Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
"""
|
| 2 |
-
SAM-Z-1 Worker Node
|
| 3 |
-
|
| 4 |
"""
|
| 5 |
|
| 6 |
from fastapi import FastAPI, HTTPException
|
|
@@ -14,13 +14,13 @@ import os
|
|
| 14 |
from tokenizers import Tokenizer
|
| 15 |
import numpy as np
|
| 16 |
import time
|
| 17 |
-
from typing import List
|
| 18 |
import asyncio
|
| 19 |
|
| 20 |
-
app = FastAPI(title="SAM-Z-1 Worker", version="
|
| 21 |
|
| 22 |
# ============================================================================
|
| 23 |
-
# Model Architecture
|
| 24 |
# ============================================================================
|
| 25 |
|
| 26 |
@keras.saving.register_keras_serializable()
|
|
@@ -36,7 +36,6 @@ class RotaryEmbedding(keras.layers.Layer):
|
|
| 36 |
super().build(input_shape)
|
| 37 |
|
| 38 |
def _build_cache(self):
|
| 39 |
-
"""Build RoPE cache on first forward pass"""
|
| 40 |
if not self.built_cache:
|
| 41 |
inv_freq = 1.0 / (self.theta ** (tf.range(0, self.dim, 2, dtype=tf.float32) / self.dim))
|
| 42 |
t = tf.range(self.max_len, dtype=tf.float32)
|
|
@@ -53,7 +52,6 @@ class RotaryEmbedding(keras.layers.Layer):
|
|
| 53 |
|
| 54 |
def call(self, q, k):
|
| 55 |
self._build_cache()
|
| 56 |
-
|
| 57 |
seq_len = tf.shape(q)[2]
|
| 58 |
dtype = q.dtype
|
| 59 |
cos = tf.cast(self.cos_cached[:seq_len, :], dtype)[None, None, :, :]
|
|
@@ -69,7 +67,6 @@ class RotaryEmbedding(keras.layers.Layer):
|
|
| 69 |
config.update({"dim": self.dim, "max_len": self.max_len, "theta": self.theta})
|
| 70 |
return config
|
| 71 |
|
| 72 |
-
|
| 73 |
@keras.saving.register_keras_serializable()
|
| 74 |
class RMSNorm(keras.layers.Layer):
|
| 75 |
def __init__(self, epsilon=1e-5, **kwargs):
|
|
@@ -88,7 +85,6 @@ class RMSNorm(keras.layers.Layer):
|
|
| 88 |
config.update({"epsilon": self.epsilon})
|
| 89 |
return config
|
| 90 |
|
| 91 |
-
|
| 92 |
@keras.saving.register_keras_serializable()
|
| 93 |
class TransformerBlock(keras.layers.Layer):
|
| 94 |
def __init__(self, d_model, n_heads, ff_dim, dropout, max_len, rope_theta, layer_idx=0, **kwargs):
|
|
@@ -122,7 +118,6 @@ class TransformerBlock(keras.layers.Layer):
|
|
| 122 |
B, T, D = tf.shape(x)[0], tf.shape(x)[1], self.d_model
|
| 123 |
dtype = x.dtype
|
| 124 |
|
| 125 |
-
# Attention
|
| 126 |
res = x
|
| 127 |
y = self.pre_attn_norm(x)
|
| 128 |
|
|
@@ -133,7 +128,6 @@ class TransformerBlock(keras.layers.Layer):
|
|
| 133 |
q, k = self.rope(q, k)
|
| 134 |
|
| 135 |
scores = tf.matmul(q, k, transpose_b=True) / tf.sqrt(tf.cast(self.head_dim, dtype))
|
| 136 |
-
|
| 137 |
mask = tf.where(
|
| 138 |
tf.linalg.band_part(tf.ones([T, T], dtype=dtype), -1, 0) == 0,
|
| 139 |
tf.constant(-1e9, dtype=dtype),
|
|
@@ -145,7 +139,6 @@ class TransformerBlock(keras.layers.Layer):
|
|
| 145 |
attn = tf.reshape(tf.transpose(attn, [0, 2, 1, 3]), [B, T, D])
|
| 146 |
x = res + self.dropout(self.out_proj(attn), training=training)
|
| 147 |
|
| 148 |
-
# FFN (SwiGLU)
|
| 149 |
res = x
|
| 150 |
y = self.pre_ffn_norm(x)
|
| 151 |
ffn = self.down_proj(keras.activations.silu(self.gate_proj(y)) * self.up_proj(y))
|
|
@@ -165,7 +158,6 @@ class TransformerBlock(keras.layers.Layer):
|
|
| 165 |
})
|
| 166 |
return config
|
| 167 |
|
| 168 |
-
|
| 169 |
@keras.saving.register_keras_serializable()
|
| 170 |
class SAM1Model(keras.Model):
|
| 171 |
def __init__(self, **kwargs):
|
|
@@ -199,10 +191,8 @@ class SAM1Model(keras.Model):
|
|
| 199 |
|
| 200 |
def call(self, input_ids, training=None):
|
| 201 |
x = self.embed(input_ids)
|
| 202 |
-
|
| 203 |
for block in self.blocks:
|
| 204 |
x = block(x, training=training)
|
| 205 |
-
|
| 206 |
return self.lm_head(self.norm(x))
|
| 207 |
|
| 208 |
def get_config(self):
|
|
@@ -235,6 +225,7 @@ class GenerateRequest(BaseModel):
|
|
| 235 |
top_p: float = 0.9
|
| 236 |
repetition_penalty: float = 1.1
|
| 237 |
stream: bool = False
|
|
|
|
| 238 |
|
| 239 |
class ChatMessage(BaseModel):
|
| 240 |
role: str
|
|
@@ -248,6 +239,10 @@ class ChatRequest(BaseModel):
|
|
| 248 |
top_p: float = 0.9
|
| 249 |
repetition_penalty: float = 1.1
|
| 250 |
stream: bool = False
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
|
| 252 |
# ============================================================================
|
| 253 |
# Generation Functions
|
|
@@ -259,12 +254,16 @@ def generate_tokens(
|
|
| 259 |
temperature: float = 0.8,
|
| 260 |
top_k: int = 40,
|
| 261 |
top_p: float = 0.9,
|
| 262 |
-
repetition_penalty: float = 1.1
|
|
|
|
| 263 |
):
|
| 264 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
global model, tokenizer, config, eos_token_id, fast_forward
|
| 266 |
|
| 267 |
-
# Tokenize
|
| 268 |
input_ids = [i for i in tokenizer.encode(prompt).ids if i != eos_token_id]
|
| 269 |
|
| 270 |
if len(input_ids) == 0:
|
|
@@ -277,26 +276,21 @@ def generate_tokens(
|
|
| 277 |
token_freq = {}
|
| 278 |
|
| 279 |
for step in range(max_tokens):
|
| 280 |
-
# Get logits
|
| 281 |
logits = fast_forward(input_tensor)
|
| 282 |
next_token_logits = logits[0, -1, :].numpy()
|
| 283 |
|
| 284 |
-
# Temperature
|
| 285 |
next_token_logits = next_token_logits / temperature
|
| 286 |
|
| 287 |
-
# Repetition penalty
|
| 288 |
if repetition_penalty != 1.0:
|
| 289 |
for token_id, freq in token_freq.items():
|
| 290 |
if token_id < len(next_token_logits):
|
| 291 |
next_token_logits[token_id] /= (repetition_penalty ** freq)
|
| 292 |
|
| 293 |
-
# Top-k filtering
|
| 294 |
if top_k > 0:
|
| 295 |
top_k_indices = np.argpartition(next_token_logits, -top_k)[-top_k:]
|
| 296 |
top_k_logits = next_token_logits[top_k_indices]
|
| 297 |
top_k_probs = tf.nn.softmax(top_k_logits).numpy()
|
| 298 |
|
| 299 |
-
# Top-p sampling
|
| 300 |
if top_p < 1.0:
|
| 301 |
sorted_indices = np.argsort(top_k_probs)[::-1]
|
| 302 |
cumsum = np.cumsum(top_k_probs[sorted_indices])
|
|
@@ -315,16 +309,18 @@ def generate_tokens(
|
|
| 315 |
probs = tf.nn.softmax(next_token_logits).numpy()
|
| 316 |
next_token_id = np.random.choice(len(probs), p=probs)
|
| 317 |
|
| 318 |
-
# Stop on EOS
|
| 319 |
if next_token_id == eos_token_id:
|
| 320 |
break
|
| 321 |
|
| 322 |
token_freq[next_token_id] = token_freq.get(next_token_id, 0) + 1
|
| 323 |
|
| 324 |
-
# Yield token
|
| 325 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 326 |
|
| 327 |
-
# Update input
|
| 328 |
input_tensor = tf.concat([input_tensor, [[next_token_id]]], axis=1)
|
| 329 |
|
| 330 |
if input_tensor.shape[1] > config['max_position_embeddings']:
|
|
@@ -350,12 +346,15 @@ def format_chat_prompt(messages: List[ChatMessage]) -> str:
|
|
| 350 |
async def root():
|
| 351 |
"""Worker info"""
|
| 352 |
return {
|
| 353 |
-
"name": "SAM-Z-1 Worker",
|
|
|
|
| 354 |
"status": "ready" if model is not None else "loading",
|
| 355 |
"model": MODEL_REPO,
|
|
|
|
| 356 |
"endpoints": {
|
| 357 |
"generate": "/generate",
|
| 358 |
"chat": "/chat",
|
|
|
|
| 359 |
"health": "/health"
|
| 360 |
}
|
| 361 |
}
|
|
@@ -368,11 +367,27 @@ async def health():
|
|
| 368 |
"model_loaded": model is not None
|
| 369 |
}
|
| 370 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 371 |
@app.post("/generate")
|
| 372 |
async def generate(request: GenerateRequest):
|
| 373 |
-
"""Generate text
|
| 374 |
if model is None:
|
| 375 |
-
raise HTTPException(status_code=503, detail="Model not loaded yet
|
| 376 |
|
| 377 |
start_time = time.time()
|
| 378 |
|
|
@@ -383,27 +398,29 @@ async def generate(request: GenerateRequest):
|
|
| 383 |
token_count = 0
|
| 384 |
|
| 385 |
try:
|
| 386 |
-
for token_id in generate_tokens(
|
| 387 |
request.prompt,
|
| 388 |
max_tokens=request.max_tokens,
|
| 389 |
temperature=request.temperature,
|
| 390 |
top_k=request.top_k,
|
| 391 |
top_p=request.top_p,
|
| 392 |
-
repetition_penalty=request.repetition_penalty
|
|
|
|
| 393 |
):
|
| 394 |
-
token_text = tokenizer.decode([token_id])
|
| 395 |
-
generated_text += token_text
|
| 396 |
token_count += 1
|
| 397 |
|
| 398 |
-
|
| 399 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 400 |
|
| 401 |
-
# Small delay
|
| 402 |
await asyncio.sleep(0.001)
|
| 403 |
|
| 404 |
-
# Send final stats
|
| 405 |
elapsed = time.time() - start_time
|
| 406 |
-
yield f"data: {json.dumps({'done': True, 'tokens': token_count, 'time': elapsed
|
| 407 |
|
| 408 |
except Exception as e:
|
| 409 |
yield f"data: {json.dumps({'error': str(e)})}\n\n"
|
|
@@ -411,21 +428,22 @@ async def generate(request: GenerateRequest):
|
|
| 411 |
return StreamingResponse(stream_tokens(), media_type="text/event-stream")
|
| 412 |
|
| 413 |
else:
|
| 414 |
-
# Non-streaming
|
| 415 |
generated_text = ""
|
| 416 |
token_count = 0
|
| 417 |
|
| 418 |
try:
|
| 419 |
-
for token_id in generate_tokens(
|
| 420 |
request.prompt,
|
| 421 |
max_tokens=request.max_tokens,
|
| 422 |
temperature=request.temperature,
|
| 423 |
top_k=request.top_k,
|
| 424 |
top_p=request.top_p,
|
| 425 |
-
repetition_penalty=request.repetition_penalty
|
|
|
|
| 426 |
):
|
| 427 |
-
|
| 428 |
-
|
| 429 |
token_count += 1
|
| 430 |
|
| 431 |
elapsed = time.time() - start_time
|
|
@@ -442,44 +460,45 @@ async def generate(request: GenerateRequest):
|
|
| 442 |
|
| 443 |
@app.post("/chat")
|
| 444 |
async def chat(request: ChatRequest):
|
| 445 |
-
"""Chat completion"""
|
| 446 |
if model is None:
|
| 447 |
-
raise HTTPException(status_code=503, detail="Model not loaded yet
|
| 448 |
|
| 449 |
-
# Format prompt
|
| 450 |
prompt = format_chat_prompt(request.messages)
|
| 451 |
-
|
| 452 |
start_time = time.time()
|
| 453 |
|
| 454 |
if request.stream:
|
| 455 |
-
# Streaming
|
| 456 |
async def stream_tokens():
|
| 457 |
generated_text = ""
|
| 458 |
token_count = 0
|
| 459 |
|
| 460 |
try:
|
| 461 |
-
for token_id in generate_tokens(
|
| 462 |
prompt,
|
| 463 |
max_tokens=request.max_tokens,
|
| 464 |
temperature=request.temperature,
|
| 465 |
top_k=request.top_k,
|
| 466 |
top_p=request.top_p,
|
| 467 |
-
repetition_penalty=request.repetition_penalty
|
|
|
|
| 468 |
):
|
| 469 |
-
token_text = tokenizer.decode([token_id])
|
| 470 |
-
generated_text += token_text
|
| 471 |
token_count += 1
|
| 472 |
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 477 |
|
| 478 |
-
yield f"data: {json.dumps({'delta': token_text, 'content': generated_text})}\n\n"
|
| 479 |
await asyncio.sleep(0.001)
|
| 480 |
|
| 481 |
elapsed = time.time() - start_time
|
| 482 |
-
yield f"data: {json.dumps({'done': True, 'tokens': token_count, 'time': elapsed
|
| 483 |
|
| 484 |
except Exception as e:
|
| 485 |
yield f"data: {json.dumps({'error': str(e)})}\n\n"
|
|
@@ -487,26 +506,27 @@ async def chat(request: ChatRequest):
|
|
| 487 |
return StreamingResponse(stream_tokens(), media_type="text/event-stream")
|
| 488 |
|
| 489 |
else:
|
| 490 |
-
# Non-streaming
|
| 491 |
generated_text = ""
|
| 492 |
token_count = 0
|
| 493 |
|
| 494 |
try:
|
| 495 |
-
for token_id in generate_tokens(
|
| 496 |
prompt,
|
| 497 |
max_tokens=request.max_tokens,
|
| 498 |
temperature=request.temperature,
|
| 499 |
top_k=request.top_k,
|
| 500 |
top_p=request.top_p,
|
| 501 |
-
repetition_penalty=request.repetition_penalty
|
|
|
|
| 502 |
):
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
|
|
|
|
|
|
|
|
|
| 506 |
|
| 507 |
-
|
| 508 |
-
generated_text = generated_text.split("<|im_end|>")[0]
|
| 509 |
-
break
|
| 510 |
|
| 511 |
elapsed = time.time() - start_time
|
| 512 |
|
|
@@ -535,10 +555,8 @@ async def load_model():
|
|
| 535 |
print("π Loading SAM-Z-1 Model...")
|
| 536 |
|
| 537 |
try:
|
| 538 |
-
# Download model files
|
| 539 |
config_path = hf_hub_download(MODEL_REPO, "config.json", cache_dir=CACHE_DIR)
|
| 540 |
|
| 541 |
-
# Try checkpoint first
|
| 542 |
try:
|
| 543 |
weights_path = hf_hub_download(MODEL_REPO, "ckpt.weights.h5", cache_dir=CACHE_DIR)
|
| 544 |
print("β
Found checkpoint weights")
|
|
@@ -548,13 +566,11 @@ async def load_model():
|
|
| 548 |
model_path = hf_hub_download(MODEL_REPO, "model.keras", cache_dir=CACHE_DIR)
|
| 549 |
use_checkpoint = False
|
| 550 |
|
| 551 |
-
# Load config
|
| 552 |
with open(config_path, 'r') as f:
|
| 553 |
config = json.load(f)
|
| 554 |
|
| 555 |
print(f"π¦ Config loaded: {config['num_hidden_layers']} layers")
|
| 556 |
|
| 557 |
-
# Create tokenizer
|
| 558 |
print("π¦ Creating tokenizer...")
|
| 559 |
from transformers import AutoTokenizer
|
| 560 |
|
|
@@ -570,11 +586,9 @@ async def load_model():
|
|
| 570 |
|
| 571 |
print(f"β
Tokenizer ready: vocab size {tokenizer.get_vocab_size()}")
|
| 572 |
|
| 573 |
-
# Load model
|
| 574 |
print("π Loading model...")
|
| 575 |
|
| 576 |
if use_checkpoint:
|
| 577 |
-
# Build from config
|
| 578 |
model_config = {
|
| 579 |
'vocab_size': config['vocab_size'],
|
| 580 |
'd_model': config['hidden_size'],
|
|
@@ -587,30 +601,25 @@ async def load_model():
|
|
| 587 |
}
|
| 588 |
|
| 589 |
model = SAM1Model(config=model_config)
|
| 590 |
-
|
| 591 |
-
# Build with dummy input
|
| 592 |
dummy_input = tf.zeros((1, config['max_position_embeddings']), dtype=tf.int32)
|
| 593 |
_ = model(dummy_input, training=False)
|
| 594 |
|
| 595 |
print(f"β
Architecture built: {model.count_params():,} parameters")
|
| 596 |
|
| 597 |
-
# Load weights
|
| 598 |
model.load_weights(weights_path)
|
| 599 |
print("β
Weights loaded!")
|
| 600 |
|
| 601 |
else:
|
| 602 |
-
# Load full model
|
| 603 |
model = keras.models.load_model(model_path, compile=False)
|
| 604 |
print("β
Model loaded!")
|
| 605 |
|
| 606 |
-
# Create optimized inference function
|
| 607 |
@tf.function(reduce_retracing=True)
|
| 608 |
def optimized_forward(input_tensor):
|
| 609 |
return model(input_tensor, training=False)
|
| 610 |
|
| 611 |
fast_forward = optimized_forward
|
| 612 |
|
| 613 |
-
print("β
SAM-Z-1 Worker ready
|
| 614 |
|
| 615 |
except Exception as e:
|
| 616 |
print(f"β Failed to load model: {e}")
|
|
|
|
| 1 |
"""
|
| 2 |
+
SAM-Z-1 Smart Worker Node
|
| 3 |
+
Supports both full generation and gen/decode split modes
|
| 4 |
"""
|
| 5 |
|
| 6 |
from fastapi import FastAPI, HTTPException
|
|
|
|
| 14 |
from tokenizers import Tokenizer
|
| 15 |
import numpy as np
|
| 16 |
import time
|
| 17 |
+
from typing import List, Optional
|
| 18 |
import asyncio
|
| 19 |
|
| 20 |
+
app = FastAPI(title="SAM-Z-1 Smart Worker", version="3.0.0")
|
| 21 |
|
| 22 |
# ============================================================================
|
| 23 |
+
# Model Architecture (same as before)
|
| 24 |
# ============================================================================
|
| 25 |
|
| 26 |
@keras.saving.register_keras_serializable()
|
|
|
|
| 36 |
super().build(input_shape)
|
| 37 |
|
| 38 |
def _build_cache(self):
|
|
|
|
| 39 |
if not self.built_cache:
|
| 40 |
inv_freq = 1.0 / (self.theta ** (tf.range(0, self.dim, 2, dtype=tf.float32) / self.dim))
|
| 41 |
t = tf.range(self.max_len, dtype=tf.float32)
|
|
|
|
| 52 |
|
| 53 |
def call(self, q, k):
|
| 54 |
self._build_cache()
|
|
|
|
| 55 |
seq_len = tf.shape(q)[2]
|
| 56 |
dtype = q.dtype
|
| 57 |
cos = tf.cast(self.cos_cached[:seq_len, :], dtype)[None, None, :, :]
|
|
|
|
| 67 |
config.update({"dim": self.dim, "max_len": self.max_len, "theta": self.theta})
|
| 68 |
return config
|
| 69 |
|
|
|
|
| 70 |
@keras.saving.register_keras_serializable()
|
| 71 |
class RMSNorm(keras.layers.Layer):
|
| 72 |
def __init__(self, epsilon=1e-5, **kwargs):
|
|
|
|
| 85 |
config.update({"epsilon": self.epsilon})
|
| 86 |
return config
|
| 87 |
|
|
|
|
| 88 |
@keras.saving.register_keras_serializable()
|
| 89 |
class TransformerBlock(keras.layers.Layer):
|
| 90 |
def __init__(self, d_model, n_heads, ff_dim, dropout, max_len, rope_theta, layer_idx=0, **kwargs):
|
|
|
|
| 118 |
B, T, D = tf.shape(x)[0], tf.shape(x)[1], self.d_model
|
| 119 |
dtype = x.dtype
|
| 120 |
|
|
|
|
| 121 |
res = x
|
| 122 |
y = self.pre_attn_norm(x)
|
| 123 |
|
|
|
|
| 128 |
q, k = self.rope(q, k)
|
| 129 |
|
| 130 |
scores = tf.matmul(q, k, transpose_b=True) / tf.sqrt(tf.cast(self.head_dim, dtype))
|
|
|
|
| 131 |
mask = tf.where(
|
| 132 |
tf.linalg.band_part(tf.ones([T, T], dtype=dtype), -1, 0) == 0,
|
| 133 |
tf.constant(-1e9, dtype=dtype),
|
|
|
|
| 139 |
attn = tf.reshape(tf.transpose(attn, [0, 2, 1, 3]), [B, T, D])
|
| 140 |
x = res + self.dropout(self.out_proj(attn), training=training)
|
| 141 |
|
|
|
|
| 142 |
res = x
|
| 143 |
y = self.pre_ffn_norm(x)
|
| 144 |
ffn = self.down_proj(keras.activations.silu(self.gate_proj(y)) * self.up_proj(y))
|
|
|
|
| 158 |
})
|
| 159 |
return config
|
| 160 |
|
|
|
|
| 161 |
@keras.saving.register_keras_serializable()
|
| 162 |
class SAM1Model(keras.Model):
|
| 163 |
def __init__(self, **kwargs):
|
|
|
|
| 191 |
|
| 192 |
def call(self, input_ids, training=None):
|
| 193 |
x = self.embed(input_ids)
|
|
|
|
| 194 |
for block in self.blocks:
|
| 195 |
x = block(x, training=training)
|
|
|
|
| 196 |
return self.lm_head(self.norm(x))
|
| 197 |
|
| 198 |
def get_config(self):
|
|
|
|
| 225 |
top_p: float = 0.9
|
| 226 |
repetition_penalty: float = 1.1
|
| 227 |
stream: bool = False
|
| 228 |
+
return_token_ids: bool = False # NEW: for gen/decode split
|
| 229 |
|
| 230 |
class ChatMessage(BaseModel):
|
| 231 |
role: str
|
|
|
|
| 239 |
top_p: float = 0.9
|
| 240 |
repetition_penalty: float = 1.1
|
| 241 |
stream: bool = False
|
| 242 |
+
return_token_ids: bool = False # NEW
|
| 243 |
+
|
| 244 |
+
class DecodeRequest(BaseModel):
|
| 245 |
+
token_ids: List[int]
|
| 246 |
|
| 247 |
# ============================================================================
|
| 248 |
# Generation Functions
|
|
|
|
| 254 |
temperature: float = 0.8,
|
| 255 |
top_k: int = 40,
|
| 256 |
top_p: float = 0.9,
|
| 257 |
+
repetition_penalty: float = 1.1,
|
| 258 |
+
return_token_ids: bool = False
|
| 259 |
):
|
| 260 |
+
"""
|
| 261 |
+
Core generation function
|
| 262 |
+
If return_token_ids=True, yields (token_id, None)
|
| 263 |
+
If return_token_ids=False, yields (token_id, token_text)
|
| 264 |
+
"""
|
| 265 |
global model, tokenizer, config, eos_token_id, fast_forward
|
| 266 |
|
|
|
|
| 267 |
input_ids = [i for i in tokenizer.encode(prompt).ids if i != eos_token_id]
|
| 268 |
|
| 269 |
if len(input_ids) == 0:
|
|
|
|
| 276 |
token_freq = {}
|
| 277 |
|
| 278 |
for step in range(max_tokens):
|
|
|
|
| 279 |
logits = fast_forward(input_tensor)
|
| 280 |
next_token_logits = logits[0, -1, :].numpy()
|
| 281 |
|
|
|
|
| 282 |
next_token_logits = next_token_logits / temperature
|
| 283 |
|
|
|
|
| 284 |
if repetition_penalty != 1.0:
|
| 285 |
for token_id, freq in token_freq.items():
|
| 286 |
if token_id < len(next_token_logits):
|
| 287 |
next_token_logits[token_id] /= (repetition_penalty ** freq)
|
| 288 |
|
|
|
|
| 289 |
if top_k > 0:
|
| 290 |
top_k_indices = np.argpartition(next_token_logits, -top_k)[-top_k:]
|
| 291 |
top_k_logits = next_token_logits[top_k_indices]
|
| 292 |
top_k_probs = tf.nn.softmax(top_k_logits).numpy()
|
| 293 |
|
|
|
|
| 294 |
if top_p < 1.0:
|
| 295 |
sorted_indices = np.argsort(top_k_probs)[::-1]
|
| 296 |
cumsum = np.cumsum(top_k_probs[sorted_indices])
|
|
|
|
| 309 |
probs = tf.nn.softmax(next_token_logits).numpy()
|
| 310 |
next_token_id = np.random.choice(len(probs), p=probs)
|
| 311 |
|
|
|
|
| 312 |
if next_token_id == eos_token_id:
|
| 313 |
break
|
| 314 |
|
| 315 |
token_freq[next_token_id] = token_freq.get(next_token_id, 0) + 1
|
| 316 |
|
| 317 |
+
# Yield token ID and optionally decoded text
|
| 318 |
+
if return_token_ids:
|
| 319 |
+
yield (next_token_id, None)
|
| 320 |
+
else:
|
| 321 |
+
token_text = tokenizer.decode([next_token_id])
|
| 322 |
+
yield (next_token_id, token_text)
|
| 323 |
|
|
|
|
| 324 |
input_tensor = tf.concat([input_tensor, [[next_token_id]]], axis=1)
|
| 325 |
|
| 326 |
if input_tensor.shape[1] > config['max_position_embeddings']:
|
|
|
|
| 346 |
async def root():
|
| 347 |
"""Worker info"""
|
| 348 |
return {
|
| 349 |
+
"name": "SAM-Z-1 Smart Worker",
|
| 350 |
+
"version": "3.0.0",
|
| 351 |
"status": "ready" if model is not None else "loading",
|
| 352 |
"model": MODEL_REPO,
|
| 353 |
+
"features": ["full_generation", "token_only_mode", "decode_only_mode"],
|
| 354 |
"endpoints": {
|
| 355 |
"generate": "/generate",
|
| 356 |
"chat": "/chat",
|
| 357 |
+
"decode": "/decode",
|
| 358 |
"health": "/health"
|
| 359 |
}
|
| 360 |
}
|
|
|
|
| 367 |
"model_loaded": model is not None
|
| 368 |
}
|
| 369 |
|
| 370 |
+
@app.post("/decode")
|
| 371 |
+
async def decode(request: DecodeRequest):
|
| 372 |
+
"""
|
| 373 |
+
DECODE ONLY endpoint
|
| 374 |
+
Takes token IDs and returns decoded text
|
| 375 |
+
This is the bottleneck we're parallelizing!
|
| 376 |
+
"""
|
| 377 |
+
if tokenizer is None:
|
| 378 |
+
raise HTTPException(status_code=503, detail="Tokenizer not loaded")
|
| 379 |
+
|
| 380 |
+
try:
|
| 381 |
+
text = tokenizer.decode(request.token_ids)
|
| 382 |
+
return {"text": text}
|
| 383 |
+
except Exception as e:
|
| 384 |
+
raise HTTPException(status_code=500, detail=f"Decode error: {str(e)}")
|
| 385 |
+
|
| 386 |
@app.post("/generate")
|
| 387 |
async def generate(request: GenerateRequest):
|
| 388 |
+
"""Generate text - supports both full gen and token-only mode"""
|
| 389 |
if model is None:
|
| 390 |
+
raise HTTPException(status_code=503, detail="Model not loaded yet")
|
| 391 |
|
| 392 |
start_time = time.time()
|
| 393 |
|
|
|
|
| 398 |
token_count = 0
|
| 399 |
|
| 400 |
try:
|
| 401 |
+
for token_id, token_text in generate_tokens(
|
| 402 |
request.prompt,
|
| 403 |
max_tokens=request.max_tokens,
|
| 404 |
temperature=request.temperature,
|
| 405 |
top_k=request.top_k,
|
| 406 |
top_p=request.top_p,
|
| 407 |
+
repetition_penalty=request.repetition_penalty,
|
| 408 |
+
return_token_ids=request.return_token_ids
|
| 409 |
):
|
|
|
|
|
|
|
| 410 |
token_count += 1
|
| 411 |
|
| 412 |
+
if request.return_token_ids:
|
| 413 |
+
# TOKEN-ONLY mode for gen/decode split
|
| 414 |
+
yield f"data: {json.dumps({'token_id': token_id})}\n\n"
|
| 415 |
+
else:
|
| 416 |
+
# FULL mode with text
|
| 417 |
+
generated_text += token_text
|
| 418 |
+
yield f"data: {json.dumps({'text': token_text, 'total': generated_text})}\n\n"
|
| 419 |
|
|
|
|
| 420 |
await asyncio.sleep(0.001)
|
| 421 |
|
|
|
|
| 422 |
elapsed = time.time() - start_time
|
| 423 |
+
yield f"data: {json.dumps({'done': True, 'tokens': token_count, 'time': elapsed})}\n\n"
|
| 424 |
|
| 425 |
except Exception as e:
|
| 426 |
yield f"data: {json.dumps({'error': str(e)})}\n\n"
|
|
|
|
| 428 |
return StreamingResponse(stream_tokens(), media_type="text/event-stream")
|
| 429 |
|
| 430 |
else:
|
| 431 |
+
# Non-streaming
|
| 432 |
generated_text = ""
|
| 433 |
token_count = 0
|
| 434 |
|
| 435 |
try:
|
| 436 |
+
for token_id, token_text in generate_tokens(
|
| 437 |
request.prompt,
|
| 438 |
max_tokens=request.max_tokens,
|
| 439 |
temperature=request.temperature,
|
| 440 |
top_k=request.top_k,
|
| 441 |
top_p=request.top_p,
|
| 442 |
+
repetition_penalty=request.repetition_penalty,
|
| 443 |
+
return_token_ids=request.return_token_ids
|
| 444 |
):
|
| 445 |
+
if not request.return_token_ids:
|
| 446 |
+
generated_text += token_text
|
| 447 |
token_count += 1
|
| 448 |
|
| 449 |
elapsed = time.time() - start_time
|
|
|
|
| 460 |
|
| 461 |
@app.post("/chat")
|
| 462 |
async def chat(request: ChatRequest):
|
| 463 |
+
"""Chat completion - supports both modes"""
|
| 464 |
if model is None:
|
| 465 |
+
raise HTTPException(status_code=503, detail="Model not loaded yet")
|
| 466 |
|
|
|
|
| 467 |
prompt = format_chat_prompt(request.messages)
|
|
|
|
| 468 |
start_time = time.time()
|
| 469 |
|
| 470 |
if request.stream:
|
|
|
|
| 471 |
async def stream_tokens():
|
| 472 |
generated_text = ""
|
| 473 |
token_count = 0
|
| 474 |
|
| 475 |
try:
|
| 476 |
+
for token_id, token_text in generate_tokens(
|
| 477 |
prompt,
|
| 478 |
max_tokens=request.max_tokens,
|
| 479 |
temperature=request.temperature,
|
| 480 |
top_k=request.top_k,
|
| 481 |
top_p=request.top_p,
|
| 482 |
+
repetition_penalty=request.repetition_penalty,
|
| 483 |
+
return_token_ids=request.return_token_ids
|
| 484 |
):
|
|
|
|
|
|
|
| 485 |
token_count += 1
|
| 486 |
|
| 487 |
+
if request.return_token_ids:
|
| 488 |
+
yield f"data: {json.dumps({'token_id': token_id})}\n\n"
|
| 489 |
+
else:
|
| 490 |
+
generated_text += token_text
|
| 491 |
+
|
| 492 |
+
if "<|im_end|>" in generated_text:
|
| 493 |
+
generated_text = generated_text.split("<|im_end|>")[0]
|
| 494 |
+
break
|
| 495 |
+
|
| 496 |
+
yield f"data: {json.dumps({'delta': token_text, 'content': generated_text})}\n\n"
|
| 497 |
|
|
|
|
| 498 |
await asyncio.sleep(0.001)
|
| 499 |
|
| 500 |
elapsed = time.time() - start_time
|
| 501 |
+
yield f"data: {json.dumps({'done': True, 'tokens': token_count, 'time': elapsed})}\n\n"
|
| 502 |
|
| 503 |
except Exception as e:
|
| 504 |
yield f"data: {json.dumps({'error': str(e)})}\n\n"
|
|
|
|
| 506 |
return StreamingResponse(stream_tokens(), media_type="text/event-stream")
|
| 507 |
|
| 508 |
else:
|
|
|
|
| 509 |
generated_text = ""
|
| 510 |
token_count = 0
|
| 511 |
|
| 512 |
try:
|
| 513 |
+
for token_id, token_text in generate_tokens(
|
| 514 |
prompt,
|
| 515 |
max_tokens=request.max_tokens,
|
| 516 |
temperature=request.temperature,
|
| 517 |
top_k=request.top_k,
|
| 518 |
top_p=request.top_p,
|
| 519 |
+
repetition_penalty=request.repetition_penalty,
|
| 520 |
+
return_token_ids=request.return_token_ids
|
| 521 |
):
|
| 522 |
+
if not request.return_token_ids:
|
| 523 |
+
generated_text += token_text
|
| 524 |
+
|
| 525 |
+
if "<|im_end|>" in generated_text:
|
| 526 |
+
generated_text = generated_text.split("<|im_end|>")[0]
|
| 527 |
+
break
|
| 528 |
|
| 529 |
+
token_count += 1
|
|
|
|
|
|
|
| 530 |
|
| 531 |
elapsed = time.time() - start_time
|
| 532 |
|
|
|
|
| 555 |
print("π Loading SAM-Z-1 Model...")
|
| 556 |
|
| 557 |
try:
|
|
|
|
| 558 |
config_path = hf_hub_download(MODEL_REPO, "config.json", cache_dir=CACHE_DIR)
|
| 559 |
|
|
|
|
| 560 |
try:
|
| 561 |
weights_path = hf_hub_download(MODEL_REPO, "ckpt.weights.h5", cache_dir=CACHE_DIR)
|
| 562 |
print("β
Found checkpoint weights")
|
|
|
|
| 566 |
model_path = hf_hub_download(MODEL_REPO, "model.keras", cache_dir=CACHE_DIR)
|
| 567 |
use_checkpoint = False
|
| 568 |
|
|
|
|
| 569 |
with open(config_path, 'r') as f:
|
| 570 |
config = json.load(f)
|
| 571 |
|
| 572 |
print(f"π¦ Config loaded: {config['num_hidden_layers']} layers")
|
| 573 |
|
|
|
|
| 574 |
print("π¦ Creating tokenizer...")
|
| 575 |
from transformers import AutoTokenizer
|
| 576 |
|
|
|
|
| 586 |
|
| 587 |
print(f"β
Tokenizer ready: vocab size {tokenizer.get_vocab_size()}")
|
| 588 |
|
|
|
|
| 589 |
print("π Loading model...")
|
| 590 |
|
| 591 |
if use_checkpoint:
|
|
|
|
| 592 |
model_config = {
|
| 593 |
'vocab_size': config['vocab_size'],
|
| 594 |
'd_model': config['hidden_size'],
|
|
|
|
| 601 |
}
|
| 602 |
|
| 603 |
model = SAM1Model(config=model_config)
|
|
|
|
|
|
|
| 604 |
dummy_input = tf.zeros((1, config['max_position_embeddings']), dtype=tf.int32)
|
| 605 |
_ = model(dummy_input, training=False)
|
| 606 |
|
| 607 |
print(f"β
Architecture built: {model.count_params():,} parameters")
|
| 608 |
|
|
|
|
| 609 |
model.load_weights(weights_path)
|
| 610 |
print("β
Weights loaded!")
|
| 611 |
|
| 612 |
else:
|
|
|
|
| 613 |
model = keras.models.load_model(model_path, compile=False)
|
| 614 |
print("β
Model loaded!")
|
| 615 |
|
|
|
|
| 616 |
@tf.function(reduce_retracing=True)
|
| 617 |
def optimized_forward(input_tensor):
|
| 618 |
return model(input_tensor, training=False)
|
| 619 |
|
| 620 |
fast_forward = optimized_forward
|
| 621 |
|
| 622 |
+
print("β
SAM-Z-1 Smart Worker ready! π")
|
| 623 |
|
| 624 |
except Exception as e:
|
| 625 |
print(f"β Failed to load model: {e}")
|