File size: 18,040 Bytes
4ebabd8
 
 
 
 
 
 
 
 
 
 
1df8ec7
4ebabd8
 
 
121fa0a
4ebabd8
 
65f0a83
4ebabd8
 
121fa0a
4ebabd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1df8ec7
4ebabd8
 
 
 
1df8ec7
4ebabd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1df8ec7
4ebabd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121fa0a
4ebabd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71f8cdb
 
 
4ebabd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8fe16d
4ebabd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1df8ec7
4ebabd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65f0a83
e8fe16d
4ebabd8
 
 
 
 
 
1df8ec7
e8fe16d
4ebabd8
 
 
1df8ec7
4ebabd8
 
 
 
 
 
 
 
 
 
 
65f0a83
4ebabd8
 
121fa0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67e1202
65f0a83
 
 
 
67e1202
 
 
65f0a83
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
import os
os.environ['KERAS_BACKEND'] = 'tensorflow'
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"

import tensorflow as tf
import keras
import numpy as np
from tokenizers import Tokenizer
from huggingface_hub import hf_hub_download
import json
from abc import ABC, abstractmethod
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import List, Optional, AsyncGenerator
import asyncio
import gradio as gr
from gradio import HTML

# ==============================================================================
# Model Architecture (Same as before)
# ==============================================================================

@keras.saving.register_keras_serializable()
class RotaryEmbedding(keras.layers.Layer):
    def __init__(self, dim, max_len=2048, theta=10000, **kwargs):
        super().__init__(**kwargs)
        self.dim = dim
        self.max_len = max_len
        self.theta = theta
        self.built_cache = False

    def build(self, input_shape):
        if not self.built_cache:
            inv_freq = 1.0 / (self.theta ** (tf.range(0, self.dim, 2, dtype=tf.float32) / self.dim))
            t = tf.range(self.max_len, dtype=tf.float32)
            freqs = tf.einsum("i,j->ij", t, inv_freq)
            emb = tf.concat([freqs, freqs], axis=-1)

            self.cos_cached = tf.constant(tf.cos(emb), dtype=tf.float32)
            self.sin_cached = tf.constant(tf.sin(emb), dtype=tf.float32)
            self.built_cache = True
        super().build(input_shape)

    def rotate_half(self, x):
        x1, x2 = tf.split(x, 2, axis=-1)
        return tf.concat([-x2, x1], axis=-1)

    def call(self, q, k):
        seq_len = tf.shape(q)[2]
        dtype = q.dtype
        cos = tf.cast(self.cos_cached[:seq_len, :], dtype)[None, None, :, :]
        sin = tf.cast(self.sin_cached[:seq_len, :], dtype)[None, None, :, :]

        q_rotated = (q * cos) + (self.rotate_half(q) * sin)
        k_rotated = (k * cos) + (self.rotate_half(k) * sin)

        return q_rotated, k_rotated

    def get_config(self):
        config = super().get_config()
        config.update({"dim": self.dim, "max_len": self.max_len, "theta": self.theta})
        return config


@keras.saving.register_keras_serializable()
class RMSNorm(keras.layers.Layer):
    def __init__(self, epsilon=1e-5, **kwargs):
        super().__init__(**kwargs)
        self.epsilon = epsilon

    def build(self, input_shape):
        self.scale = self.add_weight(name="scale", shape=(input_shape[-1],), initializer="ones")

    def call(self, x):
        variance = tf.reduce_mean(tf.square(x), axis=-1, keepdims=True)
        return x * tf.math.rsqrt(variance + self.epsilon) * self.scale

    def get_config(self):
        config = super().get_config()
        config.update({"epsilon": self.epsilon})
        return config


@keras.saving.register_keras_serializable()
class TransformerBlock(keras.layers.Layer):
    def __init__(self, d_model, n_heads, ff_dim, dropout, max_len, rope_theta, layer_idx=0, **kwargs):
        super().__init__(**kwargs)
        self.d_model = d_model
        self.n_heads = n_heads
        self.ff_dim = ff_dim
        self.dropout_rate = dropout
        self.max_len = max_len
        self.rope_theta = rope_theta
        self.head_dim = d_model // n_heads
        self.layer_idx = layer_idx

        self.pre_attn_norm = RMSNorm()
        self.pre_ffn_norm = RMSNorm()

        self.q_proj = keras.layers.Dense(d_model, use_bias=False, name="q_proj")
        self.k_proj = keras.layers.Dense(d_model, use_bias=False, name="k_proj")
        self.v_proj = keras.layers.Dense(d_model, use_bias=False, name="v_proj")
        self.out_proj = keras.layers.Dense(d_model, use_bias=False, name="o_proj")

        self.rope = RotaryEmbedding(self.head_dim, max_len=max_len, theta=rope_theta)

        self.gate_proj = keras.layers.Dense(ff_dim, use_bias=False, name="gate_proj")
        self.up_proj = keras.layers.Dense(ff_dim, use_bias=False, name="up_proj")
        self.down_proj = keras.layers.Dense(d_model, use_bias=False, name="down_proj")

        self.dropout = keras.layers.Dropout(dropout)

    def call(self, x, training=None):
        B, T, D = tf.shape(x)[0], tf.shape(x)[1], self.d_model
        dtype = x.dtype

        res = x
        y = self.pre_attn_norm(x)

        q = tf.transpose(tf.reshape(self.q_proj(y), [B, T, self.n_heads, self.head_dim]), [0, 2, 1, 3])
        k = tf.transpose(tf.reshape(self.k_proj(y), [B, T, self.n_heads, self.head_dim]), [0, 2, 1, 3])
        v = tf.transpose(tf.reshape(self.v_proj(y), [B, T, self.n_heads, self.head_dim]), [0, 2, 1, 3])

        q, k = self.rope(q, k)

        scores = tf.matmul(q, k, transpose_b=True) / tf.sqrt(tf.cast(self.head_dim, dtype))

        mask = tf.where(
            tf.linalg.band_part(tf.ones([T, T], dtype=dtype), -1, 0) == 0,
            tf.constant(-1e9, dtype=dtype),
            tf.constant(0.0, dtype=dtype)
        )
        scores += mask
        attn = tf.matmul(tf.nn.softmax(scores, axis=-1), v)

        attn = tf.reshape(tf.transpose(attn, [0, 2, 1, 3]), [B, T, D])
        x = res + self.dropout(self.out_proj(attn), training=training)

        res = x
        y = self.pre_ffn_norm(x)
        ffn = self.down_proj(keras.activations.silu(self.gate_proj(y)) * self.up_proj(y))

        return res + self.dropout(ffn, training=training)

    def get_config(self):
        config = super().get_config()
        config.update({
            "d_model": self.d_model,
            "n_heads": self.n_heads,
            "ff_dim": self.ff_dim,
            "dropout": self.dropout_rate,
            "max_len": self.max_len,
            "rope_theta": self.rope_theta,
            "layer_idx": self.layer_idx
        })
        return config


@keras.saving.register_keras_serializable()
class SAM1Model(keras.Model):
    def __init__(self, **kwargs):
        super().__init__()
        if 'config' in kwargs and isinstance(kwargs['config'], dict):
            self.cfg = kwargs['config']
        elif 'vocab_size' in kwargs:
            self.cfg = kwargs
        else:
            self.cfg = kwargs.get('cfg', kwargs)

        self.embed = keras.layers.Embedding(self.cfg['vocab_size'], self.cfg['d_model'], name="embed_tokens")

        # βœ… FIXED: Was using 'ff_num' β€” now correctly uses 'ff_dim'
        ff_dim = int(self.cfg['d_model'] * self.cfg['ff_mult'])
        block_args = {
            'd_model': self.cfg['d_model'],
            'n_heads': self.cfg['n_heads'],
            'ff_dim': ff_dim,          # βœ… Correct variable name
            'dropout': self.cfg['dropout'],
            'max_len': self.cfg['max_len'],
            'rope_theta': self.cfg['rope_theta']
        }

        self.blocks = []
        for i in range(self.cfg['n_layers']):
            block = TransformerBlock(name=f"block_{i}", layer_idx=i, **block_args)
            self.blocks.append(block)

        self.norm = RMSNorm(name="final_norm")
        self.lm_head = keras.layers.Dense(self.cfg['vocab_size'], use_bias=False, name="lm_head")

    def call(self, input_ids, training=None):
        x = self.embed(input_ids)
        for block in self.blocks:
            x = block(x, training=training)
        return self.lm_head(self.norm(x))

    def get_config(self):
        base_config = super().get_config()
        base_config['config'] = self.cfg
        return base_config


# ==============================================================================
# Helper Functions
# ==============================================================================

def count_parameters(model):
    total_params = 0
    non_zero_params = 0
    for weight in model.weights:
        w = weight.numpy()
        total_params += w.size
        non_zero_params += np.count_nonzero(w)
    return total_params, non_zero_params

def format_param_count(count):
    if count >= 1e9:
        return f"{count/1e9:.2f}B"
    elif count >= 1e6:
        return f"{count/1e6:.2f}M"
    elif count >= 1e3:
        return f"{count/1e3:.2f}K"
    else:
        return str(count)


# ==============================================================================
# Backend Interface
# ==============================================================================

class ModelBackend(ABC):
    @abstractmethod
    def predict(self, input_ids): pass
    @abstractmethod
    def get_name(self): pass
    @abstractmethod
    def get_info(self): pass

class KerasBackend(ModelBackend):
    def __init__(self, model, name, display_name):
        self.model = model
        self.name = name
        self.display_name = display_name
        total, non_zero = count_parameters(model)
        self.total_params = total
        self.non_zero_params = non_zero
        self.sparsity = (1 - non_zero / total) * 100 if total > 0 else 0
        self.n_heads = model.cfg.get('n_heads', 0)
        self.ff_dim = int(model.cfg.get('d_model', 0) * model.cfg.get('ff_mult', 0))

    def predict(self, input_ids):
        inputs = np.array([input_ids], dtype=np.int32)
        logits = self.model(inputs, training=False)
        return logits[0, -1, :].numpy()

    def get_name(self):
        return self.display_name

    def get_info(self):
        info = f"{self.display_name}\n"
        info += f"  Total params: {format_param_count(self.total_params)}\n"
        info += f"  Attention heads: {self.n_heads}\n"
        info += f"  FFN dimension: {self.ff_dim}\n"
        if self.sparsity > 1:
            info += f"  Sparsity: {self.sparsity:.1f}%\n"
        return info


# ==============================================================================
# Load Models & Tokenizer
# ==============================================================================

CONFIG_TOKENIZER_REPO_ID = "Smilyai-labs/Sam-1-large-it-0002"

print("="*60)
print("πŸš€ SAM-X-1 API Server Loading...".center(60))
print("="*60)

# Download config/tokenizer
print(f"πŸ“¦ Fetching config & tokenizer from {CONFIG_TOKENIZER_REPO_ID}")
config_path = hf_hub_download(repo_id=CONFIG_TOKENIZER_REPO_ID, filename="config.json")
tokenizer_path = hf_hub_download(repo_id=CONFIG_TOKENIZER_REPO_ID, filename="tokenizer.json")

with open(config_path, 'r') as f:
    base_config = json.load(f)

base_model_config = {
    'vocab_size': base_config['vocab_size'],
    'd_model': base_config['hidden_size'],
    'n_heads': base_config['num_attention_heads'],
    'ff_mult': base_config['intermediate_size'] / base_config['hidden_size'],
    'dropout': base_config.get('dropout', 0.0),
    'max_len': base_config['max_position_embeddings'],
    'rope_theta': base_config['rope_theta'],
    'n_layers': base_config['num_hidden_layers']
}

print("πŸ”€ Building tokenizer...")
tokenizer = Tokenizer.from_pretrained("gpt2")
eos_token = ""
eos_token_id = tokenizer.token_to_id(eos_token)
if eos_token_id is None:
    tokenizer.add_special_tokens([eos_token])
    eos_token_id = tokenizer.token_to_id(eos_token)

custom_tokens = ["<think>", "<think/>"]
for token in custom_tokens:
    if tokenizer.token_to_id(token) is None:
        tokenizer.add_special_tokens([token])

tokenizer.no_padding()
tokenizer.enable_truncation(max_length=base_config['max_position_embeddings'])
print("βœ… Tokenizer ready")

# Model Registry
MODEL_REGISTRY = [
    ("SAM-X-1-Large", "Smilyai-labs/Sam-1x-instruct", "ckpt.weights.h5", None),
    ("SAM-X-1-Fast ⚑ (BETA)", "Smilyai-labs/Sam-X-1-fast", "sam1_fast_finetuned.weights.h5", "sam1_fast_finetuned_config.json"),
    ("SAM-X-1-Mini πŸš€ (BETA)", "Smilyai-labs/Sam-X-1-Mini", "sam1_mini.weights_finetuned.h5", "sam1_mini_finetuned_config.json"),
    ("SAM-X-1-Nano ⚑⚑ (BETA)", "Smilyai-labs/Sam-X-1-Nano", "sam1_nano_finetuned.weights.h5", "sam1_nano_finetuned_config.json"),
]

available_models = {}
dummy_input = tf.zeros((1, 1), dtype=tf.int32)

for display_name, repo_id, weights_filename, config_filename in MODEL_REGISTRY:
    try:
        print(f"\nπŸ“₯ Loading {display_name}...")
        weights_path = hf_hub_download(repo_id=repo_id, filename=weights_filename)

        model_config = base_model_config.copy()
        if config_filename:
            print(f"   Custom config: {config_filename}")
            custom_config_path = hf_hub_download(repo_id=repo_id, filename=config_filename)
            with open(custom_config_path, 'r') as f:
                model_config.update(json.load(f))

        model = SAM1Model(**model_config)
        model(dummy_input)
        model.load_weights(weights_path)
        model.trainable = False

        backend = KerasBackend(model, display_name, display_name)
        available_models[display_name] = backend

        print(f"βœ… Loaded: {display_name}")
        print(f"   β†’ Params: {format_param_count(backend.total_params)} | Heads: {backend.n_heads}")

    except Exception as e:
        print(f"❌ Failed to load {display_name}: {e}")

if not available_models:
    raise RuntimeError("No models loaded!")

current_backend = list(available_models.values())[0]
print(f"\nπŸŽ‰ Ready! Default model: {current_backend.get_name()}")


# ==============================================================================
# Streaming Generator
# ==============================================================================

async def generate_stream(prompt: str, backend, temperature: float) -> AsyncGenerator[str, None]:  # βœ… Fixed type hint
    encoded_prompt = tokenizer.encode(prompt)
    input_ids = [i for i in encoded_prompt.ids if i != eos_token_id]
    generated = input_ids.copy()
    max_len = backend.model.cfg['max_len']
    buffer = ""

    for _ in range(512):
        await asyncio.sleep(0)
        current_input = generated[-max_len:]
        next_token_logits = backend.predict(current_input)

        if temperature > 0:
            next_token_logits /= temperature
            top_k_indices = np.argpartition(next_token_logits, -50)[-50:]
            top_k_logits = next_token_logits[top_k_indices]
            top_k_probs = np.exp(top_k_logits - np.max(top_k_logits))
            top_k_probs /= top_k_probs.sum()
            next_token = np.random.choice(top_k_indices, p=top_k_probs)
        else:
            next_token = int(np.argmax(next_token_logits))

        if next_token == eos_token_id:
            break

        generated.append(int(next_token))
        new_text = tokenizer.decode(generated[len(input_ids):])
        if len(new_text) > len(buffer):
            new_chunk = new_text[len(buffer):]
            buffer = new_text
            yield new_chunk


# ==============================================================================
# FastAPI Endpoints (OpenAI-style)
# ==============================================================================

class Message(BaseModel):
    role: str
    content: str

class ChatCompletionRequest(BaseModel):
    model: str = list(available_models.keys())[0]
    messages: List[Message]
    temperature: float = 0.7
    stream: bool = False
    max_tokens: int = 512

app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

@app.post("/v1/chat/completions")
async def chat_completions(request: ChatCompletionRequest):
    if request.model not in available_models:
        raise HTTPException(404, f"Model '{request.model}' not found.")

    backend = available_models[request.model]

    prompt_parts = []
    for msg in request.messages:
        prefix = "User" if msg.role.lower() == "user" else "Sam"
        prompt_parts.append(f"{prefix}: {msg.content}")
    prompt_parts.append("Sam:    <think>")
    prompt = "\n".join(prompt_parts)

    async def event_stream():
        async for token in generate_stream(prompt, backend, request.temperature):
            chunk = {
                "id": "chatcmpl-123",
                "object": "chat.completion.chunk",
                "created": 1677858242,
                "model": request.model,
                "choices": [{
                    "index": 0,
                    "delta": {"content": token},
                    "finish_reason": None
                }]
            }
            yield f" {json.dumps(chunk)}\n\n"
        yield " [DONE]\n\n"

    if request.stream:
        return StreamingResponse(event_stream(), media_type="text/event-stream")
    else:
        full = ""
        async for token in event_stream():
            if "[DONE]" not in token:
                data = json.loads(token.replace(" ", "").strip())
                full += data["choices"][0]["delta"]["content"]
        return {"choices": [{"message": {"content": full}}]}


@app.get("/v1/models")
async def list_models():
    return {
        "data": [
            {"id": name, "object": "model", "owned_by": "SmilyAI"}
            for name in available_models.keys()
        ]
    }


# ==============================================================================
# Gradio App (API Info Page)
# ==============================================================================

def get_api_info():
    model_info = "\n".join([f"- {name}" for name in available_models.keys()])
    return f"""
# πŸ€– SAM-X-1 AI API Server

This is a production-grade API server for the SAM-X-1 family of models.

## πŸš€ Available Models:
{model_info}

## πŸ”Œ API Endpoints:
- `POST /v1/chat/completions` - Chat completions (OpenAI-style)
- `GET /v1/models` - List available models

## 🌊 Streaming:
Set `"stream": true` in your request to receive real-time token-by-token responses.

## πŸ§ͺ Example Request:
```json
{{
  "model": "SAM-X-1-Large",
  "messages": [
    {{"role": "user", "content": "Hello!"}}
  ],
  "stream": true,
  "temperature": 0.7
}}
```
    """

# Create the Gradio app
with gr.Blocks(title="SAM-X-1 API") as demo:
    gr.Markdown(get_api_info())

# Launch Gradio app with FastAPI mounted
if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860, show_error=True)