Spaces:
Sleeping
Sleeping
File size: 18,040 Bytes
4ebabd8 1df8ec7 4ebabd8 121fa0a 4ebabd8 65f0a83 4ebabd8 121fa0a 4ebabd8 1df8ec7 4ebabd8 1df8ec7 4ebabd8 1df8ec7 4ebabd8 121fa0a 4ebabd8 71f8cdb 4ebabd8 e8fe16d 4ebabd8 1df8ec7 4ebabd8 65f0a83 e8fe16d 4ebabd8 1df8ec7 e8fe16d 4ebabd8 1df8ec7 4ebabd8 65f0a83 4ebabd8 121fa0a 67e1202 65f0a83 67e1202 65f0a83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 |
import os
os.environ['KERAS_BACKEND'] = 'tensorflow'
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import tensorflow as tf
import keras
import numpy as np
from tokenizers import Tokenizer
from huggingface_hub import hf_hub_download
import json
from abc import ABC, abstractmethod
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import List, Optional, AsyncGenerator
import asyncio
import gradio as gr
from gradio import HTML
# ==============================================================================
# Model Architecture (Same as before)
# ==============================================================================
@keras.saving.register_keras_serializable()
class RotaryEmbedding(keras.layers.Layer):
def __init__(self, dim, max_len=2048, theta=10000, **kwargs):
super().__init__(**kwargs)
self.dim = dim
self.max_len = max_len
self.theta = theta
self.built_cache = False
def build(self, input_shape):
if not self.built_cache:
inv_freq = 1.0 / (self.theta ** (tf.range(0, self.dim, 2, dtype=tf.float32) / self.dim))
t = tf.range(self.max_len, dtype=tf.float32)
freqs = tf.einsum("i,j->ij", t, inv_freq)
emb = tf.concat([freqs, freqs], axis=-1)
self.cos_cached = tf.constant(tf.cos(emb), dtype=tf.float32)
self.sin_cached = tf.constant(tf.sin(emb), dtype=tf.float32)
self.built_cache = True
super().build(input_shape)
def rotate_half(self, x):
x1, x2 = tf.split(x, 2, axis=-1)
return tf.concat([-x2, x1], axis=-1)
def call(self, q, k):
seq_len = tf.shape(q)[2]
dtype = q.dtype
cos = tf.cast(self.cos_cached[:seq_len, :], dtype)[None, None, :, :]
sin = tf.cast(self.sin_cached[:seq_len, :], dtype)[None, None, :, :]
q_rotated = (q * cos) + (self.rotate_half(q) * sin)
k_rotated = (k * cos) + (self.rotate_half(k) * sin)
return q_rotated, k_rotated
def get_config(self):
config = super().get_config()
config.update({"dim": self.dim, "max_len": self.max_len, "theta": self.theta})
return config
@keras.saving.register_keras_serializable()
class RMSNorm(keras.layers.Layer):
def __init__(self, epsilon=1e-5, **kwargs):
super().__init__(**kwargs)
self.epsilon = epsilon
def build(self, input_shape):
self.scale = self.add_weight(name="scale", shape=(input_shape[-1],), initializer="ones")
def call(self, x):
variance = tf.reduce_mean(tf.square(x), axis=-1, keepdims=True)
return x * tf.math.rsqrt(variance + self.epsilon) * self.scale
def get_config(self):
config = super().get_config()
config.update({"epsilon": self.epsilon})
return config
@keras.saving.register_keras_serializable()
class TransformerBlock(keras.layers.Layer):
def __init__(self, d_model, n_heads, ff_dim, dropout, max_len, rope_theta, layer_idx=0, **kwargs):
super().__init__(**kwargs)
self.d_model = d_model
self.n_heads = n_heads
self.ff_dim = ff_dim
self.dropout_rate = dropout
self.max_len = max_len
self.rope_theta = rope_theta
self.head_dim = d_model // n_heads
self.layer_idx = layer_idx
self.pre_attn_norm = RMSNorm()
self.pre_ffn_norm = RMSNorm()
self.q_proj = keras.layers.Dense(d_model, use_bias=False, name="q_proj")
self.k_proj = keras.layers.Dense(d_model, use_bias=False, name="k_proj")
self.v_proj = keras.layers.Dense(d_model, use_bias=False, name="v_proj")
self.out_proj = keras.layers.Dense(d_model, use_bias=False, name="o_proj")
self.rope = RotaryEmbedding(self.head_dim, max_len=max_len, theta=rope_theta)
self.gate_proj = keras.layers.Dense(ff_dim, use_bias=False, name="gate_proj")
self.up_proj = keras.layers.Dense(ff_dim, use_bias=False, name="up_proj")
self.down_proj = keras.layers.Dense(d_model, use_bias=False, name="down_proj")
self.dropout = keras.layers.Dropout(dropout)
def call(self, x, training=None):
B, T, D = tf.shape(x)[0], tf.shape(x)[1], self.d_model
dtype = x.dtype
res = x
y = self.pre_attn_norm(x)
q = tf.transpose(tf.reshape(self.q_proj(y), [B, T, self.n_heads, self.head_dim]), [0, 2, 1, 3])
k = tf.transpose(tf.reshape(self.k_proj(y), [B, T, self.n_heads, self.head_dim]), [0, 2, 1, 3])
v = tf.transpose(tf.reshape(self.v_proj(y), [B, T, self.n_heads, self.head_dim]), [0, 2, 1, 3])
q, k = self.rope(q, k)
scores = tf.matmul(q, k, transpose_b=True) / tf.sqrt(tf.cast(self.head_dim, dtype))
mask = tf.where(
tf.linalg.band_part(tf.ones([T, T], dtype=dtype), -1, 0) == 0,
tf.constant(-1e9, dtype=dtype),
tf.constant(0.0, dtype=dtype)
)
scores += mask
attn = tf.matmul(tf.nn.softmax(scores, axis=-1), v)
attn = tf.reshape(tf.transpose(attn, [0, 2, 1, 3]), [B, T, D])
x = res + self.dropout(self.out_proj(attn), training=training)
res = x
y = self.pre_ffn_norm(x)
ffn = self.down_proj(keras.activations.silu(self.gate_proj(y)) * self.up_proj(y))
return res + self.dropout(ffn, training=training)
def get_config(self):
config = super().get_config()
config.update({
"d_model": self.d_model,
"n_heads": self.n_heads,
"ff_dim": self.ff_dim,
"dropout": self.dropout_rate,
"max_len": self.max_len,
"rope_theta": self.rope_theta,
"layer_idx": self.layer_idx
})
return config
@keras.saving.register_keras_serializable()
class SAM1Model(keras.Model):
def __init__(self, **kwargs):
super().__init__()
if 'config' in kwargs and isinstance(kwargs['config'], dict):
self.cfg = kwargs['config']
elif 'vocab_size' in kwargs:
self.cfg = kwargs
else:
self.cfg = kwargs.get('cfg', kwargs)
self.embed = keras.layers.Embedding(self.cfg['vocab_size'], self.cfg['d_model'], name="embed_tokens")
# β
FIXED: Was using 'ff_num' β now correctly uses 'ff_dim'
ff_dim = int(self.cfg['d_model'] * self.cfg['ff_mult'])
block_args = {
'd_model': self.cfg['d_model'],
'n_heads': self.cfg['n_heads'],
'ff_dim': ff_dim, # β
Correct variable name
'dropout': self.cfg['dropout'],
'max_len': self.cfg['max_len'],
'rope_theta': self.cfg['rope_theta']
}
self.blocks = []
for i in range(self.cfg['n_layers']):
block = TransformerBlock(name=f"block_{i}", layer_idx=i, **block_args)
self.blocks.append(block)
self.norm = RMSNorm(name="final_norm")
self.lm_head = keras.layers.Dense(self.cfg['vocab_size'], use_bias=False, name="lm_head")
def call(self, input_ids, training=None):
x = self.embed(input_ids)
for block in self.blocks:
x = block(x, training=training)
return self.lm_head(self.norm(x))
def get_config(self):
base_config = super().get_config()
base_config['config'] = self.cfg
return base_config
# ==============================================================================
# Helper Functions
# ==============================================================================
def count_parameters(model):
total_params = 0
non_zero_params = 0
for weight in model.weights:
w = weight.numpy()
total_params += w.size
non_zero_params += np.count_nonzero(w)
return total_params, non_zero_params
def format_param_count(count):
if count >= 1e9:
return f"{count/1e9:.2f}B"
elif count >= 1e6:
return f"{count/1e6:.2f}M"
elif count >= 1e3:
return f"{count/1e3:.2f}K"
else:
return str(count)
# ==============================================================================
# Backend Interface
# ==============================================================================
class ModelBackend(ABC):
@abstractmethod
def predict(self, input_ids): pass
@abstractmethod
def get_name(self): pass
@abstractmethod
def get_info(self): pass
class KerasBackend(ModelBackend):
def __init__(self, model, name, display_name):
self.model = model
self.name = name
self.display_name = display_name
total, non_zero = count_parameters(model)
self.total_params = total
self.non_zero_params = non_zero
self.sparsity = (1 - non_zero / total) * 100 if total > 0 else 0
self.n_heads = model.cfg.get('n_heads', 0)
self.ff_dim = int(model.cfg.get('d_model', 0) * model.cfg.get('ff_mult', 0))
def predict(self, input_ids):
inputs = np.array([input_ids], dtype=np.int32)
logits = self.model(inputs, training=False)
return logits[0, -1, :].numpy()
def get_name(self):
return self.display_name
def get_info(self):
info = f"{self.display_name}\n"
info += f" Total params: {format_param_count(self.total_params)}\n"
info += f" Attention heads: {self.n_heads}\n"
info += f" FFN dimension: {self.ff_dim}\n"
if self.sparsity > 1:
info += f" Sparsity: {self.sparsity:.1f}%\n"
return info
# ==============================================================================
# Load Models & Tokenizer
# ==============================================================================
CONFIG_TOKENIZER_REPO_ID = "Smilyai-labs/Sam-1-large-it-0002"
print("="*60)
print("π SAM-X-1 API Server Loading...".center(60))
print("="*60)
# Download config/tokenizer
print(f"π¦ Fetching config & tokenizer from {CONFIG_TOKENIZER_REPO_ID}")
config_path = hf_hub_download(repo_id=CONFIG_TOKENIZER_REPO_ID, filename="config.json")
tokenizer_path = hf_hub_download(repo_id=CONFIG_TOKENIZER_REPO_ID, filename="tokenizer.json")
with open(config_path, 'r') as f:
base_config = json.load(f)
base_model_config = {
'vocab_size': base_config['vocab_size'],
'd_model': base_config['hidden_size'],
'n_heads': base_config['num_attention_heads'],
'ff_mult': base_config['intermediate_size'] / base_config['hidden_size'],
'dropout': base_config.get('dropout', 0.0),
'max_len': base_config['max_position_embeddings'],
'rope_theta': base_config['rope_theta'],
'n_layers': base_config['num_hidden_layers']
}
print("π€ Building tokenizer...")
tokenizer = Tokenizer.from_pretrained("gpt2")
eos_token = ""
eos_token_id = tokenizer.token_to_id(eos_token)
if eos_token_id is None:
tokenizer.add_special_tokens([eos_token])
eos_token_id = tokenizer.token_to_id(eos_token)
custom_tokens = ["<think>", "<think/>"]
for token in custom_tokens:
if tokenizer.token_to_id(token) is None:
tokenizer.add_special_tokens([token])
tokenizer.no_padding()
tokenizer.enable_truncation(max_length=base_config['max_position_embeddings'])
print("β
Tokenizer ready")
# Model Registry
MODEL_REGISTRY = [
("SAM-X-1-Large", "Smilyai-labs/Sam-1x-instruct", "ckpt.weights.h5", None),
("SAM-X-1-Fast β‘ (BETA)", "Smilyai-labs/Sam-X-1-fast", "sam1_fast_finetuned.weights.h5", "sam1_fast_finetuned_config.json"),
("SAM-X-1-Mini π (BETA)", "Smilyai-labs/Sam-X-1-Mini", "sam1_mini.weights_finetuned.h5", "sam1_mini_finetuned_config.json"),
("SAM-X-1-Nano β‘β‘ (BETA)", "Smilyai-labs/Sam-X-1-Nano", "sam1_nano_finetuned.weights.h5", "sam1_nano_finetuned_config.json"),
]
available_models = {}
dummy_input = tf.zeros((1, 1), dtype=tf.int32)
for display_name, repo_id, weights_filename, config_filename in MODEL_REGISTRY:
try:
print(f"\nπ₯ Loading {display_name}...")
weights_path = hf_hub_download(repo_id=repo_id, filename=weights_filename)
model_config = base_model_config.copy()
if config_filename:
print(f" Custom config: {config_filename}")
custom_config_path = hf_hub_download(repo_id=repo_id, filename=config_filename)
with open(custom_config_path, 'r') as f:
model_config.update(json.load(f))
model = SAM1Model(**model_config)
model(dummy_input)
model.load_weights(weights_path)
model.trainable = False
backend = KerasBackend(model, display_name, display_name)
available_models[display_name] = backend
print(f"β
Loaded: {display_name}")
print(f" β Params: {format_param_count(backend.total_params)} | Heads: {backend.n_heads}")
except Exception as e:
print(f"β Failed to load {display_name}: {e}")
if not available_models:
raise RuntimeError("No models loaded!")
current_backend = list(available_models.values())[0]
print(f"\nπ Ready! Default model: {current_backend.get_name()}")
# ==============================================================================
# Streaming Generator
# ==============================================================================
async def generate_stream(prompt: str, backend, temperature: float) -> AsyncGenerator[str, None]: # β
Fixed type hint
encoded_prompt = tokenizer.encode(prompt)
input_ids = [i for i in encoded_prompt.ids if i != eos_token_id]
generated = input_ids.copy()
max_len = backend.model.cfg['max_len']
buffer = ""
for _ in range(512):
await asyncio.sleep(0)
current_input = generated[-max_len:]
next_token_logits = backend.predict(current_input)
if temperature > 0:
next_token_logits /= temperature
top_k_indices = np.argpartition(next_token_logits, -50)[-50:]
top_k_logits = next_token_logits[top_k_indices]
top_k_probs = np.exp(top_k_logits - np.max(top_k_logits))
top_k_probs /= top_k_probs.sum()
next_token = np.random.choice(top_k_indices, p=top_k_probs)
else:
next_token = int(np.argmax(next_token_logits))
if next_token == eos_token_id:
break
generated.append(int(next_token))
new_text = tokenizer.decode(generated[len(input_ids):])
if len(new_text) > len(buffer):
new_chunk = new_text[len(buffer):]
buffer = new_text
yield new_chunk
# ==============================================================================
# FastAPI Endpoints (OpenAI-style)
# ==============================================================================
class Message(BaseModel):
role: str
content: str
class ChatCompletionRequest(BaseModel):
model: str = list(available_models.keys())[0]
messages: List[Message]
temperature: float = 0.7
stream: bool = False
max_tokens: int = 512
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.post("/v1/chat/completions")
async def chat_completions(request: ChatCompletionRequest):
if request.model not in available_models:
raise HTTPException(404, f"Model '{request.model}' not found.")
backend = available_models[request.model]
prompt_parts = []
for msg in request.messages:
prefix = "User" if msg.role.lower() == "user" else "Sam"
prompt_parts.append(f"{prefix}: {msg.content}")
prompt_parts.append("Sam: <think>")
prompt = "\n".join(prompt_parts)
async def event_stream():
async for token in generate_stream(prompt, backend, request.temperature):
chunk = {
"id": "chatcmpl-123",
"object": "chat.completion.chunk",
"created": 1677858242,
"model": request.model,
"choices": [{
"index": 0,
"delta": {"content": token},
"finish_reason": None
}]
}
yield f" {json.dumps(chunk)}\n\n"
yield " [DONE]\n\n"
if request.stream:
return StreamingResponse(event_stream(), media_type="text/event-stream")
else:
full = ""
async for token in event_stream():
if "[DONE]" not in token:
data = json.loads(token.replace(" ", "").strip())
full += data["choices"][0]["delta"]["content"]
return {"choices": [{"message": {"content": full}}]}
@app.get("/v1/models")
async def list_models():
return {
"data": [
{"id": name, "object": "model", "owned_by": "SmilyAI"}
for name in available_models.keys()
]
}
# ==============================================================================
# Gradio App (API Info Page)
# ==============================================================================
def get_api_info():
model_info = "\n".join([f"- {name}" for name in available_models.keys()])
return f"""
# π€ SAM-X-1 AI API Server
This is a production-grade API server for the SAM-X-1 family of models.
## π Available Models:
{model_info}
## π API Endpoints:
- `POST /v1/chat/completions` - Chat completions (OpenAI-style)
- `GET /v1/models` - List available models
## π Streaming:
Set `"stream": true` in your request to receive real-time token-by-token responses.
## π§ͺ Example Request:
```json
{{
"model": "SAM-X-1-Large",
"messages": [
{{"role": "user", "content": "Hello!"}}
],
"stream": true,
"temperature": 0.7
}}
```
"""
# Create the Gradio app
with gr.Blocks(title="SAM-X-1 API") as demo:
gr.Markdown(get_api_info())
# Launch Gradio app with FastAPI mounted
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, show_error=True) |