Delete sidebar for easy read
Browse files
app.py
CHANGED
|
@@ -1,249 +1,248 @@
|
|
| 1 |
-
import os, sys
|
| 2 |
-
import streamlit as st
|
| 3 |
-
|
| 4 |
-
st.set_page_config(page_title="Pricing for scalar and binary embeddings", page_icon=":floppy-disk:", layout="wide",
|
| 5 |
-
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
st.
|
| 11 |
-
|
| 12 |
-
st.
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
st.
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
st.
|
| 23 |
-
|
| 24 |
-
st.write("
|
| 25 |
-
|
| 26 |
-
st.write(
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
with
|
| 30 |
-
st.write("***
|
| 31 |
-
|
| 32 |
-
st.write("***
|
| 33 |
-
|
| 34 |
-
st.write("***
|
| 35 |
-
|
| 36 |
-
st.write("***
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
st.write("***
|
| 42 |
-
st.
|
| 43 |
-
|
| 44 |
-
st.write(
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
r = st.write(str(round(
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
r = st.write(str(round(
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
r = st.write(str(round(
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
r = st.write(str(round(
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
r = st.write(str(round(
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
st.write(
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
st.write(str(round(
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
st.
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
int8_mem_1 = dim_1 / 4
|
| 125 |
-
st.write(str(round(int8_mem_1, 2)) + " GB")
|
| 126 |
-
|
| 127 |
-
int8_mem_2 = dim_2 / 4
|
| 128 |
-
st.write(str(round(int8_mem_2, 2)) + " GB")
|
| 129 |
-
|
| 130 |
-
int8_mem_3 = dim_3 / 4
|
| 131 |
-
st.write(str(round(int8_mem_3, 2)) + " GB")
|
| 132 |
-
|
| 133 |
-
int8_mem_4 = dim_4 / 4
|
| 134 |
-
st.write(str(round(int8_mem_4, 2)) + " GB")
|
| 135 |
-
|
| 136 |
-
int8_mem_5 = dim_5 / 4
|
| 137 |
-
st.write(str(round(int8_mem_5, 2)) + " GB")
|
| 138 |
-
|
| 139 |
-
int8_mem_6 = dim_6 / 4
|
| 140 |
-
st.write(str(round(int8_mem_6, 2)) + " GB")
|
| 141 |
-
|
| 142 |
-
int8_mem_7 = dim_7 / 4
|
| 143 |
-
st.write(str(round(int8_mem_7, 2)) + " GB")
|
| 144 |
-
|
| 145 |
-
int8_mem_8 = dim_8 / 4
|
| 146 |
-
st.write(str(round(int8_mem_8, 2)) + " GB")
|
| 147 |
-
with
|
| 148 |
-
|
| 149 |
-
st.
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
st.write(str(round(
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
st.write(
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
st.write(str(round(
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
st.write(str(round(
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
st.write(str(round(
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
st.write(str(round(
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
st.write(str(round(
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
st.write(str(round(
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
st.write("
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
st.write("- [
|
| 232 |
-
st.write("- [
|
| 233 |
-
|
| 234 |
-
st.write("- [
|
| 235 |
-
st.write("- [
|
| 236 |
-
|
| 237 |
-
st.write("- [
|
| 238 |
-
st.write("- [
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
st.
|
| 243 |
-
st.write("
|
| 244 |
-
|
| 245 |
-
st.write("- [
|
| 246 |
-
st.write("- [
|
| 247 |
-
st.
|
| 248 |
-
st.write("
|
| 249 |
-
st.write("- [Binary Embedding-based Retrieval at Tencent](https://arxiv.org/abs/2302.08714)")
|
|
|
|
| 1 |
+
import os, sys
|
| 2 |
+
import streamlit as st
|
| 3 |
+
|
| 4 |
+
st.set_page_config(page_title="Pricing for scalar and binary embeddings", page_icon=":floppy-disk:", layout="wide", menu_items={'Report a bug': "mailto:[email protected]"})
|
| 5 |
+
|
| 6 |
+
kb2gb = 1024**3 #Conversion memory
|
| 7 |
+
|
| 8 |
+
# MAIN
|
| 9 |
+
st.title("***Pricing model with scalar and binary embeddings***")
|
| 10 |
+
st.write("***Akim Mousterou*** (April 2024) *[LinkedIn](https://www.linkedin.com/in/akim-mousterou/), [HuggingFace](https://huggingface.co/Akimfromparis), and [GitHub](https://github.com/AkimParis)*")
|
| 11 |
+
|
| 12 |
+
st.write("*The real democratization of AI can only be achieved by a powerful open-source ecosystem and low prices for memory/GPU usage. Thanks to quantization, we can say bye to float32, and hello binary! Compression-friendly embedding models implemented in int8 and binary can save up to x4 and x32 of memory, storage, and, costs. To achieve X32 compute efficiency and retain ∼96% of retrieval performance, the binary quantization is powered by the normalization of embedding values (either 0 or 1), the calculation of Hamming Distance with only 2 CPU runtimes, and the application of ReRank step of [Yamada et al (2021)](https://arxiv.org/abs/2106.00882). Scalar and binary embeddings revealed great retrieval efficiency with just a minimal degradation of performance, perfect for NLP downstream tasks, semantic search, recommendation systems, and retrieval-augmented generation solutions.*")
|
| 13 |
+
st.divider() ###
|
| 14 |
+
col1, col2 = st.columns([1,1])
|
| 15 |
+
with col1:
|
| 16 |
+
cloud_price = st.slider("Price of the instance: *From 0 to 20 (default $3.8 per GB/mo estimated on x2gd instances on AWS)* ", 0.0,20.00,3.8)
|
| 17 |
+
with col2:
|
| 18 |
+
docs = st.slider("Number of vector embeddings: *From 100M to 1 Billion (default 250M)*", 100000000,1000000000,250000000, step=10000000) #Defaul 250M
|
| 19 |
+
st.divider() ###
|
| 20 |
+
col3, col4, col5, col6, col7, col8, col9, col10 = st.columns([1,1,1,1,1,1,1,1])
|
| 21 |
+
with col3:
|
| 22 |
+
st.write("***Embedding dimension***")
|
| 23 |
+
with col4:
|
| 24 |
+
st.write("***Memory usage in Gb***")
|
| 25 |
+
with col5:
|
| 26 |
+
st.write("***Price on a monthly basis***")
|
| 27 |
+
with col6:
|
| 28 |
+
st.write("***Price on a yearly basis***")
|
| 29 |
+
with col7:
|
| 30 |
+
st.write("***Int8 memory*** (div. by 4)")
|
| 31 |
+
with col8:
|
| 32 |
+
st.write("***Int8 price*** (div. by 4)")
|
| 33 |
+
with col9:
|
| 34 |
+
st.write("***Binary memory*** (div. by 32)")
|
| 35 |
+
with col10:
|
| 36 |
+
st.write("***Binary price*** (div. by 32)")
|
| 37 |
+
|
| 38 |
+
col11, col12, col13, col14, col15, col16, col17, col18 = st.columns([1,1,1,1,1,1,1,1])
|
| 39 |
+
with col11:
|
| 40 |
+
st.write("***384***")
|
| 41 |
+
st.write("***512***")
|
| 42 |
+
st.write("***768***")
|
| 43 |
+
st.write("***1024***")
|
| 44 |
+
st.write("***1536***")
|
| 45 |
+
st.write("***2048***")
|
| 46 |
+
st.write("***3072***")
|
| 47 |
+
st.write("***4096***")
|
| 48 |
+
with col12:
|
| 49 |
+
dim_1 = ((384 * 4) * docs) / kb2gb
|
| 50 |
+
st.write(str(round(dim_1, 2)) + " GB")
|
| 51 |
+
|
| 52 |
+
dim_2 = ((512 * 4) * docs) / kb2gb
|
| 53 |
+
r = st.write(str(round(dim_2, 2)) + " GB")
|
| 54 |
+
|
| 55 |
+
dim_3 = ((768 * 4) * docs) / kb2gb
|
| 56 |
+
r = st.write(str(round(dim_3, 2)) + " GB")
|
| 57 |
+
|
| 58 |
+
dim_4 = ((1024 * 4) * docs) / kb2gb
|
| 59 |
+
r = st.write(str(round(dim_4, 2)) + " GB")
|
| 60 |
+
|
| 61 |
+
dim_5 = ((1536 * 4) * docs) / kb2gb
|
| 62 |
+
r = st.write(str(round(dim_5, 2)) + " GB")
|
| 63 |
+
|
| 64 |
+
dim_6 = ((2048 * 4) * docs) / kb2gb
|
| 65 |
+
r = st.write(str(round(dim_6, 2)) + " GB")
|
| 66 |
+
|
| 67 |
+
dim_7 = ((3072 * 4) * docs) / kb2gb
|
| 68 |
+
r = st.write(str(round(dim_7, 2)) + " GB")
|
| 69 |
+
|
| 70 |
+
dim_8 = ((4096 * 4) * docs) / kb2gb
|
| 71 |
+
r = st.write(str(round(dim_8, 2)) + " GB")
|
| 72 |
+
|
| 73 |
+
with col13:
|
| 74 |
+
price_month_1 = dim_1 * cloud_price
|
| 75 |
+
st.write(str(round(price_month_1, 2)) + " $")
|
| 76 |
+
|
| 77 |
+
price_month_2 = dim_2 * cloud_price
|
| 78 |
+
st.write(str(round(price_month_2, 2)) + " $")
|
| 79 |
+
|
| 80 |
+
price_month_3 = dim_3 * cloud_price
|
| 81 |
+
st.write(str(round(price_month_3, 2)) + " $")
|
| 82 |
+
|
| 83 |
+
price_month_4 = dim_4 * cloud_price
|
| 84 |
+
st.write(str(round(price_month_4, 2)) + " $")
|
| 85 |
+
|
| 86 |
+
price_month_5 = dim_5 * cloud_price
|
| 87 |
+
st.write(str(round(price_month_5, 2)) + " $")
|
| 88 |
+
|
| 89 |
+
price_month_6 = dim_6 * cloud_price
|
| 90 |
+
st.write(str(round(price_month_6, 2)) + " $")
|
| 91 |
+
|
| 92 |
+
price_month_7 = dim_7 * cloud_price
|
| 93 |
+
st.write(str(round(price_month_7, 2)) + " $")
|
| 94 |
+
|
| 95 |
+
price_month_8 = dim_8 * cloud_price
|
| 96 |
+
st.write(str(round(price_month_8, 2)) + " $")
|
| 97 |
+
|
| 98 |
+
with col14:
|
| 99 |
+
price_year_1 = price_month_1 * 12
|
| 100 |
+
st.write(str(round(price_year_1, 2)) + " $")
|
| 101 |
+
|
| 102 |
+
price_year_2 = price_month_2 * 12
|
| 103 |
+
st.write(str(round(price_year_2, 2)) + " $")
|
| 104 |
+
|
| 105 |
+
price_year_3 = price_month_3 * 12
|
| 106 |
+
st.write(str(round(price_year_3, 2)) + " $")
|
| 107 |
+
|
| 108 |
+
price_year_4 = price_month_4 * 12
|
| 109 |
+
st.write(str(round(price_year_4, 2)) + " $")
|
| 110 |
+
|
| 111 |
+
price_year_5 = price_month_5 * 12
|
| 112 |
+
st.write(str(round(price_year_5, 2)) + " $")
|
| 113 |
+
|
| 114 |
+
price_year_6 = price_month_6 * 12
|
| 115 |
+
st.write(str(round(price_year_6, 2)) + " $")
|
| 116 |
+
|
| 117 |
+
price_year_7 = price_month_7 * 12
|
| 118 |
+
st.write(str(round(price_year_7, 2)) + " $")
|
| 119 |
+
|
| 120 |
+
price_year_8 = price_month_8 * 12
|
| 121 |
+
st.write(str(round(price_year_8, 2)) + " $")
|
| 122 |
+
|
| 123 |
+
with col15:
|
| 124 |
+
int8_mem_1 = dim_1 / 4
|
| 125 |
+
st.write(str(round(int8_mem_1, 2)) + " GB")
|
| 126 |
+
|
| 127 |
+
int8_mem_2 = dim_2 / 4
|
| 128 |
+
st.write(str(round(int8_mem_2, 2)) + " GB")
|
| 129 |
+
|
| 130 |
+
int8_mem_3 = dim_3 / 4
|
| 131 |
+
st.write(str(round(int8_mem_3, 2)) + " GB")
|
| 132 |
+
|
| 133 |
+
int8_mem_4 = dim_4 / 4
|
| 134 |
+
st.write(str(round(int8_mem_4, 2)) + " GB")
|
| 135 |
+
|
| 136 |
+
int8_mem_5 = dim_5 / 4
|
| 137 |
+
st.write(str(round(int8_mem_5, 2)) + " GB")
|
| 138 |
+
|
| 139 |
+
int8_mem_6 = dim_6 / 4
|
| 140 |
+
st.write(str(round(int8_mem_6, 2)) + " GB")
|
| 141 |
+
|
| 142 |
+
int8_mem_7 = dim_7 / 4
|
| 143 |
+
st.write(str(round(int8_mem_7, 2)) + " GB")
|
| 144 |
+
|
| 145 |
+
int8_mem_8 = dim_8 / 4
|
| 146 |
+
st.write(str(round(int8_mem_8, 2)) + " GB")
|
| 147 |
+
with col16:
|
| 148 |
+
int8_price_1 = price_month_1 / 4
|
| 149 |
+
st.write(str(round(int8_price_1, 2)) + " $")
|
| 150 |
+
|
| 151 |
+
int8_price_2 = price_month_2 / 4
|
| 152 |
+
st.write(str(round(int8_price_2, 2)) + " $")
|
| 153 |
+
|
| 154 |
+
int8_price_3 = price_month_3 / 4
|
| 155 |
+
st.write(str(round(int8_price_3, 2)) + " $")
|
| 156 |
+
|
| 157 |
+
int8_price_4 = price_month_4 / 4
|
| 158 |
+
st.write(str(round(int8_price_4, 2)) + " $")
|
| 159 |
+
|
| 160 |
+
int8_price_5 = price_month_5 / 4
|
| 161 |
+
st.write(str(round(int8_price_5, 2)) + " $")
|
| 162 |
+
|
| 163 |
+
int8_price_6 = price_month_6 / 4
|
| 164 |
+
st.write(str(round(int8_price_6, 2)) + " $")
|
| 165 |
+
|
| 166 |
+
int8_price_7 = price_month_7 / 4
|
| 167 |
+
st.write(str(round(int8_price_7, 2)) + " $")
|
| 168 |
+
|
| 169 |
+
int8_price_8 = price_month_8 / 4
|
| 170 |
+
st.write(str(round(int8_price_8, 2)) + " $")
|
| 171 |
+
|
| 172 |
+
with col17:
|
| 173 |
+
binary_mem_1 = dim_1 / 32
|
| 174 |
+
st.write(str(round(binary_mem_1, 2)) + " GB")
|
| 175 |
+
|
| 176 |
+
binary_mem_2 = dim_2 / 32
|
| 177 |
+
st.write(str(round(binary_mem_2, 2)) + " GB")
|
| 178 |
+
|
| 179 |
+
binary_mem_3 = dim_3 / 32
|
| 180 |
+
st.write(str(round(binary_mem_3, 2)) + " GB")
|
| 181 |
+
|
| 182 |
+
binary_mem_4 = dim_4 / 32
|
| 183 |
+
st.write(str(round(binary_mem_4, 2)) + " GB")
|
| 184 |
+
|
| 185 |
+
binary_mem_5 = dim_5 / 32
|
| 186 |
+
st.write(str(round(binary_mem_5, 2)) + " GB")
|
| 187 |
+
|
| 188 |
+
binary_mem_6 = dim_6 / 32
|
| 189 |
+
st.write(str(round(binary_mem_6, 2)) + " GB")
|
| 190 |
+
|
| 191 |
+
binary_mem_7 = dim_7 / 32
|
| 192 |
+
st.write(str(round(binary_mem_7, 2)) + " GB")
|
| 193 |
+
|
| 194 |
+
binary_mem_8 = dim_8 / 32
|
| 195 |
+
st.write(str(round(binary_mem_8, 2)) + " GB")
|
| 196 |
+
|
| 197 |
+
with col18:
|
| 198 |
+
binary_price_1 = price_month_1 / 32
|
| 199 |
+
st.write(str(round(binary_price_1, 2)) + " $")
|
| 200 |
+
|
| 201 |
+
binary_price_2 = price_month_2 / 32
|
| 202 |
+
st.write(str(round(binary_price_2, 2)) + " $")
|
| 203 |
+
|
| 204 |
+
binary_price_3 = price_month_3 / 32
|
| 205 |
+
st.write(str(round(binary_price_3, 2)) + " $")
|
| 206 |
+
|
| 207 |
+
binary_price_4 = price_month_4 / 32
|
| 208 |
+
st.write(str(round(binary_price_4, 2)) + " $")
|
| 209 |
+
|
| 210 |
+
binary_price_5 = price_month_5 / 32
|
| 211 |
+
st.write(str(round(binary_price_5, 2)) + " $")
|
| 212 |
+
|
| 213 |
+
binary_price_6 = price_month_6 / 32
|
| 214 |
+
st.write(str(round(binary_price_6, 2)) + " $")
|
| 215 |
+
|
| 216 |
+
binary_price_7 = price_month_7 / 32
|
| 217 |
+
st.write(str(round(binary_price_7, 2)) + " $")
|
| 218 |
+
|
| 219 |
+
binary_price_8 = price_month_8 / 32
|
| 220 |
+
st.write(str(round(binary_price_8, 2)) + " $")
|
| 221 |
+
|
| 222 |
+
st.write('***Disclaimer:*** *The financial projections below are based on ["Cohere int8 & binary Embeddings - Scale Your Vector Database to Large Datasets"](https://cohere.com/blog/int8-binary-embeddings) by Nils Reimers of [Cohere](https://cohere.com/). The cost of the index and the metadata might not have been factored in the calculus.*')
|
| 223 |
+
|
| 224 |
+
st.divider() ###
|
| 225 |
+
st.write("***- Open-source vector databases for Scalar and binary quantization:***")
|
| 226 |
+
col19, col20 = st.columns([1,1])
|
| 227 |
+
with col19:
|
| 228 |
+
st.write("- [FAISS](https://github.com/facebookresearch/faiss) from :flag-us:")
|
| 229 |
+
st.write("- [VESPA AI](https://github.com/vespa-engine/vespa) from :flag-no:")
|
| 230 |
+
st.write("- [Pgvector](https://github.com/pgvector/pgvector) from :flag-us:")
|
| 231 |
+
st.write("- [Milvus](https://github.com/milvus-io/milvus) from :flag-cn:")
|
| 232 |
+
st.write("- [Usearch](https://github.com/unum-cloud/usearch) from :flag-us:")
|
| 233 |
+
with col20:
|
| 234 |
+
st.write("- [Qdrant](https://github.com/qdrant) from :flag-de:")
|
| 235 |
+
st.write("- [pgvecto.rs](https://github.com/tensorchord/pgvecto.rs) from :flag-cn:")
|
| 236 |
+
st.write("- [TencentVectorDB](https://github.com/Tencent/vectordatabase-sdk-python) from :flag-cn:")
|
| 237 |
+
st.write("- [BinaryVectorDB](https://github.com/cohere-ai/BinaryVectorDB) from :flag-ca:")
|
| 238 |
+
st.write("- [Weaviate](https://github.com/weaviate/weaviate) from :flag-de:")
|
| 239 |
+
st.divider() ###
|
| 240 |
+
st.write("***- For further readings:***")
|
| 241 |
+
|
| 242 |
+
st.write("- [Billion-scale similarity search with GPUs](https://arxiv.org/abs/1702.08734)")
|
| 243 |
+
st.write("- [Efficient Passage Retrieval with Hashing for Open-domain Question Answering](https://arxiv.org/abs/2106.00882)")
|
| 244 |
+
st.write("- [Matryoshka Representation Learning](https://arxiv.org/abs/2205.13147)")
|
| 245 |
+
st.write("- [Incorporating Relevance Feedback for Information-Seeking Retrieval using Few-Shot Document Re-Ranking](https://arxiv.org/abs/2210.10695)")
|
| 246 |
+
st.write("- [Binary Embedding-based Retrieval at Tencent](https://arxiv.org/abs/2302.08714)")
|
| 247 |
+
st.divider() ###
|
| 248 |
+
st.write("***Akim Mousterou*** (April 2024) *[LinkedIn](https://www.linkedin.com/in/akim-mousterou/), [HuggingFace](https://huggingface.co/Akimfromparis), and [GitHub](https://github.com/AkimParis)*")
|
|
|