Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,83 +1,255 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
# ---
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
try:
|
| 6 |
from baseline.baseline_convnext import predict_convnext
|
| 7 |
except ImportError:
|
| 8 |
-
def predict_convnext(image): return {"Error
|
| 9 |
-
|
| 10 |
try:
|
| 11 |
from baseline.baseline_infer import predict_baseline
|
| 12 |
except ImportError:
|
| 13 |
-
def predict_baseline(image): return {"Error
|
| 14 |
-
|
| 15 |
-
# --- 2. Import NEW SPA Approach ---
|
| 16 |
-
# This imports the function from: new_approach/spa_ensemble.py
|
| 17 |
try:
|
| 18 |
from new_approach.spa_ensemble import predict_spa
|
| 19 |
except ImportError:
|
| 20 |
-
def predict_spa(image): return {"Error
|
| 21 |
|
|
|
|
| 22 |
|
| 23 |
-
# ---
|
| 24 |
-
def predict_placeholder_2(image):
|
| 25 |
-
if image is None:
|
| 26 |
-
return "Please upload an image."
|
| 27 |
-
return "Model 4 is not available yet. Please check back later."
|
| 28 |
-
|
| 29 |
-
# --- Main Prediction Logic ---
|
| 30 |
def predict(model_choice, image):
|
| 31 |
-
if image is None: return None
|
| 32 |
|
|
|
|
|
|
|
| 33 |
if model_choice == "Herbarium Species Classifier (ConvNeXT)":
|
| 34 |
-
|
| 35 |
-
return predict_convnext(image)
|
| 36 |
-
|
| 37 |
elif model_choice == "Baseline (DINOv2 + LogReg)":
|
| 38 |
-
|
| 39 |
-
return predict_baseline(image)
|
| 40 |
-
|
| 41 |
elif model_choice == "SPA Ensemble (New Approach)":
|
| 42 |
-
|
| 43 |
-
return predict_spa(image)
|
| 44 |
-
|
| 45 |
elif model_choice == "Future Model 2 (Placeholder)":
|
| 46 |
-
|
| 47 |
-
|
| 48 |
else:
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
# --- Gradio Interface ---
|
| 52 |
with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
|
| 53 |
with gr.Column(elem_id="app-wrapper"):
|
| 54 |
-
# Header
|
| 55 |
gr.Markdown(
|
| 56 |
"""
|
| 57 |
<div id="app-header">
|
| 58 |
<h1>🌿 Plant Species Classification</h1>
|
| 59 |
<h3>AML Group Project – Group 8</h3>
|
| 60 |
</div>
|
| 61 |
-
""",
|
| 62 |
-
elem_id="app-header",
|
| 63 |
)
|
| 64 |
|
| 65 |
-
# Badges row
|
| 66 |
-
gr.Markdown(
|
| 67 |
-
"""
|
| 68 |
-
<div id="badge-row">
|
| 69 |
-
<span class="badge">Herbarium + Field images (ConvNeXT)</span>
|
| 70 |
-
<span class="badge">ConvNeXtV2</span>
|
| 71 |
-
<span class="badge">SPA Ensemble</span>
|
| 72 |
-
</div>
|
| 73 |
-
""",
|
| 74 |
-
elem_id="badge-row",
|
| 75 |
-
)
|
| 76 |
-
|
| 77 |
-
# Main card
|
| 78 |
with gr.Row(elem_id="main-card"):
|
| 79 |
-
|
| 80 |
-
with gr.Column(scale=1, elem_id="left-panel"):
|
| 81 |
model_selector = gr.Dropdown(
|
| 82 |
label="Select model",
|
| 83 |
choices=[
|
|
@@ -86,7 +258,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
|
|
| 86 |
"SPA Ensemble (New Approach)",
|
| 87 |
"Future Model 2 (Placeholder)",
|
| 88 |
],
|
| 89 |
-
value="SPA Ensemble (New Approach)",
|
| 90 |
)
|
| 91 |
|
| 92 |
gr.Markdown(
|
|
@@ -96,43 +268,28 @@ with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
|
|
| 96 |
<b>Baseline</b> – Simple DINOv2 + LogReg.<br>
|
| 97 |
<b>SPA Ensemble</b> – <i>(New)</i> DINOv2 + BioCLIP-2 + Handcrafted features.
|
| 98 |
</div>
|
| 99 |
-
""",
|
| 100 |
-
elem_id="model-help",
|
| 101 |
-
)
|
| 102 |
-
|
| 103 |
-
image_input = gr.Image(
|
| 104 |
-
type="pil",
|
| 105 |
-
label="Upload plant image",
|
| 106 |
)
|
| 107 |
|
|
|
|
| 108 |
submit_button = gr.Button("Classify 🌱", variant="primary")
|
| 109 |
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
label="
|
| 114 |
-
|
|
|
|
|
|
|
| 115 |
)
|
| 116 |
|
| 117 |
submit_button.click(
|
| 118 |
fn=predict,
|
| 119 |
inputs=[model_selector, image_input],
|
| 120 |
-
outputs=output_label,
|
| 121 |
-
)
|
| 122 |
-
|
| 123 |
-
# Optional examples
|
| 124 |
-
gr.Examples(
|
| 125 |
-
examples=[],
|
| 126 |
-
inputs=image_input,
|
| 127 |
-
outputs=output_label,
|
| 128 |
-
fn=lambda img: predict("SPA Ensemble (New Approach)", img),
|
| 129 |
-
cache_examples=False,
|
| 130 |
)
|
| 131 |
|
| 132 |
-
gr.Markdown(
|
| 133 |
-
"Built for the AML course – compare CNN vs. DINOv2 feature-extractor baselines with the new approaches to address cross-domain plant identification.",
|
| 134 |
-
elem_id="footer",
|
| 135 |
-
)
|
| 136 |
|
| 137 |
if __name__ == "__main__":
|
| 138 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import re
|
| 4 |
+
import pickle
|
| 5 |
+
import torch
|
| 6 |
+
import requests
|
| 7 |
+
from torchvision import transforms
|
| 8 |
+
from huggingface_hub import list_repo_files, hf_hub_download
|
| 9 |
|
| 10 |
+
# --- CONFIGURATION ---
|
| 11 |
+
|
| 12 |
+
# 1. Dataset Config
|
| 13 |
+
DATASET_ID = "FrAnKu34t23/Herbarium_Field"
|
| 14 |
+
DATASET_URL_BASE = f"https://huggingface.co/datasets/{DATASET_ID}/resolve/main/train/herbarium/"
|
| 15 |
+
SPECIES_LIST_URL = f"https://huggingface.co/datasets/{DATASET_ID}/resolve/main/list/species_list.txt"
|
| 16 |
+
|
| 17 |
+
# 2. Model Repo Config
|
| 18 |
+
MODEL_REPO_ID = "FrAnKu34t23/ensemble_models_plant"
|
| 19 |
+
INDEX_FILENAME = "herbarium_index.pkl"
|
| 20 |
+
|
| 21 |
+
# Global Variables
|
| 22 |
+
REFERENCE_IMAGE_MAP = {} # Fallback (Class ID -> Image Filename)
|
| 23 |
+
NAME_TO_ID_MAP = {} # Lookup (Species Name -> Class ID)
|
| 24 |
+
VECTOR_INDEX = None # Smart Search Index
|
| 25 |
+
FEATURE_EXTRACTOR = None # DINOv2 model
|
| 26 |
+
TRANSFORM = None # Image transforms
|
| 27 |
+
|
| 28 |
+
# --- SETUP: Load Resources ---
|
| 29 |
+
def load_resources():
|
| 30 |
+
global VECTOR_INDEX, FEATURE_EXTRACTOR, TRANSFORM
|
| 31 |
+
|
| 32 |
+
print("🚀 App starting... Initializing resources.")
|
| 33 |
+
|
| 34 |
+
# 1. Load Name-to-ID Map (Crucial if models output only names)
|
| 35 |
+
load_species_mapping()
|
| 36 |
+
|
| 37 |
+
# 2. Download and Load Visual Search Index
|
| 38 |
+
try:
|
| 39 |
+
print(f"⬇️ Downloading {INDEX_FILENAME} from {MODEL_REPO_ID}...")
|
| 40 |
+
index_path = hf_hub_download(
|
| 41 |
+
repo_id=MODEL_REPO_ID,
|
| 42 |
+
filename=INDEX_FILENAME,
|
| 43 |
+
repo_type="model"
|
| 44 |
+
)
|
| 45 |
+
print(f"✅ Downloaded index. Loading pickle...")
|
| 46 |
+
with open(index_path, "rb") as f:
|
| 47 |
+
VECTOR_INDEX = pickle.load(f)
|
| 48 |
+
|
| 49 |
+
# Load DINOv2
|
| 50 |
+
print("⬇️ Loading DINOv2 (Retrieval Engine)...")
|
| 51 |
+
FEATURE_EXTRACTOR = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14')
|
| 52 |
+
FEATURE_EXTRACTOR.eval()
|
| 53 |
+
|
| 54 |
+
TRANSFORM = transforms.Compose([
|
| 55 |
+
transforms.Resize((224, 224)),
|
| 56 |
+
transforms.ToTensor(),
|
| 57 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 58 |
+
])
|
| 59 |
+
print("🚀 Smart Search Ready!")
|
| 60 |
+
|
| 61 |
+
except Exception as e:
|
| 62 |
+
print(f"⚠️ Smart Search initialization failed: {e}")
|
| 63 |
+
VECTOR_INDEX = None
|
| 64 |
+
|
| 65 |
+
# 3. Build Fallback Map
|
| 66 |
+
build_fallback_map()
|
| 67 |
+
|
| 68 |
+
def load_species_mapping():
|
| 69 |
+
global NAME_TO_ID_MAP
|
| 70 |
+
print("⬇️ Downloading species_list.txt for Name mapping...")
|
| 71 |
+
try:
|
| 72 |
+
# Fetch the text file from the dataset
|
| 73 |
+
response = requests.get(SPECIES_LIST_URL)
|
| 74 |
+
if response.status_code == 200:
|
| 75 |
+
lines = response.text.splitlines()
|
| 76 |
+
count = 0
|
| 77 |
+
for line in lines:
|
| 78 |
+
# Assuming format: "ClassID;SpeciesName" or "ClassID SpeciesName"
|
| 79 |
+
# Adjust splitting based on your actual file format
|
| 80 |
+
parts = re.split(r'[;\t,]', line)
|
| 81 |
+
if len(parts) >= 2:
|
| 82 |
+
# Try to identify which part is the ID (digits) and which is the Name
|
| 83 |
+
part1 = parts[0].strip()
|
| 84 |
+
part2 = parts[1].strip()
|
| 85 |
+
|
| 86 |
+
if part1.isdigit():
|
| 87 |
+
c_id, c_name = part1, part2
|
| 88 |
+
else:
|
| 89 |
+
c_id, c_name = part2, part1 # Swap if ID is second
|
| 90 |
+
|
| 91 |
+
# Store mapping: Name -> ID
|
| 92 |
+
# Normalize name (lowercase) for easier matching
|
| 93 |
+
NAME_TO_ID_MAP[c_name.lower()] = c_id
|
| 94 |
+
count += 1
|
| 95 |
+
print(f"✅ Loaded {count} species names into mapping.")
|
| 96 |
+
else:
|
| 97 |
+
print(f"⚠️ Failed to download species list. Status: {response.status_code}")
|
| 98 |
+
except Exception as e:
|
| 99 |
+
print(f"⚠️ Error loading species list: {e}")
|
| 100 |
+
|
| 101 |
+
def build_fallback_map():
|
| 102 |
+
global REFERENCE_IMAGE_MAP
|
| 103 |
+
try:
|
| 104 |
+
print(f"🔄 Scanning dataset {DATASET_ID} for fallback map...")
|
| 105 |
+
all_files = list_repo_files(repo_id=DATASET_ID, repo_type="dataset")
|
| 106 |
+
|
| 107 |
+
# Look for images in: train/herbarium/{class_id}/{filename}
|
| 108 |
+
image_files = [f for f in all_files if f.startswith("train/herbarium/") and f.lower().endswith(('.jpg', '.png'))]
|
| 109 |
+
|
| 110 |
+
for file_path in image_files:
|
| 111 |
+
parts = file_path.split("/")
|
| 112 |
+
if len(parts) >= 4:
|
| 113 |
+
class_id = parts[2]
|
| 114 |
+
filename = parts[3]
|
| 115 |
+
if class_id not in REFERENCE_IMAGE_MAP:
|
| 116 |
+
REFERENCE_IMAGE_MAP[class_id] = filename
|
| 117 |
+
print(f"✅ Fallback map built for {len(REFERENCE_IMAGE_MAP)} classes.")
|
| 118 |
+
except Exception as e:
|
| 119 |
+
print(f"⚠️ Error scanning dataset: {e}")
|
| 120 |
+
|
| 121 |
+
# Load resources on startup
|
| 122 |
+
load_resources()
|
| 123 |
+
|
| 124 |
+
# --- Logic: ID Extraction & Search ---
|
| 125 |
+
def get_class_id_from_prediction(class_prediction):
|
| 126 |
+
"""
|
| 127 |
+
Extracts Class ID from various formats, including pure Name lookups.
|
| 128 |
+
"""
|
| 129 |
+
if not class_prediction: return None
|
| 130 |
+
prediction_str = str(class_prediction).strip()
|
| 131 |
+
|
| 132 |
+
# 1. Check for explicit ID in string (e.g. "Name (12345)")
|
| 133 |
+
match = re.search(r'\((\d+)\)', prediction_str)
|
| 134 |
+
if match: return match.group(1)
|
| 135 |
+
|
| 136 |
+
# 2. Check if the string IS the ID (e.g. "12345")
|
| 137 |
+
if prediction_str.isdigit():
|
| 138 |
+
return prediction_str
|
| 139 |
+
|
| 140 |
+
# 3. Check for "ID - Name" format
|
| 141 |
+
match_start = re.match(r'^(\d+)\s+', prediction_str)
|
| 142 |
+
if match_start: return match_start.group(1)
|
| 143 |
+
|
| 144 |
+
# 4. NAME LOOKUP (New Feature)
|
| 145 |
+
# If no numbers found, assume it's a name and look it up
|
| 146 |
+
clean_name = prediction_str.lower().strip()
|
| 147 |
+
if clean_name in NAME_TO_ID_MAP:
|
| 148 |
+
return NAME_TO_ID_MAP[clean_name]
|
| 149 |
+
|
| 150 |
+
return None
|
| 151 |
+
|
| 152 |
+
def find_most_similar_herbarium_sheet(class_prediction, input_pil_image):
|
| 153 |
+
class_id = get_class_id_from_prediction(class_prediction)
|
| 154 |
+
|
| 155 |
+
if not class_id:
|
| 156 |
+
print(f"⚠️ Could not resolve Class ID for: '{class_prediction}'")
|
| 157 |
+
return None
|
| 158 |
+
|
| 159 |
+
# Strategy A: Visual Similarity (Vectors)
|
| 160 |
+
if VECTOR_INDEX and FEATURE_EXTRACTOR and input_pil_image and class_id in VECTOR_INDEX:
|
| 161 |
+
try:
|
| 162 |
+
img_tensor = TRANSFORM(input_pil_image).unsqueeze(0)
|
| 163 |
+
with torch.no_grad():
|
| 164 |
+
input_vec = FEATURE_EXTRACTOR(img_tensor)
|
| 165 |
+
input_vec = torch.nn.functional.normalize(input_vec, p=2, dim=1)
|
| 166 |
+
|
| 167 |
+
candidates = VECTOR_INDEX[class_id]
|
| 168 |
+
best_score = -1.0
|
| 169 |
+
best_filename = None
|
| 170 |
+
|
| 171 |
+
for item in candidates:
|
| 172 |
+
score = torch.mm(input_vec, item["vector"].T).item()
|
| 173 |
+
if score > best_score:
|
| 174 |
+
best_score = score
|
| 175 |
+
best_filename = item["filename"]
|
| 176 |
+
|
| 177 |
+
if best_filename:
|
| 178 |
+
return f"{DATASET_URL_BASE}{class_id}/{best_filename}"
|
| 179 |
+
except Exception as e:
|
| 180 |
+
print(f"⚠️ Search failed: {e}")
|
| 181 |
+
|
| 182 |
+
# Strategy B: Fallback
|
| 183 |
+
filename = REFERENCE_IMAGE_MAP.get(class_id)
|
| 184 |
+
if filename:
|
| 185 |
+
return f"{DATASET_URL_BASE}{class_id}/{filename}"
|
| 186 |
+
|
| 187 |
+
return None
|
| 188 |
+
|
| 189 |
+
# --- Import User Models ---
|
| 190 |
try:
|
| 191 |
from baseline.baseline_convnext import predict_convnext
|
| 192 |
except ImportError:
|
| 193 |
+
def predict_convnext(image): return {"Error: ConvNeXt missing": 0.0}
|
|
|
|
| 194 |
try:
|
| 195 |
from baseline.baseline_infer import predict_baseline
|
| 196 |
except ImportError:
|
| 197 |
+
def predict_baseline(image): return {"Error: Baseline missing": 0.0}
|
|
|
|
|
|
|
|
|
|
| 198 |
try:
|
| 199 |
from new_approach.spa_ensemble import predict_spa
|
| 200 |
except ImportError:
|
| 201 |
+
def predict_spa(image): return {"Error: SPA missing": 0.0}
|
| 202 |
|
| 203 |
+
def predict_placeholder_2(image): return {"Model 4 Not Available": 0.0}
|
| 204 |
|
| 205 |
+
# --- Main App Logic ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
def predict(model_choice, image):
|
| 207 |
+
if image is None: return None, None
|
| 208 |
|
| 209 |
+
# STEP 1: CLASSIFICATION
|
| 210 |
+
predictions = {}
|
| 211 |
if model_choice == "Herbarium Species Classifier (ConvNeXT)":
|
| 212 |
+
predictions = predict_convnext(image)
|
|
|
|
|
|
|
| 213 |
elif model_choice == "Baseline (DINOv2 + LogReg)":
|
| 214 |
+
predictions = predict_baseline(image)
|
|
|
|
|
|
|
| 215 |
elif model_choice == "SPA Ensemble (New Approach)":
|
| 216 |
+
predictions = predict_spa(image)
|
|
|
|
|
|
|
| 217 |
elif model_choice == "Future Model 2 (Placeholder)":
|
| 218 |
+
predictions = predict_placeholder_2(image)
|
|
|
|
| 219 |
else:
|
| 220 |
+
predictions = {"Invalid model": 0.0}
|
| 221 |
+
|
| 222 |
+
# Handle case where model returns a String instead of Dict
|
| 223 |
+
top_class_str = None
|
| 224 |
+
if isinstance(predictions, dict) and predictions:
|
| 225 |
+
top_class_str = max(predictions, key=predictions.get)
|
| 226 |
+
elif isinstance(predictions, str):
|
| 227 |
+
top_class_str = predictions
|
| 228 |
+
|
| 229 |
+
# STEP 2: RETRIEVAL
|
| 230 |
+
reference_image_url = None
|
| 231 |
+
if top_class_str and "Error" not in top_class_str and "Please" not in top_class_str:
|
| 232 |
+
try:
|
| 233 |
+
reference_image_url = find_most_similar_herbarium_sheet(top_class_str, image)
|
| 234 |
+
except Exception as e:
|
| 235 |
+
print(f"Error in retrieval: {e}")
|
| 236 |
+
|
| 237 |
+
return predictions, reference_image_url
|
| 238 |
|
| 239 |
# --- Gradio Interface ---
|
| 240 |
with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
|
| 241 |
with gr.Column(elem_id="app-wrapper"):
|
|
|
|
| 242 |
gr.Markdown(
|
| 243 |
"""
|
| 244 |
<div id="app-header">
|
| 245 |
<h1>🌿 Plant Species Classification</h1>
|
| 246 |
<h3>AML Group Project – Group 8</h3>
|
| 247 |
</div>
|
| 248 |
+
""", elem_id="app-header"
|
|
|
|
| 249 |
)
|
| 250 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
with gr.Row(elem_id="main-card"):
|
| 252 |
+
with gr.Column(scale=1):
|
|
|
|
| 253 |
model_selector = gr.Dropdown(
|
| 254 |
label="Select model",
|
| 255 |
choices=[
|
|
|
|
| 258 |
"SPA Ensemble (New Approach)",
|
| 259 |
"Future Model 2 (Placeholder)",
|
| 260 |
],
|
| 261 |
+
value="SPA Ensemble (New Approach)",
|
| 262 |
)
|
| 263 |
|
| 264 |
gr.Markdown(
|
|
|
|
| 268 |
<b>Baseline</b> – Simple DINOv2 + LogReg.<br>
|
| 269 |
<b>SPA Ensemble</b> – <i>(New)</i> DINOv2 + BioCLIP-2 + Handcrafted features.
|
| 270 |
</div>
|
| 271 |
+
""", elem_id="model-help"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
)
|
| 273 |
|
| 274 |
+
image_input = gr.Image(type="pil", label="Upload plant image")
|
| 275 |
submit_button = gr.Button("Classify 🌱", variant="primary")
|
| 276 |
|
| 277 |
+
with gr.Column(scale=1):
|
| 278 |
+
output_label = gr.Label(label="Top 5 predictions", num_top_classes=5)
|
| 279 |
+
herbarium_output = gr.Image(
|
| 280 |
+
label="Matched Herbarium Specimen (Visual Reference)",
|
| 281 |
+
show_label=True,
|
| 282 |
+
interactive=False,
|
| 283 |
+
height=300
|
| 284 |
)
|
| 285 |
|
| 286 |
submit_button.click(
|
| 287 |
fn=predict,
|
| 288 |
inputs=[model_selector, image_input],
|
| 289 |
+
outputs=[output_label, herbarium_output],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
)
|
| 291 |
|
| 292 |
+
gr.Markdown("Built for the AML course – Group 8", elem_id="footer")
|
|
|
|
|
|
|
|
|
|
| 293 |
|
| 294 |
if __name__ == "__main__":
|
| 295 |
demo.launch()
|