Commit
·
0a7d9f9
1
Parent(s):
098ad40
upload
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- README.md +23 -6
- __pycache__/app_utils.cpython-310.pyc +0 -0
- __pycache__/datasets.cpython-310.pyc +0 -0
- __pycache__/vae.cpython-310.pyc +0 -0
- app.py +702 -0
- app_utils.py +435 -0
- checkpoints/a_r_s_f/mimic_beta9_gelu_dgauss_1_lr3/checkpoint.pt +3 -0
- checkpoints/a_r_s_f/mimic_dscm_lr_1e5_lagrange_lr_1_damping_10/6500_checkpoint.pt +3 -0
- checkpoints/a_r_s_f/sup_pgm_mimic/checkpoint.pt +3 -0
- checkpoints/a_r_s_f/sup_pgm_mimic/checkpoint_current.pt +3 -0
- checkpoints/m_b_v_s/sup_pgm/checkpoint.pt +3 -0
- checkpoints/m_b_v_s/ukbb192_beta5_dgauss_b33/checkpoint.pt +3 -0
- checkpoints/t_i_d/dgauss_cond_big_beta1_dropexo/checkpoint.pt +3 -0
- checkpoints/t_i_d/sup_pgm/checkpoint.pt +3 -0
- data/mimic_subset/0.jpg +0 -0
- data/mimic_subset/1.jpg +0 -0
- data/mimic_subset/10.jpg +0 -0
- data/mimic_subset/11.jpg +0 -0
- data/mimic_subset/12.jpg +0 -0
- data/mimic_subset/13.jpg +0 -0
- data/mimic_subset/14.jpg +0 -0
- data/mimic_subset/15.jpg +0 -0
- data/mimic_subset/16.jpg +0 -0
- data/mimic_subset/17.jpg +0 -0
- data/mimic_subset/18.jpg +0 -0
- data/mimic_subset/19.jpg +0 -0
- data/mimic_subset/2.jpg +0 -0
- data/mimic_subset/20.jpg +0 -0
- data/mimic_subset/21.jpg +0 -0
- data/mimic_subset/22.jpg +0 -0
- data/mimic_subset/23.jpg +0 -0
- data/mimic_subset/24.jpg +0 -0
- data/mimic_subset/25.jpg +0 -0
- data/mimic_subset/26.jpg +0 -0
- data/mimic_subset/27.jpg +0 -0
- data/mimic_subset/28.jpg +0 -0
- data/mimic_subset/29.jpg +0 -0
- data/mimic_subset/3.jpg +0 -0
- data/mimic_subset/30.jpg +0 -0
- data/mimic_subset/31.jpg +0 -0
- data/mimic_subset/32.jpg +0 -0
- data/mimic_subset/33.jpg +0 -0
- data/mimic_subset/34.jpg +0 -0
- data/mimic_subset/35.jpg +0 -0
- data/mimic_subset/36.jpg +0 -0
- data/mimic_subset/37.jpg +0 -0
- data/mimic_subset/38.jpg +0 -0
- data/mimic_subset/39.jpg +0 -0
- data/mimic_subset/4.jpg +0 -0
- data/mimic_subset/40.jpg +0 -0
README.md
CHANGED
|
@@ -1,13 +1,30 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Counterfactuals
|
| 3 |
+
emoji: 🌖
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: green
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.27.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
+
duplicated_from: fabio-deep/counterfactuals
|
| 12 |
---
|
| 13 |
|
| 14 |
+
Code for the **ICML 2023** paper:
|
| 15 |
+
|
| 16 |
+
[**High Fidelity Image Counterfactuals with Probabilistic Causal Models**](https://arxiv.org/abs/2306.15764)
|
| 17 |
+
|
| 18 |
+
Fabio De Sousa Ribeiro<sup>1</sup>, Tian Xia<sup>1</sup>, Miguel Monteiro<sup>1</sup>, Nick Pawlowski<sup>2</sup>, Ben Glocker<sup>1</sup>\
|
| 19 |
+
<sup>1</sup>Imperial College London, <sup>2</sup>Microsoft Research Cambridge, UK
|
| 20 |
+
|
| 21 |
+
```
|
| 22 |
+
@misc{ribeiro2023high,
|
| 23 |
+
title={High Fidelity Image Counterfactuals with Probabilistic Causal Models},
|
| 24 |
+
author={Fabio De Sousa Ribeiro and Tian Xia and Miguel Monteiro and Nick Pawlowski and Ben Glocker},
|
| 25 |
+
year={2023},
|
| 26 |
+
eprint={2306.15764},
|
| 27 |
+
archivePrefix={arXiv},
|
| 28 |
+
primaryClass={cs.LG}
|
| 29 |
+
}
|
| 30 |
+
```
|
__pycache__/app_utils.cpython-310.pyc
ADDED
|
Binary file (10.5 kB). View file
|
|
|
__pycache__/datasets.cpython-310.pyc
ADDED
|
Binary file (11.6 kB). View file
|
|
|
__pycache__/vae.cpython-310.pyc
ADDED
|
Binary file (13.6 kB). View file
|
|
|
app.py
ADDED
|
@@ -0,0 +1,702 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import matplotlib.pylab as plt
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
|
| 7 |
+
from vae import HVAE
|
| 8 |
+
from datasets import morphomnist, ukbb, mimic, get_attr_max_min
|
| 9 |
+
from pgm.flow_pgm import MorphoMNISTPGM, FlowPGM, ChestPGM
|
| 10 |
+
from app_utils import (
|
| 11 |
+
mnist_graph,
|
| 12 |
+
brain_graph,
|
| 13 |
+
chest_graph,
|
| 14 |
+
vae_preprocess,
|
| 15 |
+
normalize,
|
| 16 |
+
preprocess_brain,
|
| 17 |
+
get_fig_arr,
|
| 18 |
+
postprocess,
|
| 19 |
+
MidpointNormalize,
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
DATA, MODELS = {}, {}
|
| 23 |
+
for k in ["Morpho-MNIST", "Brain MRI", "Chest X-ray"]:
|
| 24 |
+
DATA[k], MODELS[k] = {}, {}
|
| 25 |
+
|
| 26 |
+
# mnist
|
| 27 |
+
DIGITS = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]
|
| 28 |
+
# brain
|
| 29 |
+
MRISEQ_CAT = ["T1", "T2-FLAIR"] # 0,1
|
| 30 |
+
SEX_CAT = ["female", "male"] # 0,1
|
| 31 |
+
HEIGHT, WIDTH = 270, 270
|
| 32 |
+
# chest
|
| 33 |
+
SEX_CAT_CHEST = ["male", "female"] # 0,1
|
| 34 |
+
RACE_CAT = ["white", "asian", "black"] # 0,1,2
|
| 35 |
+
FIND_CAT = ["no disease", "pleural effusion"]
|
| 36 |
+
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class Hparams:
|
| 40 |
+
def update(self, dict):
|
| 41 |
+
for k, v in dict.items():
|
| 42 |
+
setattr(self, k, v)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def get_paths(dataset_id):
|
| 46 |
+
if "MNIST" in dataset_id:
|
| 47 |
+
data_path = "./data/morphomnist"
|
| 48 |
+
pgm_path = "./checkpoints/t_i_d/sup_pgm/checkpoint.pt"
|
| 49 |
+
vae_path = "./checkpoints/t_i_d/dgauss_cond_big_beta1_dropexo/checkpoint.pt"
|
| 50 |
+
elif "Brain" in dataset_id:
|
| 51 |
+
data_path = "./data/ukbb_subset"
|
| 52 |
+
pgm_path = "./checkpoints/m_b_v_s/sup_pgm/checkpoint.pt"
|
| 53 |
+
vae_path = "./checkpoints/m_b_v_s/ukbb192_beta5_dgauss_b33/checkpoint.pt"
|
| 54 |
+
elif "Chest" in dataset_id:
|
| 55 |
+
data_path = "./data/mimic_subset"
|
| 56 |
+
pgm_path = "./checkpoints/a_r_s_f/sup_pgm_mimic/checkpoint.pt"
|
| 57 |
+
vae_path = [
|
| 58 |
+
"./checkpoints/a_r_s_f/mimic_beta9_gelu_dgauss_1_lr3/checkpoint.pt", # base vae
|
| 59 |
+
"./checkpoints/a_r_s_f/mimic_dscm_lr_1e5_lagrange_lr_1_damping_10/6500_checkpoint.pt", # cf trained DSCM
|
| 60 |
+
]
|
| 61 |
+
return data_path, vae_path, pgm_path
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def load_pgm(dataset_id, pgm_path):
|
| 65 |
+
checkpoint = torch.load(pgm_path, map_location=DEVICE)
|
| 66 |
+
args = Hparams()
|
| 67 |
+
args.update(checkpoint["hparams"])
|
| 68 |
+
args.device = DEVICE
|
| 69 |
+
if "MNIST" in dataset_id:
|
| 70 |
+
pgm = MorphoMNISTPGM(args).to(args.device)
|
| 71 |
+
elif "Brain" in dataset_id:
|
| 72 |
+
pgm = FlowPGM(args).to(args.device)
|
| 73 |
+
elif "Chest" in dataset_id:
|
| 74 |
+
pgm = ChestPGM(args).to(args.device)
|
| 75 |
+
pgm.load_state_dict(checkpoint["ema_model_state_dict"])
|
| 76 |
+
MODELS[dataset_id]["pgm"] = pgm
|
| 77 |
+
MODELS[dataset_id]["pgm_args"] = args
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def load_vae(dataset_id, vae_path):
|
| 81 |
+
if "Chest" in dataset_id:
|
| 82 |
+
vae_path, dscm_path = vae_path[0], vae_path[1]
|
| 83 |
+
checkpoint = torch.load(vae_path, map_location=DEVICE)
|
| 84 |
+
args = Hparams()
|
| 85 |
+
args.update(checkpoint["hparams"])
|
| 86 |
+
# backwards compatibility hack
|
| 87 |
+
if not hasattr(args, "vae"):
|
| 88 |
+
args.vae = "hierarchical"
|
| 89 |
+
if not hasattr(args, "cond_prior"):
|
| 90 |
+
args.cond_prior = False
|
| 91 |
+
if hasattr(args, "free_bits"):
|
| 92 |
+
args.kl_free_bits = args.free_bits
|
| 93 |
+
args.device = DEVICE
|
| 94 |
+
vae = HVAE(args).to(args.device)
|
| 95 |
+
|
| 96 |
+
if "Chest" in dataset_id:
|
| 97 |
+
dscm_ckpt = torch.load(dscm_path, map_location=DEVICE)
|
| 98 |
+
vae.load_state_dict(
|
| 99 |
+
{
|
| 100 |
+
k[4:]: v
|
| 101 |
+
for k, v in dscm_ckpt["ema_model_state_dict"].items()
|
| 102 |
+
if "vae." in k
|
| 103 |
+
}
|
| 104 |
+
)
|
| 105 |
+
else:
|
| 106 |
+
vae.load_state_dict(checkpoint["ema_model_state_dict"])
|
| 107 |
+
MODELS[dataset_id]["vae"] = vae
|
| 108 |
+
MODELS[dataset_id]["vae_args"] = args
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def get_dataloader(dataset_id, data_path):
|
| 112 |
+
MODELS[dataset_id]["pgm_args"].data_dir = data_path
|
| 113 |
+
args = MODELS[dataset_id]["pgm_args"]
|
| 114 |
+
if "MNIST" in dataset_id:
|
| 115 |
+
datasets = morphomnist(args)
|
| 116 |
+
elif "Brain" in dataset_id:
|
| 117 |
+
datasets = ukbb(args)
|
| 118 |
+
elif "Chest" in dataset_id:
|
| 119 |
+
datasets = mimic(args)
|
| 120 |
+
DATA[dataset_id]["test"] = torch.utils.data.DataLoader(
|
| 121 |
+
datasets["test"], shuffle=False, batch_size=args.bs, num_workers=4
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def load_dataset(dataset_id):
|
| 126 |
+
data_path, _, pgm_path = get_paths(dataset_id)
|
| 127 |
+
checkpoint = torch.load(pgm_path, map_location=DEVICE)
|
| 128 |
+
args = Hparams()
|
| 129 |
+
args.update(checkpoint["hparams"])
|
| 130 |
+
args.device = DEVICE
|
| 131 |
+
MODELS[dataset_id]["pgm_args"] = args
|
| 132 |
+
get_dataloader(dataset_id, data_path)
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def load_model(dataset_id):
|
| 136 |
+
_, vae_path, pgm_path = get_paths(dataset_id)
|
| 137 |
+
load_pgm(dataset_id, pgm_path)
|
| 138 |
+
load_vae(dataset_id, vae_path)
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
@torch.no_grad()
|
| 142 |
+
def counterfactual_inference(dataset_id, obs, do_pa):
|
| 143 |
+
pa = {k: v.clone() for k, v in obs.items() if k != "x"}
|
| 144 |
+
cf_pa = MODELS[dataset_id]["pgm"].counterfactual(
|
| 145 |
+
obs=pa, intervention=do_pa, num_particles=1
|
| 146 |
+
)
|
| 147 |
+
args, vae = MODELS[dataset_id]["vae_args"], MODELS[dataset_id]["vae"]
|
| 148 |
+
_pa = vae_preprocess(args, {k: v.clone() for k, v in pa.items()})
|
| 149 |
+
_cf_pa = vae_preprocess(args, {k: v.clone() for k, v in cf_pa.items()})
|
| 150 |
+
z_t = 0.1 if "mnist" in args.hps else 1.0
|
| 151 |
+
z = vae.abduct(x=obs["x"], parents=_pa, t=z_t)
|
| 152 |
+
if vae.cond_prior:
|
| 153 |
+
z = [z[j]["z"] for j in range(len(z))]
|
| 154 |
+
px_loc, px_scale = vae.forward_latents(latents=z, parents=_pa)
|
| 155 |
+
cf_loc, cf_scale = vae.forward_latents(latents=z, parents=_cf_pa)
|
| 156 |
+
u = (obs["x"] - px_loc) / px_scale.clamp(min=1e-12)
|
| 157 |
+
u_t = 0.1 if "mnist" in args.hps else 1.0 # cf sampling temp
|
| 158 |
+
cf_scale = cf_scale * u_t
|
| 159 |
+
cf_x = torch.clamp(cf_loc + cf_scale * u, min=-1, max=1)
|
| 160 |
+
return {"cf_x": cf_x, "rec_x": px_loc, "cf_pa": cf_pa}
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
def get_obs_item(dataset_id, idx=None):
|
| 164 |
+
if idx is None:
|
| 165 |
+
n_test = len(DATA[dataset_id]["test"].dataset)
|
| 166 |
+
idx = torch.randperm(n_test)[0]
|
| 167 |
+
idx = int(idx)
|
| 168 |
+
return idx, DATA[dataset_id]["test"].dataset.__getitem__(idx)
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
def get_mnist_obs(idx=None):
|
| 172 |
+
dataset_id = "Morpho-MNIST"
|
| 173 |
+
if not DATA[dataset_id]:
|
| 174 |
+
load_dataset(dataset_id)
|
| 175 |
+
idx, obs = get_obs_item(dataset_id, idx)
|
| 176 |
+
x = get_fig_arr(obs["x"].clone().squeeze().numpy())
|
| 177 |
+
t = (obs["thickness"].clone() + 1) / 2 * (6.255515 - 0.87598526) + 0.87598526
|
| 178 |
+
i = (obs["intensity"].clone() + 1) / 2 * (254.90317 - 66.601204) + 66.601204
|
| 179 |
+
y = DIGITS[obs["digit"].clone().argmax(-1)]
|
| 180 |
+
return (idx, x, float(np.round(t, 2)), float(np.round(i, 2)), y)
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
def get_brain_obs(idx=None):
|
| 184 |
+
dataset_id = "Brain MRI"
|
| 185 |
+
if not DATA[dataset_id]:
|
| 186 |
+
load_dataset(dataset_id)
|
| 187 |
+
idx, obs = get_obs_item(dataset_id, idx)
|
| 188 |
+
x = get_fig_arr(obs["x"].clone().squeeze().numpy())
|
| 189 |
+
m = MRISEQ_CAT[int(obs["mri_seq"].clone().item())]
|
| 190 |
+
s = SEX_CAT[int(obs["sex"].clone().item())]
|
| 191 |
+
a = obs["age"].clone().item()
|
| 192 |
+
b = obs["brain_volume"].clone().item() / 1000 # in ml
|
| 193 |
+
v = obs["ventricle_volume"].clone().item() / 1000 # in ml
|
| 194 |
+
return (idx, x, m, s, a, float(np.round(b, 2)), float(np.round(v, 2)))
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
def get_chest_obs(idx=None):
|
| 198 |
+
dataset_id = "Chest X-ray"
|
| 199 |
+
if not DATA[dataset_id]:
|
| 200 |
+
load_dataset(dataset_id)
|
| 201 |
+
idx, obs = get_obs_item(dataset_id, idx)
|
| 202 |
+
x = get_fig_arr(postprocess(obs["x"].clone()))
|
| 203 |
+
s = SEX_CAT_CHEST[int(obs["sex"].clone().squeeze().numpy())]
|
| 204 |
+
f = FIND_CAT[int(obs["finding"].clone().squeeze().numpy())]
|
| 205 |
+
r = RACE_CAT[obs["race"].clone().squeeze().numpy().argmax(-1)]
|
| 206 |
+
a = (obs["age"].clone().squeeze().numpy() + 1) * 50
|
| 207 |
+
return (idx, x, r, s, f, float(np.round(a, 1)))
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
def infer_mnist_cf(*args):
|
| 211 |
+
dataset_id = "Morpho-MNIST"
|
| 212 |
+
idx, _, t, i, y, do_t, do_i, do_y = args
|
| 213 |
+
n_particles = 32
|
| 214 |
+
# preprocess
|
| 215 |
+
obs = DATA[dataset_id]["test"].dataset.__getitem__(int(idx))
|
| 216 |
+
obs["x"] = (obs["x"] - 127.5) / 127.5
|
| 217 |
+
for k, v in obs.items():
|
| 218 |
+
obs[k] = v.view(1, 1) if len(v.shape) < 1 else v.unsqueeze(0)
|
| 219 |
+
obs[k] = obs[k].to(MODELS[dataset_id]["vae_args"].device).float()
|
| 220 |
+
if n_particles > 1:
|
| 221 |
+
ndims = (1,) * 3 if k == "x" else (1,)
|
| 222 |
+
obs[k] = obs[k].repeat(n_particles, *ndims)
|
| 223 |
+
# intervention(s)
|
| 224 |
+
do_pa = {}
|
| 225 |
+
if do_t:
|
| 226 |
+
do_pa["thickness"] = torch.tensor(
|
| 227 |
+
normalize(t, x_max=6.255515, x_min=0.87598526)
|
| 228 |
+
).view(1, 1)
|
| 229 |
+
if do_i:
|
| 230 |
+
do_pa["intensity"] = torch.tensor(
|
| 231 |
+
normalize(i, x_max=254.90317, x_min=66.601204)
|
| 232 |
+
).view(1, 1)
|
| 233 |
+
if do_y:
|
| 234 |
+
do_pa["digit"] = F.one_hot(torch.tensor(DIGITS.index(y)), num_classes=10).view(
|
| 235 |
+
1, 10
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
for k, v in do_pa.items():
|
| 239 |
+
do_pa[k] = (
|
| 240 |
+
v.to(MODELS[dataset_id]["vae_args"].device).float().repeat(n_particles, 1)
|
| 241 |
+
)
|
| 242 |
+
# infer counterfactual
|
| 243 |
+
out = counterfactual_inference(dataset_id, obs, do_pa)
|
| 244 |
+
# avg cf particles
|
| 245 |
+
cf_x = out["cf_x"].mean(0)
|
| 246 |
+
cf_x_std = out["cf_x"].std(0)
|
| 247 |
+
rec_x = out["rec_x"].mean(0)
|
| 248 |
+
cf_t = out["cf_pa"]["thickness"].mean(0)
|
| 249 |
+
cf_i = out["cf_pa"]["intensity"].mean(0)
|
| 250 |
+
cf_y = out["cf_pa"]["digit"].mean(0)
|
| 251 |
+
# post process
|
| 252 |
+
cf_x = postprocess(cf_x)
|
| 253 |
+
cf_x_std = cf_x_std.squeeze().detach().cpu().numpy()
|
| 254 |
+
rec_x = postprocess(rec_x)
|
| 255 |
+
cf_t = np.round((cf_t.item() + 1) / 2 * (6.255515 - 0.87598526) + 0.87598526, 2)
|
| 256 |
+
cf_i = np.round((cf_i.item() + 1) / 2 * (254.90317 - 66.601204) + 66.601204, 2)
|
| 257 |
+
cf_y = DIGITS[cf_y.argmax(-1)]
|
| 258 |
+
# plots
|
| 259 |
+
# plt.close('all')
|
| 260 |
+
effect = cf_x - rec_x
|
| 261 |
+
effect = get_fig_arr(
|
| 262 |
+
effect, cmap="RdBu_r", norm=MidpointNormalize(vmin=-255, midpoint=0, vmax=255)
|
| 263 |
+
)
|
| 264 |
+
cf_x = get_fig_arr(cf_x)
|
| 265 |
+
cf_x_std = get_fig_arr(cf_x_std, cmap="jet")
|
| 266 |
+
return (cf_x, cf_x_std, effect, cf_t, cf_i, cf_y)
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
def infer_brain_cf(*args):
|
| 270 |
+
dataset_id = "Brain MRI"
|
| 271 |
+
idx, _, m, s, a, b, v = args[:7]
|
| 272 |
+
do_m, do_s, do_a, do_b, do_v = args[7:]
|
| 273 |
+
n_particles = 16
|
| 274 |
+
# preprocessing
|
| 275 |
+
obs = DATA[dataset_id]["test"].dataset.__getitem__(int(idx))
|
| 276 |
+
obs = preprocess_brain(MODELS[dataset_id]["vae_args"], obs)
|
| 277 |
+
for k, _v in obs.items():
|
| 278 |
+
if n_particles > 1:
|
| 279 |
+
ndims = (1,) * 3 if k == "x" else (1,)
|
| 280 |
+
obs[k] = _v.repeat(n_particles, *ndims)
|
| 281 |
+
# interventions(s)
|
| 282 |
+
do_pa = {}
|
| 283 |
+
if do_m:
|
| 284 |
+
do_pa["mri_seq"] = torch.tensor(MRISEQ_CAT.index(m)).view(1, 1)
|
| 285 |
+
if do_s:
|
| 286 |
+
do_pa["sex"] = torch.tensor(SEX_CAT.index(s)).view(1, 1)
|
| 287 |
+
if do_a:
|
| 288 |
+
do_pa["age"] = torch.tensor(a).view(1, 1)
|
| 289 |
+
if do_b:
|
| 290 |
+
do_pa["brain_volume"] = torch.tensor(b * 1000).view(1, 1)
|
| 291 |
+
if do_v:
|
| 292 |
+
do_pa["ventricle_volume"] = torch.tensor(v * 1000).view(1, 1)
|
| 293 |
+
# normalize continuous attributes
|
| 294 |
+
for k in ["age", "brain_volume", "ventricle_volume"]:
|
| 295 |
+
if k in do_pa.keys():
|
| 296 |
+
k_max, k_min = get_attr_max_min(k)
|
| 297 |
+
do_pa[k] = (do_pa[k] - k_min) / (k_max - k_min) # [0,1]
|
| 298 |
+
do_pa[k] = 2 * do_pa[k] - 1 # [-1,1]
|
| 299 |
+
|
| 300 |
+
for k, _v in do_pa.items():
|
| 301 |
+
do_pa[k] = (
|
| 302 |
+
_v.to(MODELS[dataset_id]["vae_args"].device).float().repeat(n_particles, 1)
|
| 303 |
+
)
|
| 304 |
+
# infer counterfactual
|
| 305 |
+
out = counterfactual_inference(dataset_id, obs, do_pa)
|
| 306 |
+
# avg cf particles
|
| 307 |
+
cf_x = out["cf_x"].mean(0)
|
| 308 |
+
cf_x_std = out["cf_x"].std(0)
|
| 309 |
+
rec_x = out["rec_x"].mean(0)
|
| 310 |
+
cf_m = out["cf_pa"]["mri_seq"].mean(0)
|
| 311 |
+
cf_s = out["cf_pa"]["sex"].mean(0)
|
| 312 |
+
# post process
|
| 313 |
+
cf_x = postprocess(cf_x)
|
| 314 |
+
cf_x_std = cf_x_std.squeeze().detach().cpu().numpy()
|
| 315 |
+
rec_x = postprocess(rec_x)
|
| 316 |
+
cf_m = MRISEQ_CAT[int(cf_m.item())]
|
| 317 |
+
cf_s = SEX_CAT[int(cf_s.item())]
|
| 318 |
+
cf_ = {}
|
| 319 |
+
for k in ["age", "brain_volume", "ventricle_volume"]: # unnormalize
|
| 320 |
+
k_max, k_min = get_attr_max_min(k)
|
| 321 |
+
cf_[k] = (out["cf_pa"][k].mean(0).item() + 1) / 2 * (k_max - k_min) + k_min
|
| 322 |
+
# plots
|
| 323 |
+
# plt.close('all')
|
| 324 |
+
effect = cf_x - rec_x
|
| 325 |
+
effect = get_fig_arr(
|
| 326 |
+
effect,
|
| 327 |
+
cmap="RdBu_r",
|
| 328 |
+
norm=MidpointNormalize(vmin=effect.min(), midpoint=0, vmax=effect.max()),
|
| 329 |
+
)
|
| 330 |
+
cf_x = get_fig_arr(cf_x)
|
| 331 |
+
cf_x_std = get_fig_arr(cf_x_std, cmap="jet")
|
| 332 |
+
return (
|
| 333 |
+
cf_x,
|
| 334 |
+
cf_x_std,
|
| 335 |
+
effect,
|
| 336 |
+
cf_m,
|
| 337 |
+
cf_s,
|
| 338 |
+
np.round(cf_["age"], 1),
|
| 339 |
+
np.round(cf_["brain_volume"] / 1000, 2),
|
| 340 |
+
np.round(cf_["ventricle_volume"] / 1000, 2),
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
|
| 344 |
+
def infer_chest_cf(*args):
|
| 345 |
+
dataset_id = "Chest X-ray"
|
| 346 |
+
idx, _, r, s, f, a = args[:6]
|
| 347 |
+
do_r, do_s, do_f, do_a = args[6:]
|
| 348 |
+
n_particles = 16
|
| 349 |
+
# preprocessing
|
| 350 |
+
obs = DATA[dataset_id]["test"].dataset.__getitem__(int(idx))
|
| 351 |
+
for k, v in obs.items():
|
| 352 |
+
obs[k] = v.to(MODELS[dataset_id]["vae_args"].device).float()
|
| 353 |
+
if n_particles > 1:
|
| 354 |
+
ndims = (1,) * 3 if k == "x" else (1,)
|
| 355 |
+
obs[k] = obs[k].repeat(n_particles, *ndims)
|
| 356 |
+
# intervention(s)
|
| 357 |
+
do_pa = {}
|
| 358 |
+
with torch.no_grad():
|
| 359 |
+
if do_s:
|
| 360 |
+
do_pa["sex"] = torch.tensor(SEX_CAT_CHEST.index(s)).view(1, 1)
|
| 361 |
+
if do_f:
|
| 362 |
+
do_pa["finding"] = torch.tensor(FIND_CAT.index(f)).view(1, 1)
|
| 363 |
+
if do_r:
|
| 364 |
+
do_pa["race"] = F.one_hot(
|
| 365 |
+
torch.tensor(RACE_CAT.index(r)), num_classes=3
|
| 366 |
+
).view(1, 3)
|
| 367 |
+
if do_a:
|
| 368 |
+
do_pa["age"] = torch.tensor(a / 100 * 2 - 1).view(1, 1)
|
| 369 |
+
for k, v in do_pa.items():
|
| 370 |
+
do_pa[k] = (
|
| 371 |
+
v.to(MODELS[dataset_id]["vae_args"].device).float().repeat(n_particles, 1)
|
| 372 |
+
)
|
| 373 |
+
# infer counterfactual
|
| 374 |
+
out = counterfactual_inference(dataset_id, obs, do_pa)
|
| 375 |
+
# avg cf particles
|
| 376 |
+
cf_x = out["cf_x"].mean(0)
|
| 377 |
+
cf_x_std = out["cf_x"].std(0)
|
| 378 |
+
rec_x = out["rec_x"].mean(0)
|
| 379 |
+
cf_r = out["cf_pa"]["race"].mean(0)
|
| 380 |
+
cf_s = out["cf_pa"]["sex"].mean(0)
|
| 381 |
+
cf_f = out["cf_pa"]["finding"].mean(0)
|
| 382 |
+
cf_a = out["cf_pa"]["age"].mean(0)
|
| 383 |
+
# post process
|
| 384 |
+
cf_x = postprocess(cf_x)
|
| 385 |
+
cf_x_std = cf_x_std.squeeze().detach().cpu().numpy()
|
| 386 |
+
rec_x = postprocess(rec_x)
|
| 387 |
+
cf_r = RACE_CAT[cf_r.argmax(-1)]
|
| 388 |
+
cf_s = SEX_CAT_CHEST[int(cf_s.item())]
|
| 389 |
+
cf_f = FIND_CAT[int(cf_f.item())]
|
| 390 |
+
cf_a = (cf_a.item() + 1) * 50
|
| 391 |
+
# plots
|
| 392 |
+
# plt.close('all')
|
| 393 |
+
effect = cf_x - rec_x
|
| 394 |
+
effect = get_fig_arr(
|
| 395 |
+
effect,
|
| 396 |
+
cmap="RdBu_r",
|
| 397 |
+
norm=MidpointNormalize(vmin=effect.min(), midpoint=0, vmax=effect.max()),
|
| 398 |
+
)
|
| 399 |
+
cf_x = get_fig_arr(cf_x)
|
| 400 |
+
cf_x_std = get_fig_arr(cf_x_std, cmap="jet")
|
| 401 |
+
return (cf_x, cf_x_std, effect, cf_r, cf_s, cf_f, np.round(cf_a, 1))
|
| 402 |
+
|
| 403 |
+
|
| 404 |
+
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
| 405 |
+
gr.Markdown("# VIOS-Group/High Fidelity Image Counterfactuals with Probabilistic Causal Models")
|
| 406 |
+
with gr.Tabs():
|
| 407 |
+
with gr.TabItem("Morpho-MNIST") as mnist_tab:
|
| 408 |
+
mnist_id = gr.Textbox(value=mnist_tab.label, visible=False)
|
| 409 |
+
|
| 410 |
+
with gr.Row().style(equal_height=True):
|
| 411 |
+
idx = gr.Number(value=0, visible=False)
|
| 412 |
+
with gr.Column(scale=1, min_width=200):
|
| 413 |
+
x = gr.Image(label="Observation", interactive=False).style(
|
| 414 |
+
height=HEIGHT
|
| 415 |
+
)
|
| 416 |
+
with gr.Column(scale=1, min_width=200):
|
| 417 |
+
cf_x = gr.Image(label="Counterfactual", interactive=False).style(
|
| 418 |
+
height=HEIGHT
|
| 419 |
+
)
|
| 420 |
+
with gr.Column(scale=1, min_width=200):
|
| 421 |
+
cf_x_std = gr.Image(
|
| 422 |
+
label="Counterfactual Uncertainty", interactive=False
|
| 423 |
+
).style(height=HEIGHT)
|
| 424 |
+
with gr.Column(scale=1, min_width=200):
|
| 425 |
+
effect = gr.Image(
|
| 426 |
+
label="Direct Causal Effect", interactive=False
|
| 427 |
+
).style(height=HEIGHT)
|
| 428 |
+
with gr.Row().style(equal_height=True):
|
| 429 |
+
with gr.Column(scale=1.75):
|
| 430 |
+
gr.Markdown(
|
| 431 |
+
"**Intervention**"
|
| 432 |
+
)
|
| 433 |
+
with gr.Column():
|
| 434 |
+
do_y = gr.Checkbox(label="do(digit)", value=False)
|
| 435 |
+
y = gr.Radio(DIGITS, label="", interactive=False)
|
| 436 |
+
with gr.Row():
|
| 437 |
+
with gr.Column(min_width=100):
|
| 438 |
+
do_t = gr.Checkbox(label="do(thickness)", value=False)
|
| 439 |
+
t = gr.Slider(
|
| 440 |
+
label="\u00A0",
|
| 441 |
+
minimum=0.9,
|
| 442 |
+
maximum=5.5,
|
| 443 |
+
step=0.01,
|
| 444 |
+
interactive=False,
|
| 445 |
+
)
|
| 446 |
+
with gr.Column(min_width=100):
|
| 447 |
+
do_i = gr.Checkbox(label="do(intensity)", value=False)
|
| 448 |
+
i = gr.Slider(
|
| 449 |
+
label="\u00A0",
|
| 450 |
+
minimum=50,
|
| 451 |
+
maximum=255,
|
| 452 |
+
step=0.01,
|
| 453 |
+
interactive=False,
|
| 454 |
+
)
|
| 455 |
+
with gr.Row():
|
| 456 |
+
new = gr.Button("New Observation")
|
| 457 |
+
reset = gr.Button("Reset", variant="stop")
|
| 458 |
+
submit = gr.Button("Submit", variant="primary")
|
| 459 |
+
with gr.Column(scale=1):
|
| 460 |
+
gr.Markdown("### ")
|
| 461 |
+
causal_graph = gr.Image(
|
| 462 |
+
label="Causal Graph", interactive=False
|
| 463 |
+
).style(height=300)
|
| 464 |
+
|
| 465 |
+
with gr.TabItem("Brain MRI") as brain_tab:
|
| 466 |
+
brain_id = gr.Textbox(value=brain_tab.label, visible=False)
|
| 467 |
+
|
| 468 |
+
with gr.Row().style(equal_height=True):
|
| 469 |
+
idx_brain = gr.Number(value=0, visible=False)
|
| 470 |
+
with gr.Column(scale=1, min_width=200):
|
| 471 |
+
x_brain = gr.Image(label="Observation", interactive=False).style(
|
| 472 |
+
height=HEIGHT
|
| 473 |
+
)
|
| 474 |
+
with gr.Column(scale=1, min_width=200):
|
| 475 |
+
cf_x_brain = gr.Image(
|
| 476 |
+
label="Counterfactual", interactive=False
|
| 477 |
+
).style(height=HEIGHT)
|
| 478 |
+
with gr.Column(scale=1, min_width=200):
|
| 479 |
+
cf_x_std_brain = gr.Image(
|
| 480 |
+
label="Counterfactual Uncertainty", interactive=False
|
| 481 |
+
).style(height=HEIGHT)
|
| 482 |
+
with gr.Column(scale=1, min_width=200):
|
| 483 |
+
effect_brain = gr.Image(
|
| 484 |
+
label="Direct Causal Effect", interactive=False
|
| 485 |
+
).style(height=HEIGHT)
|
| 486 |
+
with gr.Row():
|
| 487 |
+
with gr.Column(scale=2.55):
|
| 488 |
+
gr.Markdown(
|
| 489 |
+
"**Intervention**"
|
| 490 |
+
)
|
| 491 |
+
with gr.Row():
|
| 492 |
+
with gr.Column(min_width=200):
|
| 493 |
+
do_m = gr.Checkbox(label="do(MRI sequence)", value=False)
|
| 494 |
+
m = gr.Radio(
|
| 495 |
+
["T1", "T2-FLAIR"], label="", interactive=False
|
| 496 |
+
)
|
| 497 |
+
with gr.Column(min_width=200):
|
| 498 |
+
do_s = gr.Checkbox(label="do(sex)", value=False)
|
| 499 |
+
s = gr.Radio(
|
| 500 |
+
["female", "male"], label="", interactive=False
|
| 501 |
+
)
|
| 502 |
+
with gr.Row():
|
| 503 |
+
with gr.Column(min_width=100):
|
| 504 |
+
do_a = gr.Checkbox(label="do(age)", value=False)
|
| 505 |
+
a = gr.Slider(
|
| 506 |
+
label="\u00A0",
|
| 507 |
+
value=50,
|
| 508 |
+
minimum=44,
|
| 509 |
+
maximum=73,
|
| 510 |
+
step=1,
|
| 511 |
+
interactive=False,
|
| 512 |
+
)
|
| 513 |
+
with gr.Column(min_width=100):
|
| 514 |
+
do_b = gr.Checkbox(label="do(brain volume)", value=False)
|
| 515 |
+
b = gr.Slider(
|
| 516 |
+
label="\u00A0",
|
| 517 |
+
value=1000,
|
| 518 |
+
minimum=850,
|
| 519 |
+
maximum=1550,
|
| 520 |
+
step=20,
|
| 521 |
+
interactive=False,
|
| 522 |
+
)
|
| 523 |
+
with gr.Column(min_width=100):
|
| 524 |
+
do_v = gr.Checkbox(
|
| 525 |
+
label="do(ventricle volume)", value=False
|
| 526 |
+
)
|
| 527 |
+
v = gr.Slider(
|
| 528 |
+
label="\u00A0",
|
| 529 |
+
value=40,
|
| 530 |
+
minimum=10,
|
| 531 |
+
maximum=125,
|
| 532 |
+
step=2,
|
| 533 |
+
interactive=False,
|
| 534 |
+
)
|
| 535 |
+
with gr.Row():
|
| 536 |
+
new_brain = gr.Button("New Observation")
|
| 537 |
+
reset_brain = gr.Button("Reset", variant="stop")
|
| 538 |
+
submit_brain = gr.Button("Submit", variant="primary")
|
| 539 |
+
with gr.Column(scale=1):
|
| 540 |
+
# gr.Markdown("### ")
|
| 541 |
+
causal_graph_brain = gr.Image(
|
| 542 |
+
label="Causal Graph", interactive=False
|
| 543 |
+
).style(height=340)
|
| 544 |
+
|
| 545 |
+
with gr.TabItem("Chest X-ray") as chest_tab:
|
| 546 |
+
chest_id = gr.Textbox(value=chest_tab.label, visible=False)
|
| 547 |
+
|
| 548 |
+
with gr.Row().style(equal_height=True):
|
| 549 |
+
idx_chest = gr.Number(value=0, visible=False)
|
| 550 |
+
with gr.Column(scale=1, min_width=200):
|
| 551 |
+
x_chest = gr.Image(label="Observation", interactive=False).style(
|
| 552 |
+
height=HEIGHT
|
| 553 |
+
)
|
| 554 |
+
with gr.Column(scale=1, min_width=200):
|
| 555 |
+
cf_x_chest = gr.Image(
|
| 556 |
+
label="Counterfactual", interactive=False
|
| 557 |
+
).style(height=HEIGHT)
|
| 558 |
+
with gr.Column(scale=1, min_width=200):
|
| 559 |
+
cf_x_std_chest = gr.Image(
|
| 560 |
+
label="Counterfactual Uncertainty", interactive=False
|
| 561 |
+
).style(height=HEIGHT)
|
| 562 |
+
with gr.Column(scale=1, min_width=200):
|
| 563 |
+
effect_chest = gr.Image(
|
| 564 |
+
label="Direct Causal Effect", interactive=False
|
| 565 |
+
).style(height=HEIGHT)
|
| 566 |
+
|
| 567 |
+
with gr.Row():
|
| 568 |
+
with gr.Column(scale=2.55):
|
| 569 |
+
gr.Markdown(
|
| 570 |
+
"**Intervention**"
|
| 571 |
+
)
|
| 572 |
+
with gr.Row().style(equal_height=True):
|
| 573 |
+
with gr.Column(min_width=200):
|
| 574 |
+
do_f_chest = gr.Checkbox(label="do(disease)", value=False)
|
| 575 |
+
f_chest = gr.Radio(FIND_CAT, label="", interactive=False)
|
| 576 |
+
with gr.Column(min_width=200):
|
| 577 |
+
do_s_chest = gr.Checkbox(label="do(sex)", value=False)
|
| 578 |
+
s_chest = gr.Radio(
|
| 579 |
+
SEX_CAT_CHEST, label="", interactive=False
|
| 580 |
+
)
|
| 581 |
+
|
| 582 |
+
with gr.Row():
|
| 583 |
+
with gr.Column(min_width=200):
|
| 584 |
+
do_r_chest = gr.Checkbox(label="do(race)", value=False)
|
| 585 |
+
r_chest = gr.Radio(RACE_CAT, label="", interactive=False)
|
| 586 |
+
with gr.Column(min_width=200):
|
| 587 |
+
do_a_chest = gr.Checkbox(label="do(age)", value=False)
|
| 588 |
+
a_chest = gr.Slider(
|
| 589 |
+
label="\u00A0", minimum=18, maximum=98, step=1
|
| 590 |
+
)
|
| 591 |
+
|
| 592 |
+
with gr.Row():
|
| 593 |
+
new_chest = gr.Button("New Observation")
|
| 594 |
+
reset_chest = gr.Button("Reset", variant="stop")
|
| 595 |
+
submit_chest = gr.Button("Submit", variant="primary")
|
| 596 |
+
with gr.Column(scale=1):
|
| 597 |
+
# gr.Markdown("### ")
|
| 598 |
+
causal_graph_chest = gr.Image(
|
| 599 |
+
label="Causal Graph", interactive=False
|
| 600 |
+
).style(height=345)
|
| 601 |
+
|
| 602 |
+
# morphomnist
|
| 603 |
+
do = [do_t, do_i, do_y]
|
| 604 |
+
obs = [idx, x, t, i, y]
|
| 605 |
+
cf_out = [cf_x, cf_x_std, effect]
|
| 606 |
+
|
| 607 |
+
# brain
|
| 608 |
+
do_brain = [do_m, do_s, do_a, do_b, do_v] # intervention checkboxes
|
| 609 |
+
obs_brain = [idx_brain, x_brain, m, s, a, b, v] # observed image/attributes
|
| 610 |
+
cf_out_brain = [cf_x_brain, cf_x_std_brain, effect_brain] # counterfactual outputs
|
| 611 |
+
|
| 612 |
+
# chest
|
| 613 |
+
do_chest = [do_r_chest, do_s_chest, do_f_chest, do_a_chest]
|
| 614 |
+
obs_chest = [idx_chest, x_chest, r_chest, s_chest, f_chest, a_chest]
|
| 615 |
+
cf_out_chest = [cf_x_chest, cf_x_std_chest, effect_chest]
|
| 616 |
+
|
| 617 |
+
# on start: load new observations & causal graph
|
| 618 |
+
demo.load(fn=get_mnist_obs, inputs=None, outputs=obs)
|
| 619 |
+
demo.load(fn=mnist_graph, inputs=do, outputs=causal_graph)
|
| 620 |
+
demo.load(fn=load_model, inputs=mnist_id, outputs=None)
|
| 621 |
+
demo.load(fn=get_brain_obs, inputs=None, outputs=obs_brain)
|
| 622 |
+
demo.load(fn=get_chest_obs, inputs=None, outputs=obs_chest)
|
| 623 |
+
|
| 624 |
+
demo.load(fn=brain_graph, inputs=do_brain, outputs=causal_graph_brain)
|
| 625 |
+
demo.load(fn=chest_graph, inputs=do_chest, outputs=causal_graph_chest)
|
| 626 |
+
|
| 627 |
+
# on tab select: load models
|
| 628 |
+
brain_tab.select(fn=load_model, inputs=brain_id, outputs=None)
|
| 629 |
+
chest_tab.select(fn=load_model, inputs=chest_id, outputs=None)
|
| 630 |
+
|
| 631 |
+
# "new" button: load new observations
|
| 632 |
+
new.click(fn=get_mnist_obs, inputs=None, outputs=obs)
|
| 633 |
+
new_chest.click(fn=get_chest_obs, inputs=None, outputs=obs_chest)
|
| 634 |
+
new_brain.click(fn=get_brain_obs, inputs=None, outputs=obs_brain)
|
| 635 |
+
|
| 636 |
+
# "new" button: reset causal graphs
|
| 637 |
+
new.click(fn=mnist_graph, inputs=do, outputs=causal_graph)
|
| 638 |
+
new_brain.click(fn=brain_graph, inputs=do_brain, outputs=causal_graph_brain)
|
| 639 |
+
new_chest.click(fn=chest_graph, inputs=do_chest, outputs=causal_graph_chest)
|
| 640 |
+
|
| 641 |
+
# "new" button: reset cf output panels
|
| 642 |
+
for _k, _v in zip(
|
| 643 |
+
[new, new_brain, new_chest], [cf_out, cf_out_brain, cf_out_chest]
|
| 644 |
+
):
|
| 645 |
+
_k.click(fn=lambda: (gr.update(value=None),) * 3, inputs=None, outputs=_v)
|
| 646 |
+
|
| 647 |
+
# "reset" button: reload current observations
|
| 648 |
+
reset.click(fn=get_mnist_obs, inputs=idx, outputs=obs)
|
| 649 |
+
reset_brain.click(fn=get_brain_obs, inputs=idx_brain, outputs=obs_brain)
|
| 650 |
+
reset_chest.click(fn=get_chest_obs, inputs=idx_chest, outputs=obs_chest)
|
| 651 |
+
|
| 652 |
+
# "reset" button: deselect intervention checkboxes
|
| 653 |
+
reset.click(fn=lambda: (gr.update(value=False),) * len(do), inputs=None, outputs=do)
|
| 654 |
+
reset_brain.click(
|
| 655 |
+
fn=lambda: (gr.update(value=False),) * len(do_brain),
|
| 656 |
+
inputs=None,
|
| 657 |
+
outputs=do_brain,
|
| 658 |
+
)
|
| 659 |
+
reset_chest.click(
|
| 660 |
+
fn=lambda: (gr.update(value=False),) * len(do_chest),
|
| 661 |
+
inputs=None,
|
| 662 |
+
outputs=do_chest,
|
| 663 |
+
)
|
| 664 |
+
|
| 665 |
+
# "reset" button: reset cf output panels
|
| 666 |
+
for _k, _v in zip(
|
| 667 |
+
[reset, reset_brain, reset_chest], [cf_out, cf_out_brain, cf_out_chest]
|
| 668 |
+
):
|
| 669 |
+
_k.click(fn=lambda: plt.close("all"), inputs=None, outputs=None)
|
| 670 |
+
_k.click(fn=lambda: (gr.update(value=None),) * 3, inputs=None, outputs=_v)
|
| 671 |
+
|
| 672 |
+
# enable mnist interventions when checkbox is selected & update graph
|
| 673 |
+
for _k, _v in zip(do, [t, i, y]):
|
| 674 |
+
_k.change(fn=lambda x: gr.update(interactive=x), inputs=_k, outputs=_v)
|
| 675 |
+
_k.change(mnist_graph, inputs=do, outputs=causal_graph)
|
| 676 |
+
|
| 677 |
+
# enable brain interventions when checkbox is selected & update graph
|
| 678 |
+
for _k, _v in zip(do_brain, [m, s, a, b, v]):
|
| 679 |
+
_k.change(fn=lambda x: gr.update(interactive=x), inputs=_k, outputs=_v)
|
| 680 |
+
_k.change(brain_graph, inputs=do_brain, outputs=causal_graph_brain)
|
| 681 |
+
|
| 682 |
+
# enable chest interventions when checkbox is selected & update graph
|
| 683 |
+
for _k, _v in zip(do_chest, [r_chest, s_chest, f_chest, a_chest]):
|
| 684 |
+
_k.change(fn=lambda x: gr.update(interactive=x), inputs=_k, outputs=_v)
|
| 685 |
+
_k.change(chest_graph, inputs=do_chest, outputs=causal_graph_chest)
|
| 686 |
+
|
| 687 |
+
# "submit" button: infer countefactuals
|
| 688 |
+
submit.click(fn=infer_mnist_cf, inputs=obs + do, outputs=cf_out + [t, i, y])
|
| 689 |
+
submit_brain.click(
|
| 690 |
+
fn=infer_brain_cf,
|
| 691 |
+
inputs=obs_brain + do_brain,
|
| 692 |
+
outputs=cf_out_brain + [m, s, a, b, v],
|
| 693 |
+
)
|
| 694 |
+
submit_chest.click(
|
| 695 |
+
fn=infer_chest_cf,
|
| 696 |
+
inputs=obs_chest + do_chest,
|
| 697 |
+
outputs=cf_out_chest + [r_chest, s_chest, f_chest, a_chest],
|
| 698 |
+
)
|
| 699 |
+
|
| 700 |
+
if __name__ == "__main__":
|
| 701 |
+
demo.queue()
|
| 702 |
+
demo.launch()
|
app_utils.py
ADDED
|
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
import networkx as nx
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
|
| 6 |
+
from PIL import Image
|
| 7 |
+
|
| 8 |
+
from matplotlib import rc, patches, colors
|
| 9 |
+
|
| 10 |
+
rc("font", **{"family": "serif", "serif": ["Roman"]})
|
| 11 |
+
rc("text", usetex=True)
|
| 12 |
+
rc("image", interpolation="none")
|
| 13 |
+
rc("text.latex", preamble=r"\usepackage{amsmath} \usepackage{amssymb}")
|
| 14 |
+
|
| 15 |
+
from datasets import get_attr_max_min
|
| 16 |
+
|
| 17 |
+
HAMMER = np.array(Image.open("./hammer.png").resize((35, 35))) / 255
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class MidpointNormalize(colors.Normalize):
|
| 21 |
+
def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False):
|
| 22 |
+
self.midpoint = midpoint
|
| 23 |
+
colors.Normalize.__init__(self, vmin, vmax, clip)
|
| 24 |
+
|
| 25 |
+
def __call__(self, value, clip=None):
|
| 26 |
+
v_ext = np.max([np.abs(self.vmin), np.abs(self.vmax)])
|
| 27 |
+
x, y = [-v_ext, self.midpoint, v_ext], [0, 0.5, 1]
|
| 28 |
+
return np.ma.masked_array(np.interp(value, x, y))
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def postprocess(x):
|
| 32 |
+
return ((x + 1.0) * 127.5).squeeze().detach().cpu().numpy()
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def mnist_graph(*args):
|
| 36 |
+
x, t, i, y = r"$\mathbf{x}$", r"$t$", r"$i$", r"$y$"
|
| 37 |
+
ut, ui, uy = r"$\mathbf{U}_t$", r"$\mathbf{U}_i$", r"$\mathbf{U}_y$"
|
| 38 |
+
zx, ex = r"$\mathbf{z}_{1:L}$", r"$\boldsymbol{\epsilon}$"
|
| 39 |
+
|
| 40 |
+
G = nx.DiGraph()
|
| 41 |
+
G.add_edge(t, x)
|
| 42 |
+
G.add_edge(i, x)
|
| 43 |
+
G.add_edge(y, x)
|
| 44 |
+
G.add_edge(t, i)
|
| 45 |
+
G.add_edge(ut, t)
|
| 46 |
+
G.add_edge(ui, i)
|
| 47 |
+
G.add_edge(uy, y)
|
| 48 |
+
G.add_edge(zx, x)
|
| 49 |
+
G.add_edge(ex, x)
|
| 50 |
+
|
| 51 |
+
pos = {
|
| 52 |
+
y: (0, 0),
|
| 53 |
+
uy: (-1, 0),
|
| 54 |
+
t: (0, 0.5),
|
| 55 |
+
ut: (0, 1),
|
| 56 |
+
x: (1, 0),
|
| 57 |
+
zx: (2, 0.375),
|
| 58 |
+
ex: (2, 0),
|
| 59 |
+
i: (1, 0.5),
|
| 60 |
+
ui: (1, 1),
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
node_c = {}
|
| 64 |
+
for node in G:
|
| 65 |
+
node_c[node] = "lightgrey" if node in [x, t, i, y] else "white"
|
| 66 |
+
node_line_c = {k: "black" for k, _ in node_c.items()}
|
| 67 |
+
edge_c = {e: "black" for e in G.edges}
|
| 68 |
+
|
| 69 |
+
if args[0]: # do_t
|
| 70 |
+
edge_c[(ut, t)] = "lightgrey"
|
| 71 |
+
# G.remove_edge(ut, t)
|
| 72 |
+
node_line_c[t] = "red"
|
| 73 |
+
if args[1]: # do_i
|
| 74 |
+
edge_c[(ui, i)] = "lightgrey"
|
| 75 |
+
edge_c[(t, i)] = "lightgrey"
|
| 76 |
+
# G.remove_edges_from([(ui, i), (t, i)])
|
| 77 |
+
node_line_c[i] = "red"
|
| 78 |
+
if args[2]: # do_y
|
| 79 |
+
edge_c[(uy, y)] = "lightgrey"
|
| 80 |
+
# G.remove_edge(uy, y)
|
| 81 |
+
node_line_c[y] = "red"
|
| 82 |
+
|
| 83 |
+
fs = 30
|
| 84 |
+
options = {
|
| 85 |
+
"font_size": fs,
|
| 86 |
+
"node_size": 3000,
|
| 87 |
+
"node_color": list(node_c.values()),
|
| 88 |
+
"edgecolors": list(node_line_c.values()),
|
| 89 |
+
"edge_color": list(edge_c.values()),
|
| 90 |
+
"linewidths": 2,
|
| 91 |
+
"width": 2,
|
| 92 |
+
}
|
| 93 |
+
plt.close("all")
|
| 94 |
+
fig, ax = plt.subplots(1, 1, figsize=(6, 4.1)) # , constrained_layout=True)
|
| 95 |
+
# fig.patch.set_visible(False)
|
| 96 |
+
ax.margins(x=0.06, y=0.15, tight=False)
|
| 97 |
+
ax.axis("off")
|
| 98 |
+
nx.draw_networkx(G, pos, **options, arrowsize=25, arrowstyle="-|>", ax=ax)
|
| 99 |
+
# need to reuse x, y limits so that the graphs plot the same way before and after removing edges
|
| 100 |
+
x_lim = (-1.348, 2.348)
|
| 101 |
+
y_lim = (-0.215, 1.215)
|
| 102 |
+
ax.set_xlim(x_lim)
|
| 103 |
+
ax.set_ylim(y_lim)
|
| 104 |
+
rect = patches.FancyBboxPatch(
|
| 105 |
+
(1.75, -0.16),
|
| 106 |
+
0.5,
|
| 107 |
+
0.7,
|
| 108 |
+
boxstyle="round, pad=0.05, rounding_size=0",
|
| 109 |
+
linewidth=2,
|
| 110 |
+
edgecolor="black",
|
| 111 |
+
facecolor="none",
|
| 112 |
+
linestyle="-",
|
| 113 |
+
)
|
| 114 |
+
ax.add_patch(rect)
|
| 115 |
+
ax.text(1.85, 0.65, r"$\mathbf{U}_{\mathbf{x}}$", fontsize=fs)
|
| 116 |
+
|
| 117 |
+
if args[0]: # do_t
|
| 118 |
+
fig.figimage(HAMMER, 0.26 * fig.bbox.xmax, 0.525 * fig.bbox.ymax, zorder=10)
|
| 119 |
+
if args[1]: # do_i
|
| 120 |
+
fig.figimage(HAMMER, 0.5175 * fig.bbox.xmax, 0.525 * fig.bbox.ymax, zorder=11)
|
| 121 |
+
if args[2]: # do_y
|
| 122 |
+
fig.figimage(HAMMER, 0.26 * fig.bbox.xmax, 0.2 * fig.bbox.ymax, zorder=12)
|
| 123 |
+
|
| 124 |
+
fig.tight_layout()
|
| 125 |
+
fig.canvas.draw()
|
| 126 |
+
return np.array(fig.canvas.renderer.buffer_rgba())
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def brain_graph(*args):
|
| 130 |
+
x, m, s, a, b, v = r"$\mathbf{x}$", r"$m$", r"$s$", r"$a$", r"$b$", r"$v$"
|
| 131 |
+
um, us, ua, ub, uv = (
|
| 132 |
+
r"$\mathbf{U}_m$",
|
| 133 |
+
r"$\mathbf{U}_s$",
|
| 134 |
+
r"$\mathbf{U}_a$",
|
| 135 |
+
r"$\mathbf{U}_b$",
|
| 136 |
+
r"$\mathbf{U}_v$",
|
| 137 |
+
)
|
| 138 |
+
zx, ex = r"$\mathbf{z}_{1:L}$", r"$\boldsymbol{\epsilon}$"
|
| 139 |
+
|
| 140 |
+
G = nx.DiGraph()
|
| 141 |
+
G.add_edge(m, x)
|
| 142 |
+
G.add_edge(s, x)
|
| 143 |
+
G.add_edge(b, x)
|
| 144 |
+
G.add_edge(v, x)
|
| 145 |
+
G.add_edge(zx, x)
|
| 146 |
+
G.add_edge(ex, x)
|
| 147 |
+
G.add_edge(a, b)
|
| 148 |
+
G.add_edge(a, v)
|
| 149 |
+
G.add_edge(s, b)
|
| 150 |
+
G.add_edge(um, m)
|
| 151 |
+
G.add_edge(us, s)
|
| 152 |
+
G.add_edge(ua, a)
|
| 153 |
+
G.add_edge(ub, b)
|
| 154 |
+
G.add_edge(uv, v)
|
| 155 |
+
|
| 156 |
+
pos = {
|
| 157 |
+
x: (0, 0),
|
| 158 |
+
zx: (-0.25, -1),
|
| 159 |
+
ex: (0.25, -1),
|
| 160 |
+
a: (0, 1),
|
| 161 |
+
ua: (0, 2),
|
| 162 |
+
s: (1, 0),
|
| 163 |
+
us: (1, -1),
|
| 164 |
+
b: (1, 1),
|
| 165 |
+
ub: (1, 2),
|
| 166 |
+
m: (-1, 0),
|
| 167 |
+
um: (-1, -1),
|
| 168 |
+
v: (-1, 1),
|
| 169 |
+
uv: (-1, 2),
|
| 170 |
+
}
|
| 171 |
+
|
| 172 |
+
node_c = {}
|
| 173 |
+
for node in G:
|
| 174 |
+
node_c[node] = "lightgrey" if node in [x, m, s, a, b, v] else "white"
|
| 175 |
+
node_line_c = {k: "black" for k, _ in node_c.items()}
|
| 176 |
+
edge_c = {e: "black" for e in G.edges}
|
| 177 |
+
|
| 178 |
+
if args[0]: # do_m
|
| 179 |
+
# G.remove_edge(um, m)
|
| 180 |
+
edge_c[(um, m)] = "lightgrey"
|
| 181 |
+
node_line_c[m] = "red"
|
| 182 |
+
if args[1]: # do_s
|
| 183 |
+
# G.remove_edge(us, s)
|
| 184 |
+
edge_c[(us, s)] = "lightgrey"
|
| 185 |
+
node_line_c[s] = "red"
|
| 186 |
+
if args[2]: # do_a
|
| 187 |
+
# G.remove_edge(ua, a)
|
| 188 |
+
edge_c[(ua, a)] = "lightgrey"
|
| 189 |
+
node_line_c[a] = "red"
|
| 190 |
+
if args[3]: # do_b
|
| 191 |
+
# G.remove_edges_from([(ub, b), (s, b), (a, b)])
|
| 192 |
+
edge_c[(ub, b)] = "lightgrey"
|
| 193 |
+
edge_c[(s, b)] = "lightgrey"
|
| 194 |
+
edge_c[(a, b)] = "lightgrey"
|
| 195 |
+
node_line_c[b] = "red"
|
| 196 |
+
if args[4]: # do_v
|
| 197 |
+
# G.remove_edges_from([(uv, v), (a, v), (b, v)])
|
| 198 |
+
edge_c[(uv, v)] = "lightgrey"
|
| 199 |
+
edge_c[(a, v)] = "lightgrey"
|
| 200 |
+
edge_c[(b, v)] = "lightgrey"
|
| 201 |
+
node_line_c[v] = "red"
|
| 202 |
+
|
| 203 |
+
fs = 30
|
| 204 |
+
options = {
|
| 205 |
+
"font_size": fs,
|
| 206 |
+
"node_size": 3000,
|
| 207 |
+
"node_color": list(node_c.values()),
|
| 208 |
+
"edgecolors": list(node_line_c.values()),
|
| 209 |
+
"edge_color": list(edge_c.values()),
|
| 210 |
+
"linewidths": 2,
|
| 211 |
+
"width": 2,
|
| 212 |
+
}
|
| 213 |
+
|
| 214 |
+
plt.close("all")
|
| 215 |
+
fig, ax = plt.subplots(1, 1, figsize=(5, 5)) # , constrained_layout=True)
|
| 216 |
+
# fig.patch.set_visible(False)
|
| 217 |
+
ax.margins(x=0.1, y=0.08, tight=False)
|
| 218 |
+
ax.axis("off")
|
| 219 |
+
nx.draw_networkx(G, pos, **options, arrowsize=25, arrowstyle="-|>", ax=ax)
|
| 220 |
+
# need to reuse x, y limits so that the graphs plot the same way before and after removing edges
|
| 221 |
+
x_lim = (-1.32, 1.32)
|
| 222 |
+
y_lim = (-1.414, 2.414)
|
| 223 |
+
ax.set_xlim(x_lim)
|
| 224 |
+
ax.set_ylim(y_lim)
|
| 225 |
+
rect = patches.FancyBboxPatch(
|
| 226 |
+
(-0.5, -1.325),
|
| 227 |
+
1,
|
| 228 |
+
0.65,
|
| 229 |
+
boxstyle="round, pad=0.05, rounding_size=0",
|
| 230 |
+
linewidth=2,
|
| 231 |
+
edgecolor="black",
|
| 232 |
+
facecolor="none",
|
| 233 |
+
linestyle="-",
|
| 234 |
+
)
|
| 235 |
+
ax.add_patch(rect)
|
| 236 |
+
# ax.text(1.85, 0.65, r"$\mathbf{U}_{\mathbf{x}}$", fontsize=fs)
|
| 237 |
+
|
| 238 |
+
if args[0]: # do_m
|
| 239 |
+
fig.figimage(HAMMER, 0.0075 * fig.bbox.xmax, 0.395 * fig.bbox.ymax, zorder=10)
|
| 240 |
+
if args[1]: # do_s
|
| 241 |
+
fig.figimage(HAMMER, 0.72 * fig.bbox.xmax, 0.395 * fig.bbox.ymax, zorder=11)
|
| 242 |
+
if args[2]: # do_a
|
| 243 |
+
fig.figimage(HAMMER, 0.363 * fig.bbox.xmax, 0.64 * fig.bbox.ymax, zorder=12)
|
| 244 |
+
if args[3]: # do_b
|
| 245 |
+
fig.figimage(HAMMER, 0.72 * fig.bbox.xmax, 0.64 * fig.bbox.ymax, zorder=13)
|
| 246 |
+
if args[4]: # do_v
|
| 247 |
+
fig.figimage(HAMMER, 0.0075 * fig.bbox.xmax, 0.64 * fig.bbox.ymax, zorder=14)
|
| 248 |
+
else: # b -> v
|
| 249 |
+
a3 = patches.FancyArrowPatch(
|
| 250 |
+
(0.86, 1.21),
|
| 251 |
+
(-0.86, 1.21),
|
| 252 |
+
connectionstyle="arc3,rad=.3",
|
| 253 |
+
linewidth=2,
|
| 254 |
+
arrowstyle="simple, head_width=10, head_length=10",
|
| 255 |
+
color="k",
|
| 256 |
+
)
|
| 257 |
+
ax.add_patch(a3)
|
| 258 |
+
# print(ax.get_xlim())
|
| 259 |
+
# print(ax.get_ylim())
|
| 260 |
+
fig.tight_layout()
|
| 261 |
+
fig.canvas.draw()
|
| 262 |
+
return np.array(fig.canvas.renderer.buffer_rgba())
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
def chest_graph(*args):
|
| 266 |
+
x, a, d, r, s = r"$\mathbf{x}$", r"$a$", r"$d$", r"$r$", r"$s$"
|
| 267 |
+
ua, ud, ur, us = (
|
| 268 |
+
r"$\mathbf{U}_a$",
|
| 269 |
+
r"$\mathbf{U}_d$",
|
| 270 |
+
r"$\mathbf{U}_r$",
|
| 271 |
+
r"$\mathbf{U}_s$",
|
| 272 |
+
)
|
| 273 |
+
zx, ex = r"$\mathbf{z}_{1:L}$", r"$\boldsymbol{\epsilon}$"
|
| 274 |
+
|
| 275 |
+
G = nx.DiGraph()
|
| 276 |
+
G.add_edge(ua, a)
|
| 277 |
+
G.add_edge(ud, d)
|
| 278 |
+
G.add_edge(ur, r)
|
| 279 |
+
G.add_edge(us, s)
|
| 280 |
+
G.add_edge(a, d)
|
| 281 |
+
G.add_edge(d, x)
|
| 282 |
+
G.add_edge(r, x)
|
| 283 |
+
G.add_edge(s, x)
|
| 284 |
+
G.add_edge(ex, x)
|
| 285 |
+
G.add_edge(zx, x)
|
| 286 |
+
G.add_edge(a, x)
|
| 287 |
+
|
| 288 |
+
pos = {
|
| 289 |
+
x: (0, 0),
|
| 290 |
+
a: (-1, 1),
|
| 291 |
+
d: (0, 1),
|
| 292 |
+
r: (1, 1),
|
| 293 |
+
s: (1, 0),
|
| 294 |
+
ua: (-1, 2),
|
| 295 |
+
ud: (0, 2),
|
| 296 |
+
ur: (1, 2),
|
| 297 |
+
us: (1, -1),
|
| 298 |
+
zx: (-0.25, -1),
|
| 299 |
+
ex: (0.25, -1),
|
| 300 |
+
}
|
| 301 |
+
|
| 302 |
+
node_c = {}
|
| 303 |
+
for node in G:
|
| 304 |
+
node_c[node] = "lightgrey" if node in [x, a, d, r, s] else "white"
|
| 305 |
+
|
| 306 |
+
edge_c = {e: "black" for e in G.edges}
|
| 307 |
+
node_line_c = {k: "black" for k, _ in node_c.items()}
|
| 308 |
+
|
| 309 |
+
if args[0]: # do_r
|
| 310 |
+
# G.remove_edge(ur, r)
|
| 311 |
+
edge_c[(ur, r)] = "lightgrey"
|
| 312 |
+
node_line_c[r] = "red"
|
| 313 |
+
if args[1]: # do_s
|
| 314 |
+
# G.remove_edges_from([(us, s)])
|
| 315 |
+
edge_c[(us, s)] = "lightgrey"
|
| 316 |
+
node_line_c[s] = "red"
|
| 317 |
+
if args[2]: # do_f (do_d)
|
| 318 |
+
# G.remove_edges_from([(ud, d), (a, d)])
|
| 319 |
+
edge_c[(ud, d)] = "lightgrey"
|
| 320 |
+
edge_c[(a, d)] = "lightgrey"
|
| 321 |
+
node_line_c[d] = "red"
|
| 322 |
+
if args[3]: # do_a
|
| 323 |
+
# G.remove_edge(ua, a)
|
| 324 |
+
edge_c[(ua, a)] = "lightgrey"
|
| 325 |
+
node_line_c[a] = "red"
|
| 326 |
+
|
| 327 |
+
fs = 30
|
| 328 |
+
options = {
|
| 329 |
+
"font_size": fs,
|
| 330 |
+
"node_size": 3000,
|
| 331 |
+
"node_color": list(node_c.values()),
|
| 332 |
+
"edgecolors": list(node_line_c.values()),
|
| 333 |
+
"edge_color": list(edge_c.values()),
|
| 334 |
+
"linewidths": 2,
|
| 335 |
+
"width": 2,
|
| 336 |
+
}
|
| 337 |
+
plt.close("all")
|
| 338 |
+
fig, ax = plt.subplots(1, 1, figsize=(5, 5)) # , constrained_layout=True)
|
| 339 |
+
# fig.patch.set_visible(False)
|
| 340 |
+
ax.margins(x=0.1, y=0.08, tight=False)
|
| 341 |
+
ax.axis("off")
|
| 342 |
+
nx.draw_networkx(G, pos, **options, arrowsize=25, arrowstyle="-|>", ax=ax)
|
| 343 |
+
# need to reuse x, y limits so that the graphs plot the same way before and after removing edges
|
| 344 |
+
x_lim = (-1.32, 1.32)
|
| 345 |
+
y_lim = (-1.414, 2.414)
|
| 346 |
+
ax.set_xlim(x_lim)
|
| 347 |
+
ax.set_ylim(y_lim)
|
| 348 |
+
rect = patches.FancyBboxPatch(
|
| 349 |
+
(-0.5, -1.325),
|
| 350 |
+
1,
|
| 351 |
+
0.65,
|
| 352 |
+
boxstyle="round, pad=0.05, rounding_size=0",
|
| 353 |
+
linewidth=2,
|
| 354 |
+
edgecolor="black",
|
| 355 |
+
facecolor="none",
|
| 356 |
+
linestyle="-",
|
| 357 |
+
)
|
| 358 |
+
ax.add_patch(rect)
|
| 359 |
+
ax.text(-0.9, -1.075, r"$\mathbf{U}_{\mathbf{x}}$", fontsize=fs)
|
| 360 |
+
|
| 361 |
+
if args[0]: # do_r
|
| 362 |
+
fig.figimage(HAMMER, 0.72 * fig.bbox.xmax, 0.64 * fig.bbox.ymax, zorder=10)
|
| 363 |
+
if args[1]: # do_s
|
| 364 |
+
fig.figimage(HAMMER, 0.72 * fig.bbox.xmax, 0.395 * fig.bbox.ymax, zorder=11)
|
| 365 |
+
if args[2]: # do_f
|
| 366 |
+
fig.figimage(HAMMER, 0.363 * fig.bbox.xmax, 0.64 * fig.bbox.ymax, zorder=12)
|
| 367 |
+
if args[3]: # do_a
|
| 368 |
+
fig.figimage(HAMMER, 0.0075 * fig.bbox.xmax, 0.64 * fig.bbox.ymax, zorder=13)
|
| 369 |
+
|
| 370 |
+
fig.tight_layout()
|
| 371 |
+
fig.canvas.draw()
|
| 372 |
+
return np.array(fig.canvas.renderer.buffer_rgba())
|
| 373 |
+
|
| 374 |
+
|
| 375 |
+
def vae_preprocess(args, pa):
|
| 376 |
+
if "ukbb" in args.hps:
|
| 377 |
+
# preprocessing ukbb parents for the vae which was originally trained using
|
| 378 |
+
# log standardized parents. The pgm was trained using [-1,1] normalization
|
| 379 |
+
# first undo [-1,1] parent preprocessing back to original range
|
| 380 |
+
for k, v in pa.items():
|
| 381 |
+
if k != "mri_seq" and k != "sex":
|
| 382 |
+
pa[k] = (v + 1) / 2 # [-1,1] -> [0,1]
|
| 383 |
+
_max, _min = get_attr_max_min(k)
|
| 384 |
+
pa[k] = pa[k] * (_max - _min) + _min
|
| 385 |
+
# log_standardize parents for vae input
|
| 386 |
+
for k, v in pa.items():
|
| 387 |
+
logpa_k = torch.log(v.clamp(min=1e-12))
|
| 388 |
+
if k == "age":
|
| 389 |
+
pa[k] = (logpa_k - 4.112339973449707) / 0.11769197136163712
|
| 390 |
+
elif k == "brain_volume":
|
| 391 |
+
pa[k] = (logpa_k - 13.965583801269531) / 0.09537758678197861
|
| 392 |
+
elif k == "ventricle_volume":
|
| 393 |
+
pa[k] = (logpa_k - 10.345998764038086) / 0.43127763271331787
|
| 394 |
+
# concatenate parents expand to input res for conditioning the vae
|
| 395 |
+
pa = torch.cat(
|
| 396 |
+
[pa[k] if len(pa[k].shape) > 1 else pa[k][..., None] for k in args.parents_x],
|
| 397 |
+
dim=1,
|
| 398 |
+
)
|
| 399 |
+
pa = (
|
| 400 |
+
pa[..., None, None].repeat(1, 1, *(args.input_res,) * 2).to(args.device).float()
|
| 401 |
+
)
|
| 402 |
+
return pa
|
| 403 |
+
|
| 404 |
+
|
| 405 |
+
def preprocess_brain(args, obs):
|
| 406 |
+
obs["x"] = (obs["x"][None, ...].float().to(args.device) - 127.5) / 127.5 # [-1,1]
|
| 407 |
+
# for all other variables except x
|
| 408 |
+
for k in [k for k in obs.keys() if k != "x"]:
|
| 409 |
+
obs[k] = obs[k].float().to(args.device).view(1, 1)
|
| 410 |
+
if k in ["age", "brain_volume", "ventricle_volume"]:
|
| 411 |
+
k_max, k_min = get_attr_max_min(k)
|
| 412 |
+
obs[k] = (obs[k] - k_min) / (k_max - k_min) # [0,1]
|
| 413 |
+
obs[k] = 2 * obs[k] - 1 # [-1,1]
|
| 414 |
+
return obs
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
def get_fig_arr(x, width=4, height=4, dpi=144, cmap="Greys_r", norm=None):
|
| 418 |
+
fig = plt.figure(figsize=(width, height), dpi=dpi)
|
| 419 |
+
ax = plt.axes([0, 0, 1, 1], frameon=False)
|
| 420 |
+
if cmap == "Greys_r":
|
| 421 |
+
ax.imshow(x, cmap=cmap, vmin=0, vmax=255)
|
| 422 |
+
else:
|
| 423 |
+
ax.imshow(x, cmap=cmap, norm=norm)
|
| 424 |
+
ax.axis("off")
|
| 425 |
+
fig.canvas.draw()
|
| 426 |
+
return np.array(fig.canvas.renderer.buffer_rgba())
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
def normalize(x, x_min=None, x_max=None, zero_one=False):
|
| 430 |
+
if x_min is None:
|
| 431 |
+
x_min = x.min()
|
| 432 |
+
if x_max is None:
|
| 433 |
+
x_max = x.max()
|
| 434 |
+
x = (x - x_min) / (x_max - x_min) # [0,1]
|
| 435 |
+
return x if zero_one else 2 * x - 1 # else [-1,1]
|
checkpoints/a_r_s_f/mimic_beta9_gelu_dgauss_1_lr3/checkpoint.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c5a9b5666f4f221bfd464c10cca5a092fca26abcfdd767cfc81904c45df5b7a9
|
| 3 |
+
size 129987615
|
checkpoints/a_r_s_f/mimic_dscm_lr_1e5_lagrange_lr_1_damping_10/6500_checkpoint.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:61b4dd71d4e9d8ff21ead93872620d3522e53402685663e1b1c946879238936b
|
| 3 |
+
size 493467505
|
checkpoints/a_r_s_f/sup_pgm_mimic/checkpoint.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:03dd765e5cdd4d6938e8536e72f597a2a5bc8ed43f4b840d5c289017aa555ace
|
| 3 |
+
size 5328833
|
checkpoints/a_r_s_f/sup_pgm_mimic/checkpoint_current.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5fcb79767cbad89f1ea481da0af49334834440d0c6b42ec4e8243a602825219d
|
| 3 |
+
size 5328833
|
checkpoints/m_b_v_s/sup_pgm/checkpoint.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2ad6a317c8c05946556b74a1886d4a72328b2ab523aa69f56c7bfe0476d5212f
|
| 3 |
+
size 5397757
|
checkpoints/m_b_v_s/ukbb192_beta5_dgauss_b33/checkpoint.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:56920771b4112c430ff42f46b2707a8bb75acbaf2be518c640d6be2157be0c54
|
| 3 |
+
size 279070192
|
checkpoints/t_i_d/dgauss_cond_big_beta1_dropexo/checkpoint.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:014ccfb191fa8307dc9488379e94d527f2e51159c96417c88b7b17abc6e7c1b9
|
| 3 |
+
size 33772784
|
checkpoints/t_i_d/sup_pgm/checkpoint.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:42585f99a2f5825645f606b99ccbc7d14a2815eb7723bace03a3d94e3c2c8856
|
| 3 |
+
size 39144
|
data/mimic_subset/0.jpg
ADDED
|
data/mimic_subset/1.jpg
ADDED
|
data/mimic_subset/10.jpg
ADDED
|
data/mimic_subset/11.jpg
ADDED
|
data/mimic_subset/12.jpg
ADDED
|
data/mimic_subset/13.jpg
ADDED
|
data/mimic_subset/14.jpg
ADDED
|
data/mimic_subset/15.jpg
ADDED
|
data/mimic_subset/16.jpg
ADDED
|
data/mimic_subset/17.jpg
ADDED
|
data/mimic_subset/18.jpg
ADDED
|
data/mimic_subset/19.jpg
ADDED
|
data/mimic_subset/2.jpg
ADDED
|
data/mimic_subset/20.jpg
ADDED
|
data/mimic_subset/21.jpg
ADDED
|
data/mimic_subset/22.jpg
ADDED
|
data/mimic_subset/23.jpg
ADDED
|
data/mimic_subset/24.jpg
ADDED
|
data/mimic_subset/25.jpg
ADDED
|
data/mimic_subset/26.jpg
ADDED
|
data/mimic_subset/27.jpg
ADDED
|
data/mimic_subset/28.jpg
ADDED
|
data/mimic_subset/29.jpg
ADDED
|
data/mimic_subset/3.jpg
ADDED
|
data/mimic_subset/30.jpg
ADDED
|
data/mimic_subset/31.jpg
ADDED
|
data/mimic_subset/32.jpg
ADDED
|
data/mimic_subset/33.jpg
ADDED
|
data/mimic_subset/34.jpg
ADDED
|
data/mimic_subset/35.jpg
ADDED
|
data/mimic_subset/36.jpg
ADDED
|
data/mimic_subset/37.jpg
ADDED
|
data/mimic_subset/38.jpg
ADDED
|
data/mimic_subset/39.jpg
ADDED
|
data/mimic_subset/4.jpg
ADDED
|
data/mimic_subset/40.jpg
ADDED
|