 @@ Elaborate on each core requirement to create a rich description.
|
|
| 181 |
# ------------------------------------------------------------------
|
| 182 |
# 5. ZeroGPU Inference Function
|
| 183 |
# ------------------------------------------------------------------
|
| 184 |
-
@spaces.GPU(duration=300)
|
| 185 |
def generate_image_interface(
|
| 186 |
original_prompt, enable_recap, height, width,
|
| 187 |
num_inference_steps, guidance_scale, seed_input,
|
|
@@ -198,11 +222,14 @@ def generate_image_interface(
|
|
| 198 |
|
| 199 |
progress(0.1, desc="Loading FLUX pipeline...")
|
| 200 |
|
| 201 |
-
# Load FLUX pipeline
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
progress(0.2, desc="Loading custom transformer...")
|
| 208 |
|
|
@@ -210,9 +237,12 @@ def generate_image_interface(
|
|
| 210 |
custom_weights_local = "local_weights/PosterCraft-v1_RL"
|
| 211 |
if os.path.exists(custom_weights_local):
|
| 212 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
transformer = FluxTransformer2DModel.from_pretrained(
|
| 214 |
-
custom_weights_local,
|
| 215 |
-
torch_dtype=torch.bfloat16
|
| 216 |
)
|
| 217 |
pipeline.transformer = transformer
|
| 218 |
logging.info("Custom Transformer loaded successfully")
|
|
@@ -274,6 +304,11 @@ def generate_image_interface(
|
|
| 274 |
with gr.Blocks(theme=gr.themes.Soft(), title="PosterCraft") as demo:
|
| 275 |
gr.Markdown("# PosterCraft-v1.0")
|
| 276 |
gr.Markdown(f"Base Pipeline: **{DEFAULT_PIPELINE_PATH}**")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
gr.Markdown("⚠️ **First use requires model download, please wait about 10-15 minutes**")
|
| 278 |
|
| 279 |
with gr.Row():
|
|
|
|
| 7 |
import torch
|
| 8 |
from diffusers import FluxPipeline, FluxTransformer2DModel
|
| 9 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 10 |
+
from huggingface_hub import login
|
| 11 |
|
| 12 |
# ------------------------------------------------------------------
|
| 13 |
+
# 1. Authentication and Global Configuration
|
| 14 |
# ------------------------------------------------------------------
|
| 15 |
+
# Authenticate with HF token
|
| 16 |
+
hf_token = os.getenv("HF_TOKEN")
|
| 17 |
+
if hf_token:
|
| 18 |
+
try:
|
| 19 |
+
login(token=hf_token, add_to_git_credential=True)
|
| 20 |
+
logging.info("Successfully authenticated with Hugging Face")
|
| 21 |
+
except Exception as e:
|
| 22 |
+
logging.error(f"HF authentication failed: {e}")
|
| 23 |
+
raise Exception("Authentication failed. Please check your HF_TOKEN.")
|
| 24 |
+
else:
|
| 25 |
+
logging.warning("No HF_TOKEN found in environment variables")
|
| 26 |
+
|
| 27 |
DEFAULT_PIPELINE_PATH = "black-forest-labs/FLUX.1-dev"
|
| 28 |
DEFAULT_QWEN_MODEL_PATH = "Qwen/Qwen3-8B"
|
| 29 |
DEFAULT_CUSTOM_WEIGHTS_PATH = "PosterCraft/PosterCraft-v1_RL"
|
|
|
|
| 59 |
os.makedirs(tmp_dir, exist_ok=True)
|
| 60 |
|
| 61 |
try:
|
| 62 |
+
download_kwargs = {
|
| 63 |
+
"repo_id": repo_id,
|
| 64 |
+
"repo_type": "model",
|
| 65 |
+
"local_dir": tmp_dir,
|
| 66 |
+
"local_dir_use_symlinks": False,
|
| 67 |
+
}
|
| 68 |
+
|
| 69 |
+
# Add token if available
|
| 70 |
+
if hf_token:
|
| 71 |
+
download_kwargs["token"] = hf_token
|
| 72 |
+
|
| 73 |
if subdir:
|
| 74 |
+
download_kwargs["allow_patterns"] = os.path.join(subdir, "**")
|
| 75 |
+
|
| 76 |
+
snapshot_download(**download_kwargs)
|
| 77 |
+
|
| 78 |
+
src_dir = os.path.join(tmp_dir, subdir) if subdir else tmp_dir
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
if os.path.exists(src_dir):
|
| 81 |
shutil.copytree(src_dir, target_dir)
|
|
|
|
| 99 |
# Download custom weights
|
| 100 |
custom_weights_local = "local_weights/PosterCraft-v1_RL"
|
| 101 |
if not os.path.exists(custom_weights_local):
|
| 102 |
+
try:
|
| 103 |
+
logging.info("Downloading custom Transformer weights...")
|
| 104 |
+
download_model_weights(custom_weights_local, DEFAULT_CUSTOM_WEIGHTS_PATH)
|
| 105 |
+
except Exception as e:
|
| 106 |
+
logging.warning(f"Failed to download custom weights: {e}")
|
| 107 |
|
| 108 |
# Download Qwen model
|
| 109 |
qwen_local = "local_weights/Qwen3-8B"
|
| 110 |
if not os.path.exists(qwen_local):
|
| 111 |
+
try:
|
| 112 |
+
logging.info("Downloading Qwen model...")
|
| 113 |
+
download_model_weights(qwen_local, DEFAULT_QWEN_MODEL_PATH)
|
| 114 |
+
except Exception as e:
|
| 115 |
+
logging.warning(f"Failed to download Qwen model: {e}")
|
| 116 |
|
| 117 |
logging.info("Model download check completed")
|
| 118 |
|
|
|
|
| 124 |
# ------------------------------------------------------------------
|
| 125 |
def create_qwen_agent(model_path):
|
| 126 |
"""Create Qwen agent inside GPU context"""
|
| 127 |
+
load_kwargs = {
|
| 128 |
+
"torch_dtype": torch.bfloat16,
|
| 129 |
+
"device_map": "auto"
|
| 130 |
+
}
|
| 131 |
+
|
| 132 |
+
# Add token if available
|
| 133 |
+
if hf_token:
|
| 134 |
+
load_kwargs["token"] = hf_token
|
| 135 |
+
|
| 136 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, **load_kwargs)
|
| 137 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, **load_kwargs)
|
| 138 |
return tokenizer, model
|
| 139 |
|
| 140 |
def recap_prompt(tokenizer, model, text):
|
|
|
|
| 205 |
# ------------------------------------------------------------------
|
| 206 |
# 5. ZeroGPU Inference Function
|
| 207 |
# ------------------------------------------------------------------
|
| 208 |
+
@spaces.GPU(duration=300)
|
| 209 |
def generate_image_interface(
|
| 210 |
original_prompt, enable_recap, height, width,
|
| 211 |
num_inference_steps, guidance_scale, seed_input,
|
|
|
|
| 222 |
|
| 223 |
progress(0.1, desc="Loading FLUX pipeline...")
|
| 224 |
|
| 225 |
+
# Load FLUX pipeline with explicit token
|
| 226 |
+
load_kwargs = {
|
| 227 |
+
"torch_dtype": torch.bfloat16
|
| 228 |
+
}
|
| 229 |
+
if hf_token:
|
| 230 |
+
load_kwargs["token"] = hf_token
|
| 231 |
+
|
| 232 |
+
pipeline = FluxPipeline.from_pretrained(DEFAULT_PIPELINE_PATH, **load_kwargs)
|
| 233 |
|
| 234 |
progress(0.2, desc="Loading custom transformer...")
|
| 235 |
|
|
|
|
| 237 |
custom_weights_local = "local_weights/PosterCraft-v1_RL"
|
| 238 |
if os.path.exists(custom_weights_local):
|
| 239 |
try:
|
| 240 |
+
transformer_kwargs = {"torch_dtype": torch.bfloat16}
|
| 241 |
+
if hf_token:
|
| 242 |
+
transformer_kwargs["token"] = hf_token
|
| 243 |
+
|
| 244 |
transformer = FluxTransformer2DModel.from_pretrained(
|
| 245 |
+
custom_weights_local, **transformer_kwargs
|
|
|
|
| 246 |
)
|
| 247 |
pipeline.transformer = transformer
|
| 248 |
logging.info("Custom Transformer loaded successfully")
|
|
|
|
| 304 |
with gr.Blocks(theme=gr.themes.Soft(), title="PosterCraft") as demo:
|
| 305 |
gr.Markdown("# PosterCraft-v1.0")
|
| 306 |
gr.Markdown(f"Base Pipeline: **{DEFAULT_PIPELINE_PATH}**")
|
| 307 |
+
|
| 308 |
+
# Show authentication status
|
| 309 |
+
auth_status = "🟢 Authenticated" if hf_token else "🔴 Not Authenticated"
|
| 310 |
+
gr.Markdown(f"Authentication Status: {auth_status}")
|
| 311 |
+
|
| 312 |
gr.Markdown("⚠️ **First use requires model download, please wait about 10-15 minutes**")
|
| 313 |
|
| 314 |
with gr.Row():
|