Spaces:
Sleeping
Sleeping
Commit
·
6225fda
1
Parent(s):
fa1476f
try to add segmentation step
Browse files
app.py
CHANGED
|
@@ -1,64 +1,92 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import gradio as gr
|
| 3 |
import numpy as np
|
|
|
|
| 4 |
import cv2
|
| 5 |
from PIL import Image
|
|
|
|
|
|
|
| 6 |
|
|
|
|
| 7 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 8 |
|
| 9 |
-
#
|
|
|
|
| 10 |
midas = torch.hub.load("intel-isl/MiDaS", "DPT_Large")
|
| 11 |
-
midas.to(device)
|
| 12 |
-
midas.eval()
|
| 13 |
-
|
| 14 |
-
# Загрузка трансформаций
|
| 15 |
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
|
| 16 |
transform = midas_transforms.dpt_transform
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
#
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
else:
|
| 35 |
-
input_batch = input_tensor # Уже batch
|
| 36 |
|
| 37 |
-
#
|
| 38 |
with torch.no_grad():
|
| 39 |
prediction = midas(input_batch)
|
| 40 |
prediction = torch.nn.functional.interpolate(
|
| 41 |
prediction.unsqueeze(1),
|
| 42 |
-
size=
|
| 43 |
mode="bicubic",
|
| 44 |
-
align_corners=False
|
| 45 |
).squeeze()
|
| 46 |
|
| 47 |
-
#
|
| 48 |
depth_map = prediction.cpu().numpy()
|
| 49 |
depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
|
| 50 |
depth_map = (depth_map * 255).astype(np.uint8)
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
-
# Gradio интерфейс
|
| 56 |
iface = gr.Interface(
|
| 57 |
-
fn=
|
| 58 |
-
inputs=gr.Image(type="pil"),
|
| 59 |
-
outputs=gr.Image(type="pil"),
|
| 60 |
-
title="
|
| 61 |
-
description="
|
| 62 |
)
|
| 63 |
|
| 64 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
+
import torch
|
| 3 |
import cv2
|
| 4 |
from PIL import Image
|
| 5 |
+
from transformers import pipeline
|
| 6 |
+
import gradio as gr
|
| 7 |
|
| 8 |
+
# ===== Device Setup =====
|
| 9 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 10 |
+
device_index = 0 if torch.cuda.is_available() else -1
|
| 11 |
|
| 12 |
+
# ===== MiDaS Depth Estimation Setup =====
|
| 13 |
+
# Load MiDaS model and transforms
|
| 14 |
midas = torch.hub.load("intel-isl/MiDaS", "DPT_Large")
|
| 15 |
+
midas.to(device).eval()
|
|
|
|
|
|
|
|
|
|
| 16 |
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
|
| 17 |
transform = midas_transforms.dpt_transform
|
| 18 |
|
| 19 |
+
# ===== Segmentation Setup =====
|
| 20 |
+
segmenter = pipeline(
|
| 21 |
+
"image-segmentation",
|
| 22 |
+
model="nvidia/segformer-b0-finetuned-ade-512-512",
|
| 23 |
+
device=device_index,
|
| 24 |
+
torch_dtype=torch.float16 if device.type == "cuda" else torch.float32
|
| 25 |
+
)
|
| 26 |
|
| 27 |
+
# ===== Utility Functions =====
|
| 28 |
+
def resize_image(img: Image.Image, max_size: int = 512) -> Image.Image:
|
| 29 |
+
width, height = img.size
|
| 30 |
+
if max(width, height) > max_size:
|
| 31 |
+
ratio = max_size / max(width, height)
|
| 32 |
+
new_size = (int(width * ratio), int(height * ratio))
|
| 33 |
+
return img.resize(new_size, Image.LANCZOS)
|
| 34 |
+
return img
|
| 35 |
|
| 36 |
+
# ===== Depth Prediction =====
|
| 37 |
+
def predict_depth(image: Image.Image) -> Image.Image:
|
| 38 |
+
# Ensure input is PIL Image
|
| 39 |
+
img = image.convert('RGB') if not isinstance(image, Image.Image) else image
|
| 40 |
+
img_np = np.array(img)
|
| 41 |
|
| 42 |
+
# Convert to the format expected by MiDaS
|
| 43 |
+
input_tensor = transform(img_np).to(device)
|
| 44 |
+
input_batch = input_tensor.unsqueeze(0) if input_tensor.ndim == 3 else input_tensor
|
|
|
|
|
|
|
| 45 |
|
| 46 |
+
# Predict depth
|
| 47 |
with torch.no_grad():
|
| 48 |
prediction = midas(input_batch)
|
| 49 |
prediction = torch.nn.functional.interpolate(
|
| 50 |
prediction.unsqueeze(1),
|
| 51 |
+
size=img_np.shape[:2],
|
| 52 |
mode="bicubic",
|
| 53 |
+
align_corners=False
|
| 54 |
).squeeze()
|
| 55 |
|
| 56 |
+
# Normalize to 0-255
|
| 57 |
depth_map = prediction.cpu().numpy()
|
| 58 |
depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
|
| 59 |
depth_map = (depth_map * 255).astype(np.uint8)
|
| 60 |
+
return Image.fromarray(depth_map)
|
| 61 |
+
|
| 62 |
+
# ===== Segmentation =====
|
| 63 |
+
def segment_image(img: Image.Image) -> Image.Image:
|
| 64 |
+
img = img.convert('RGB')
|
| 65 |
+
img_resized = resize_image(img)
|
| 66 |
+
results = segmenter(img_resized)
|
| 67 |
+
|
| 68 |
+
overlay = np.array(img_resized, dtype=np.uint8)
|
| 69 |
+
for res in results:
|
| 70 |
+
mask = np.array(res["mask"], dtype=bool)
|
| 71 |
+
color = np.random.randint(50, 255, 3, dtype=np.uint8)
|
| 72 |
+
overlay[mask] = (overlay[mask] * 0.6 + color * 0.4).astype(np.uint8)
|
| 73 |
+
|
| 74 |
+
return Image.fromarray(overlay)
|
| 75 |
|
| 76 |
+
# ===== Gradio App =====
|
| 77 |
+
def predict_fn(input_img: Image.Image) -> Image.Image:
|
| 78 |
+
# 1. Compute depth map
|
| 79 |
+
depth_img = predict_depth(input_img)
|
| 80 |
+
# 2. Segment the depth map
|
| 81 |
+
seg_img = segment_image(depth_img)
|
| 82 |
+
return seg_img
|
| 83 |
|
|
|
|
| 84 |
iface = gr.Interface(
|
| 85 |
+
fn=predict_fn,
|
| 86 |
+
inputs=gr.Image(type="pil", label="Upload Image"),
|
| 87 |
+
outputs=gr.Image(type="pil", label="Segmented Depth Overlay"),
|
| 88 |
+
title="Depth-then-Segmentation Pipeline",
|
| 89 |
+
description="Upload an image. First computes a depth map via MiDaS, then applies SegFormer segmentation on the depth map."
|
| 90 |
)
|
| 91 |
|
| 92 |
if __name__ == "__main__":
|