Upload 65 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +4 -0
- README.md +67 -0
- adapter_config.json +34 -0
- adapter_model.safetensors +3 -0
- added_tokens.json +24 -0
- all_results.json +8 -0
- checkpoint-1876/README.md +202 -0
- checkpoint-1876/adapter_config.json +34 -0
- checkpoint-1876/adapter_model.safetensors +3 -0
- checkpoint-1876/added_tokens.json +24 -0
- checkpoint-1876/global_step1875/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1876/global_step1875/mp_rank_00_model_states.pt +3 -0
- checkpoint-1876/latest +1 -0
- checkpoint-1876/merges.txt +0 -0
- checkpoint-1876/rng_state.pth +3 -0
- checkpoint-1876/scheduler.pt +3 -0
- checkpoint-1876/special_tokens_map.json +31 -0
- checkpoint-1876/tokenizer.json +3 -0
- checkpoint-1876/tokenizer_config.json +209 -0
- checkpoint-1876/trainer_state.json +2464 -0
- checkpoint-1876/training_args.bin +3 -0
- checkpoint-1876/vocab.json +0 -0
- checkpoint-1876/zero_to_fp32.py +674 -0
- checkpoint-2811/README.md +202 -0
- checkpoint-2811/adapter_config.json +34 -0
- checkpoint-2811/adapter_model.safetensors +3 -0
- checkpoint-2811/added_tokens.json +24 -0
- checkpoint-2811/global_step2810/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2811/global_step2810/mp_rank_00_model_states.pt +3 -0
- checkpoint-2811/latest +1 -0
- checkpoint-2811/merges.txt +0 -0
- checkpoint-2811/rng_state.pth +3 -0
- checkpoint-2811/scheduler.pt +3 -0
- checkpoint-2811/special_tokens_map.json +31 -0
- checkpoint-2811/tokenizer.json +3 -0
- checkpoint-2811/tokenizer_config.json +209 -0
- checkpoint-2811/trainer_state.json +0 -0
- checkpoint-2811/training_args.bin +3 -0
- checkpoint-2811/vocab.json +0 -0
- checkpoint-2811/zero_to_fp32.py +674 -0
- checkpoint-938/README.md +202 -0
- checkpoint-938/adapter_config.json +34 -0
- checkpoint-938/adapter_model.safetensors +3 -0
- checkpoint-938/added_tokens.json +24 -0
- checkpoint-938/global_step937/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-938/global_step937/mp_rank_00_model_states.pt +3 -0
- checkpoint-938/latest +1 -0
- checkpoint-938/merges.txt +0 -0
- checkpoint-938/rng_state.pth +3 -0
- checkpoint-938/scheduler.pt +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
checkpoint-1876/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
checkpoint-2811/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
checkpoint-938/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: Qwen/Qwen2.5-1.5B
|
| 3 |
+
datasets: xiaodongguaAIGC/X-R1-7500
|
| 4 |
+
library_name: transformers
|
| 5 |
+
tags:
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- X-R1
|
| 8 |
+
licence: license
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
# Model Card for None
|
| 12 |
+
|
| 13 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) on the [xiaodongguaAIGC/X-R1-7500](https://huggingface.co/datasets/xiaodongguaAIGC/X-R1-7500) dataset.
|
| 14 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
| 15 |
+
|
| 16 |
+
## Quick start
|
| 17 |
+
|
| 18 |
+
```python
|
| 19 |
+
from transformers import pipeline
|
| 20 |
+
|
| 21 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
| 22 |
+
generator = pipeline("text-generation", model="None", device="cuda")
|
| 23 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
| 24 |
+
print(output["generated_text"])
|
| 25 |
+
```
|
| 26 |
+
|
| 27 |
+
## Training procedure
|
| 28 |
+
|
| 29 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/smartrichard_team1/huggingface/runs/rx351n7r)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
|
| 33 |
+
|
| 34 |
+
### Framework versions
|
| 35 |
+
|
| 36 |
+
- TRL: 0.15.0
|
| 37 |
+
- Transformers: 4.48.2
|
| 38 |
+
- Pytorch: 2.5.1
|
| 39 |
+
- Datasets: 3.3.2
|
| 40 |
+
- Tokenizers: 0.21.0
|
| 41 |
+
|
| 42 |
+
## Citations
|
| 43 |
+
|
| 44 |
+
Cite GRPO as:
|
| 45 |
+
|
| 46 |
+
```bibtex
|
| 47 |
+
@article{zhihong2024deepseekmath,
|
| 48 |
+
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
|
| 49 |
+
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
|
| 50 |
+
year = 2024,
|
| 51 |
+
eprint = {arXiv:2402.03300},
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
Cite TRL as:
|
| 57 |
+
|
| 58 |
+
```bibtex
|
| 59 |
+
@misc{vonwerra2022trl,
|
| 60 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
| 61 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
| 62 |
+
year = 2020,
|
| 63 |
+
journal = {GitHub repository},
|
| 64 |
+
publisher = {GitHub},
|
| 65 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
| 66 |
+
}
|
| 67 |
+
```
|
adapter_config.json
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "Qwen/Qwen2.5-1.5B",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"eva_config": null,
|
| 7 |
+
"exclude_modules": null,
|
| 8 |
+
"fan_in_fan_out": false,
|
| 9 |
+
"inference_mode": true,
|
| 10 |
+
"init_lora_weights": true,
|
| 11 |
+
"layer_replication": null,
|
| 12 |
+
"layers_pattern": null,
|
| 13 |
+
"layers_to_transform": null,
|
| 14 |
+
"loftq_config": {},
|
| 15 |
+
"lora_alpha": 8,
|
| 16 |
+
"lora_bias": false,
|
| 17 |
+
"lora_dropout": 0.0,
|
| 18 |
+
"megatron_config": null,
|
| 19 |
+
"megatron_core": "megatron.core",
|
| 20 |
+
"modules_to_save": null,
|
| 21 |
+
"peft_type": "LORA",
|
| 22 |
+
"r": 32,
|
| 23 |
+
"rank_pattern": {},
|
| 24 |
+
"revision": null,
|
| 25 |
+
"target_modules": [
|
| 26 |
+
"q_proj",
|
| 27 |
+
"v_proj",
|
| 28 |
+
"embed_tokens",
|
| 29 |
+
"k_proj"
|
| 30 |
+
],
|
| 31 |
+
"task_type": "CAUSAL_LM",
|
| 32 |
+
"use_dora": false,
|
| 33 |
+
"use_rslora": false
|
| 34 |
+
}
|
adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d0e2d12773cde23612f66f956756bfff79b5088a590085701d068e152e8b9f0d
|
| 3 |
+
size 488520640
|
added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
all_results.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"total_flos": 0.0,
|
| 3 |
+
"train_loss": 0.21294908598650353,
|
| 4 |
+
"train_runtime": 95825.8938,
|
| 5 |
+
"train_samples": 7500,
|
| 6 |
+
"train_samples_per_second": 0.235,
|
| 7 |
+
"train_steps_per_second": 0.029
|
| 8 |
+
}
|
checkpoint-1876/README.md
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: Qwen/Qwen2.5-1.5B
|
| 3 |
+
library_name: peft
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
| 200 |
+
### Framework versions
|
| 201 |
+
|
| 202 |
+
- PEFT 0.14.0
|
checkpoint-1876/adapter_config.json
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "Qwen/Qwen2.5-1.5B",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"eva_config": null,
|
| 7 |
+
"exclude_modules": null,
|
| 8 |
+
"fan_in_fan_out": false,
|
| 9 |
+
"inference_mode": true,
|
| 10 |
+
"init_lora_weights": true,
|
| 11 |
+
"layer_replication": null,
|
| 12 |
+
"layers_pattern": null,
|
| 13 |
+
"layers_to_transform": null,
|
| 14 |
+
"loftq_config": {},
|
| 15 |
+
"lora_alpha": 8,
|
| 16 |
+
"lora_bias": false,
|
| 17 |
+
"lora_dropout": 0.0,
|
| 18 |
+
"megatron_config": null,
|
| 19 |
+
"megatron_core": "megatron.core",
|
| 20 |
+
"modules_to_save": null,
|
| 21 |
+
"peft_type": "LORA",
|
| 22 |
+
"r": 32,
|
| 23 |
+
"rank_pattern": {},
|
| 24 |
+
"revision": null,
|
| 25 |
+
"target_modules": [
|
| 26 |
+
"q_proj",
|
| 27 |
+
"v_proj",
|
| 28 |
+
"embed_tokens",
|
| 29 |
+
"k_proj"
|
| 30 |
+
],
|
| 31 |
+
"task_type": "CAUSAL_LM",
|
| 32 |
+
"use_dora": false,
|
| 33 |
+
"use_rslora": false
|
| 34 |
+
}
|
checkpoint-1876/adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a8e46761f61f3bfddbd76a744c1714b7fdc6ee2a8fdc7e7a9a602efe22934a56
|
| 3 |
+
size 488520640
|
checkpoint-1876/added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
checkpoint-1876/global_step1875/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6d4389c6c361a47aeae8b4f2e6246e904a7f0364e62f83400a8972e88f8c36db
|
| 3 |
+
size 130520624
|
checkpoint-1876/global_step1875/mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d9db778bee26f573f90d8b34629fd5b990bcde4b1922cc2210ee73ed40b36e4c
|
| 3 |
+
size 488645432
|
checkpoint-1876/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step1875
|
checkpoint-1876/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-1876/rng_state.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7a7836d60f20134f3d9313f7612d26f0024f4c05fe0ccd1e58a97556452c2ebb
|
| 3 |
+
size 14244
|
checkpoint-1876/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3499db549e30a7e2b1735bafe664c530646f254a8a7c3ec3b6b3d3c9d1138a84
|
| 3 |
+
size 1064
|
checkpoint-1876/special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|endoftext|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
checkpoint-1876/tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5eee858c5123a4279c3e1f7b81247343f356ac767940b2692a928ad929543214
|
| 3 |
+
size 11422063
|
checkpoint-1876/tokenizer_config.json
ADDED
|
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
}
|
| 181 |
+
},
|
| 182 |
+
"additional_special_tokens": [
|
| 183 |
+
"<|im_start|>",
|
| 184 |
+
"<|im_end|>",
|
| 185 |
+
"<|object_ref_start|>",
|
| 186 |
+
"<|object_ref_end|>",
|
| 187 |
+
"<|box_start|>",
|
| 188 |
+
"<|box_end|>",
|
| 189 |
+
"<|quad_start|>",
|
| 190 |
+
"<|quad_end|>",
|
| 191 |
+
"<|vision_start|>",
|
| 192 |
+
"<|vision_end|>",
|
| 193 |
+
"<|vision_pad|>",
|
| 194 |
+
"<|image_pad|>",
|
| 195 |
+
"<|video_pad|>"
|
| 196 |
+
],
|
| 197 |
+
"bos_token": null,
|
| 198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
| 199 |
+
"clean_up_tokenization_spaces": false,
|
| 200 |
+
"eos_token": "<|endoftext|>",
|
| 201 |
+
"errors": "replace",
|
| 202 |
+
"extra_special_tokens": {},
|
| 203 |
+
"model_max_length": 131072,
|
| 204 |
+
"pad_token": "<|endoftext|>",
|
| 205 |
+
"padding_side": "left",
|
| 206 |
+
"split_special_tokens": false,
|
| 207 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 208 |
+
"unk_token": null
|
| 209 |
+
}
|
checkpoint-1876/trainer_state.json
ADDED
|
@@ -0,0 +1,2464 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 2.0,
|
| 5 |
+
"eval_steps": 10,
|
| 6 |
+
"global_step": 1876,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"completion_length": 121.971875,
|
| 13 |
+
"epoch": 0.010666666666666666,
|
| 14 |
+
"grad_norm": 0.156667098402977,
|
| 15 |
+
"kl": 2.0313262939453126e-05,
|
| 16 |
+
"learning_rate": 1.0638297872340426e-05,
|
| 17 |
+
"loss": 0.001,
|
| 18 |
+
"reward": 0.0125,
|
| 19 |
+
"reward_std": 0.025,
|
| 20 |
+
"rewards/accuracy_reward": 0.009375,
|
| 21 |
+
"rewards/format_reward": 0.003125,
|
| 22 |
+
"step": 10
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"completion_length": 122.521875,
|
| 26 |
+
"epoch": 0.021333333333333333,
|
| 27 |
+
"grad_norm": 0.0012713409960269928,
|
| 28 |
+
"kl": 0.00021836161613464355,
|
| 29 |
+
"learning_rate": 2.1276595744680852e-05,
|
| 30 |
+
"loss": 0.0051,
|
| 31 |
+
"reward": 0.015625,
|
| 32 |
+
"reward_std": 0.025966878235340118,
|
| 33 |
+
"rewards/accuracy_reward": 0.015625,
|
| 34 |
+
"rewards/format_reward": 0.0,
|
| 35 |
+
"step": 20
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"completion_length": 117.5125,
|
| 39 |
+
"epoch": 0.032,
|
| 40 |
+
"grad_norm": 0.002654253738000989,
|
| 41 |
+
"kl": 0.0003068089485168457,
|
| 42 |
+
"learning_rate": 3.1914893617021275e-05,
|
| 43 |
+
"loss": -0.0002,
|
| 44 |
+
"reward": 0.00625,
|
| 45 |
+
"reward_std": 0.007216878235340118,
|
| 46 |
+
"rewards/accuracy_reward": 0.00625,
|
| 47 |
+
"rewards/format_reward": 0.0,
|
| 48 |
+
"step": 30
|
| 49 |
+
},
|
| 50 |
+
{
|
| 51 |
+
"completion_length": 118.871875,
|
| 52 |
+
"epoch": 0.042666666666666665,
|
| 53 |
+
"grad_norm": 0.00353299081325531,
|
| 54 |
+
"kl": 0.000412750244140625,
|
| 55 |
+
"learning_rate": 4.2553191489361704e-05,
|
| 56 |
+
"loss": 0.0055,
|
| 57 |
+
"reward": 0.009375,
|
| 58 |
+
"reward_std": 0.01875,
|
| 59 |
+
"rewards/accuracy_reward": 0.00625,
|
| 60 |
+
"rewards/format_reward": 0.003125,
|
| 61 |
+
"step": 40
|
| 62 |
+
},
|
| 63 |
+
{
|
| 64 |
+
"completion_length": 121.046875,
|
| 65 |
+
"epoch": 0.05333333333333334,
|
| 66 |
+
"grad_norm": 0.003619612194597721,
|
| 67 |
+
"kl": 0.0004070043563842773,
|
| 68 |
+
"learning_rate": 5.319148936170213e-05,
|
| 69 |
+
"loss": 0.0,
|
| 70 |
+
"reward": 0.0,
|
| 71 |
+
"reward_std": 0.0,
|
| 72 |
+
"rewards/accuracy_reward": 0.0,
|
| 73 |
+
"rewards/format_reward": 0.0,
|
| 74 |
+
"step": 50
|
| 75 |
+
},
|
| 76 |
+
{
|
| 77 |
+
"completion_length": 119.4375,
|
| 78 |
+
"epoch": 0.064,
|
| 79 |
+
"grad_norm": 0.11174867302179337,
|
| 80 |
+
"kl": 0.00045168399810791016,
|
| 81 |
+
"learning_rate": 6.382978723404255e-05,
|
| 82 |
+
"loss": 0.0064,
|
| 83 |
+
"reward": 0.01875,
|
| 84 |
+
"reward_std": 0.0375,
|
| 85 |
+
"rewards/accuracy_reward": 0.015625,
|
| 86 |
+
"rewards/format_reward": 0.003125,
|
| 87 |
+
"step": 60
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"completion_length": 119.05625,
|
| 91 |
+
"epoch": 0.07466666666666667,
|
| 92 |
+
"grad_norm": 0.006828859448432922,
|
| 93 |
+
"kl": 0.0011888980865478516,
|
| 94 |
+
"learning_rate": 7.446808510638297e-05,
|
| 95 |
+
"loss": 0.0012,
|
| 96 |
+
"reward": 0.0125,
|
| 97 |
+
"reward_std": 0.025,
|
| 98 |
+
"rewards/accuracy_reward": 0.0125,
|
| 99 |
+
"rewards/format_reward": 0.0,
|
| 100 |
+
"step": 70
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"completion_length": 120.28125,
|
| 104 |
+
"epoch": 0.08533333333333333,
|
| 105 |
+
"grad_norm": 0.0064537739381194115,
|
| 106 |
+
"kl": 0.0019659996032714844,
|
| 107 |
+
"learning_rate": 8.510638297872341e-05,
|
| 108 |
+
"loss": 0.0028,
|
| 109 |
+
"reward": 0.0125,
|
| 110 |
+
"reward_std": 0.025,
|
| 111 |
+
"rewards/accuracy_reward": 0.0125,
|
| 112 |
+
"rewards/format_reward": 0.0,
|
| 113 |
+
"step": 80
|
| 114 |
+
},
|
| 115 |
+
{
|
| 116 |
+
"completion_length": 117.559375,
|
| 117 |
+
"epoch": 0.096,
|
| 118 |
+
"grad_norm": 0.09068689495325089,
|
| 119 |
+
"kl": 0.0025023460388183595,
|
| 120 |
+
"learning_rate": 9.574468085106382e-05,
|
| 121 |
+
"loss": 0.003,
|
| 122 |
+
"reward": 0.021875,
|
| 123 |
+
"reward_std": 0.04375,
|
| 124 |
+
"rewards/accuracy_reward": 0.01875,
|
| 125 |
+
"rewards/format_reward": 0.003125,
|
| 126 |
+
"step": 90
|
| 127 |
+
},
|
| 128 |
+
{
|
| 129 |
+
"completion_length": 117.68125,
|
| 130 |
+
"epoch": 0.10666666666666667,
|
| 131 |
+
"grad_norm": 0.16541939973831177,
|
| 132 |
+
"kl": 0.00291900634765625,
|
| 133 |
+
"learning_rate": 0.00010638297872340425,
|
| 134 |
+
"loss": 0.0008,
|
| 135 |
+
"reward": 0.021875,
|
| 136 |
+
"reward_std": 0.03125,
|
| 137 |
+
"rewards/accuracy_reward": 0.021875,
|
| 138 |
+
"rewards/format_reward": 0.0,
|
| 139 |
+
"step": 100
|
| 140 |
+
},
|
| 141 |
+
{
|
| 142 |
+
"completion_length": 116.971875,
|
| 143 |
+
"epoch": 0.11733333333333333,
|
| 144 |
+
"grad_norm": 0.07206544280052185,
|
| 145 |
+
"kl": 0.0038990020751953126,
|
| 146 |
+
"learning_rate": 0.00011702127659574467,
|
| 147 |
+
"loss": 0.0026,
|
| 148 |
+
"reward": 0.015625,
|
| 149 |
+
"reward_std": 0.03125,
|
| 150 |
+
"rewards/accuracy_reward": 0.0125,
|
| 151 |
+
"rewards/format_reward": 0.003125,
|
| 152 |
+
"step": 110
|
| 153 |
+
},
|
| 154 |
+
{
|
| 155 |
+
"completion_length": 114.996875,
|
| 156 |
+
"epoch": 0.128,
|
| 157 |
+
"grad_norm": 0.02286006510257721,
|
| 158 |
+
"kl": 0.007346725463867188,
|
| 159 |
+
"learning_rate": 0.0001276595744680851,
|
| 160 |
+
"loss": 0.0076,
|
| 161 |
+
"reward": 0.025,
|
| 162 |
+
"reward_std": 0.05,
|
| 163 |
+
"rewards/accuracy_reward": 0.015625,
|
| 164 |
+
"rewards/format_reward": 0.009375,
|
| 165 |
+
"step": 120
|
| 166 |
+
},
|
| 167 |
+
{
|
| 168 |
+
"completion_length": 119.315625,
|
| 169 |
+
"epoch": 0.13866666666666666,
|
| 170 |
+
"grad_norm": 0.015629781410098076,
|
| 171 |
+
"kl": 0.008090972900390625,
|
| 172 |
+
"learning_rate": 0.00013829787234042552,
|
| 173 |
+
"loss": 0.0011,
|
| 174 |
+
"reward": 0.009375,
|
| 175 |
+
"reward_std": 0.01875,
|
| 176 |
+
"rewards/accuracy_reward": 0.009375,
|
| 177 |
+
"rewards/format_reward": 0.0,
|
| 178 |
+
"step": 130
|
| 179 |
+
},
|
| 180 |
+
{
|
| 181 |
+
"completion_length": 121.821875,
|
| 182 |
+
"epoch": 0.14933333333333335,
|
| 183 |
+
"grad_norm": 0.15498439967632294,
|
| 184 |
+
"kl": 0.006272506713867187,
|
| 185 |
+
"learning_rate": 0.00014893617021276593,
|
| 186 |
+
"loss": -0.0012,
|
| 187 |
+
"reward": 0.021875,
|
| 188 |
+
"reward_std": 0.03846687823534012,
|
| 189 |
+
"rewards/accuracy_reward": 0.01875,
|
| 190 |
+
"rewards/format_reward": 0.003125,
|
| 191 |
+
"step": 140
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"completion_length": 121.409375,
|
| 195 |
+
"epoch": 0.16,
|
| 196 |
+
"grad_norm": 0.18756870925426483,
|
| 197 |
+
"kl": 0.00465240478515625,
|
| 198 |
+
"learning_rate": 0.00015957446808510637,
|
| 199 |
+
"loss": 0.0012,
|
| 200 |
+
"reward": 0.021875,
|
| 201 |
+
"reward_std": 0.03846687823534012,
|
| 202 |
+
"rewards/accuracy_reward": 0.01875,
|
| 203 |
+
"rewards/format_reward": 0.003125,
|
| 204 |
+
"step": 150
|
| 205 |
+
},
|
| 206 |
+
{
|
| 207 |
+
"completion_length": 118.26875,
|
| 208 |
+
"epoch": 0.17066666666666666,
|
| 209 |
+
"grad_norm": 0.011626984924077988,
|
| 210 |
+
"kl": 0.01092681884765625,
|
| 211 |
+
"learning_rate": 0.00017021276595744682,
|
| 212 |
+
"loss": -0.0011,
|
| 213 |
+
"reward": 0.021875,
|
| 214 |
+
"reward_std": 0.03318375647068024,
|
| 215 |
+
"rewards/accuracy_reward": 0.01875,
|
| 216 |
+
"rewards/format_reward": 0.003125,
|
| 217 |
+
"step": 160
|
| 218 |
+
},
|
| 219 |
+
{
|
| 220 |
+
"completion_length": 119.25,
|
| 221 |
+
"epoch": 0.18133333333333335,
|
| 222 |
+
"grad_norm": 0.00764912273734808,
|
| 223 |
+
"kl": 0.00976104736328125,
|
| 224 |
+
"learning_rate": 0.0001808510638297872,
|
| 225 |
+
"loss": 0.0045,
|
| 226 |
+
"reward": 0.021875,
|
| 227 |
+
"reward_std": 0.04375,
|
| 228 |
+
"rewards/accuracy_reward": 0.021875,
|
| 229 |
+
"rewards/format_reward": 0.0,
|
| 230 |
+
"step": 170
|
| 231 |
+
},
|
| 232 |
+
{
|
| 233 |
+
"completion_length": 115.35,
|
| 234 |
+
"epoch": 0.192,
|
| 235 |
+
"grad_norm": 0.0785018652677536,
|
| 236 |
+
"kl": 0.014077377319335938,
|
| 237 |
+
"learning_rate": 0.00019148936170212765,
|
| 238 |
+
"loss": 0.0037,
|
| 239 |
+
"reward": 0.025,
|
| 240 |
+
"reward_std": 0.04471687823534012,
|
| 241 |
+
"rewards/accuracy_reward": 0.009375,
|
| 242 |
+
"rewards/format_reward": 0.015625,
|
| 243 |
+
"step": 180
|
| 244 |
+
},
|
| 245 |
+
{
|
| 246 |
+
"completion_length": 108.6125,
|
| 247 |
+
"epoch": 0.20266666666666666,
|
| 248 |
+
"grad_norm": 0.13107918202877045,
|
| 249 |
+
"kl": 0.039361572265625,
|
| 250 |
+
"learning_rate": 0.00020212765957446807,
|
| 251 |
+
"loss": 0.0412,
|
| 252 |
+
"reward": 0.11875,
|
| 253 |
+
"reward_std": 0.18907372057437896,
|
| 254 |
+
"rewards/accuracy_reward": 0.021875,
|
| 255 |
+
"rewards/format_reward": 0.096875,
|
| 256 |
+
"step": 190
|
| 257 |
+
},
|
| 258 |
+
{
|
| 259 |
+
"completion_length": 89.915625,
|
| 260 |
+
"epoch": 0.21333333333333335,
|
| 261 |
+
"grad_norm": 0.19012346863746643,
|
| 262 |
+
"kl": 0.08895263671875,
|
| 263 |
+
"learning_rate": 0.0002127659574468085,
|
| 264 |
+
"loss": 0.1321,
|
| 265 |
+
"reward": 0.46875,
|
| 266 |
+
"reward_std": 0.41404569447040557,
|
| 267 |
+
"rewards/accuracy_reward": 0.015625,
|
| 268 |
+
"rewards/format_reward": 0.453125,
|
| 269 |
+
"step": 200
|
| 270 |
+
},
|
| 271 |
+
{
|
| 272 |
+
"completion_length": 47.74375,
|
| 273 |
+
"epoch": 0.224,
|
| 274 |
+
"grad_norm": 0.4668453335762024,
|
| 275 |
+
"kl": 0.26416015625,
|
| 276 |
+
"learning_rate": 0.0002234042553191489,
|
| 277 |
+
"loss": 0.0712,
|
| 278 |
+
"reward": 0.871875,
|
| 279 |
+
"reward_std": 0.19805223047733306,
|
| 280 |
+
"rewards/accuracy_reward": 0.01875,
|
| 281 |
+
"rewards/format_reward": 0.853125,
|
| 282 |
+
"step": 210
|
| 283 |
+
},
|
| 284 |
+
{
|
| 285 |
+
"completion_length": 45.15625,
|
| 286 |
+
"epoch": 0.23466666666666666,
|
| 287 |
+
"grad_norm": 0.21052278578281403,
|
| 288 |
+
"kl": 0.3112213134765625,
|
| 289 |
+
"learning_rate": 0.00023404255319148934,
|
| 290 |
+
"loss": 0.0464,
|
| 291 |
+
"reward": 0.890625,
|
| 292 |
+
"reward_std": 0.11346687823534012,
|
| 293 |
+
"rewards/accuracy_reward": 0.0125,
|
| 294 |
+
"rewards/format_reward": 0.878125,
|
| 295 |
+
"step": 220
|
| 296 |
+
},
|
| 297 |
+
{
|
| 298 |
+
"completion_length": 57.2875,
|
| 299 |
+
"epoch": 0.24533333333333332,
|
| 300 |
+
"grad_norm": 0.16618619859218597,
|
| 301 |
+
"kl": 0.254522705078125,
|
| 302 |
+
"learning_rate": 0.00024468085106382976,
|
| 303 |
+
"loss": 0.0589,
|
| 304 |
+
"reward": 0.834375,
|
| 305 |
+
"reward_std": 0.12261751294136047,
|
| 306 |
+
"rewards/accuracy_reward": 0.0125,
|
| 307 |
+
"rewards/format_reward": 0.821875,
|
| 308 |
+
"step": 230
|
| 309 |
+
},
|
| 310 |
+
{
|
| 311 |
+
"completion_length": 68.153125,
|
| 312 |
+
"epoch": 0.256,
|
| 313 |
+
"grad_norm": 0.17739807069301605,
|
| 314 |
+
"kl": 0.214471435546875,
|
| 315 |
+
"learning_rate": 0.0002553191489361702,
|
| 316 |
+
"loss": 0.1375,
|
| 317 |
+
"reward": 0.659375,
|
| 318 |
+
"reward_std": 0.28527562469244006,
|
| 319 |
+
"rewards/accuracy_reward": 0.009375,
|
| 320 |
+
"rewards/format_reward": 0.65,
|
| 321 |
+
"step": 240
|
| 322 |
+
},
|
| 323 |
+
{
|
| 324 |
+
"completion_length": 52.709375,
|
| 325 |
+
"epoch": 0.26666666666666666,
|
| 326 |
+
"grad_norm": 0.09843996912240982,
|
| 327 |
+
"kl": 0.2847900390625,
|
| 328 |
+
"learning_rate": 0.0002659574468085106,
|
| 329 |
+
"loss": 0.1085,
|
| 330 |
+
"reward": 0.834375,
|
| 331 |
+
"reward_std": 0.290549997985363,
|
| 332 |
+
"rewards/accuracy_reward": 0.034375,
|
| 333 |
+
"rewards/format_reward": 0.8,
|
| 334 |
+
"step": 250
|
| 335 |
+
},
|
| 336 |
+
{
|
| 337 |
+
"completion_length": 51.55625,
|
| 338 |
+
"epoch": 0.2773333333333333,
|
| 339 |
+
"grad_norm": 0.1133696436882019,
|
| 340 |
+
"kl": 0.276953125,
|
| 341 |
+
"learning_rate": 0.00027659574468085103,
|
| 342 |
+
"loss": 0.0437,
|
| 343 |
+
"reward": 0.903125,
|
| 344 |
+
"reward_std": 0.1361730858683586,
|
| 345 |
+
"rewards/accuracy_reward": 0.025,
|
| 346 |
+
"rewards/format_reward": 0.878125,
|
| 347 |
+
"step": 260
|
| 348 |
+
},
|
| 349 |
+
{
|
| 350 |
+
"completion_length": 55.046875,
|
| 351 |
+
"epoch": 0.288,
|
| 352 |
+
"grad_norm": 0.14536090195178986,
|
| 353 |
+
"kl": 0.2501953125,
|
| 354 |
+
"learning_rate": 0.0002872340425531915,
|
| 355 |
+
"loss": 0.0588,
|
| 356 |
+
"reward": 0.878125,
|
| 357 |
+
"reward_std": 0.13846687823534012,
|
| 358 |
+
"rewards/accuracy_reward": 0.00625,
|
| 359 |
+
"rewards/format_reward": 0.871875,
|
| 360 |
+
"step": 270
|
| 361 |
+
},
|
| 362 |
+
{
|
| 363 |
+
"completion_length": 55.853125,
|
| 364 |
+
"epoch": 0.2986666666666667,
|
| 365 |
+
"grad_norm": 0.1799221634864807,
|
| 366 |
+
"kl": 0.3143310546875,
|
| 367 |
+
"learning_rate": 0.00029787234042553186,
|
| 368 |
+
"loss": 0.0609,
|
| 369 |
+
"reward": 0.90625,
|
| 370 |
+
"reward_std": 0.18080126941204072,
|
| 371 |
+
"rewards/accuracy_reward": 0.021875,
|
| 372 |
+
"rewards/format_reward": 0.884375,
|
| 373 |
+
"step": 280
|
| 374 |
+
},
|
| 375 |
+
{
|
| 376 |
+
"completion_length": 59.85,
|
| 377 |
+
"epoch": 0.30933333333333335,
|
| 378 |
+
"grad_norm": 0.10688479989767075,
|
| 379 |
+
"kl": 0.20706787109375,
|
| 380 |
+
"learning_rate": 0.0002999925930442553,
|
| 381 |
+
"loss": 0.0522,
|
| 382 |
+
"reward": 0.815625,
|
| 383 |
+
"reward_std": 0.2959165498614311,
|
| 384 |
+
"rewards/accuracy_reward": 0.065625,
|
| 385 |
+
"rewards/format_reward": 0.75,
|
| 386 |
+
"step": 290
|
| 387 |
+
},
|
| 388 |
+
{
|
| 389 |
+
"completion_length": 64.625,
|
| 390 |
+
"epoch": 0.32,
|
| 391 |
+
"grad_norm": 0.03851361572742462,
|
| 392 |
+
"kl": 0.201220703125,
|
| 393 |
+
"learning_rate": 0.00029996250354024344,
|
| 394 |
+
"loss": 0.0815,
|
| 395 |
+
"reward": 0.8625,
|
| 396 |
+
"reward_std": 0.21301814764738083,
|
| 397 |
+
"rewards/accuracy_reward": 0.0125,
|
| 398 |
+
"rewards/format_reward": 0.85,
|
| 399 |
+
"step": 300
|
| 400 |
+
},
|
| 401 |
+
{
|
| 402 |
+
"completion_length": 57.95,
|
| 403 |
+
"epoch": 0.33066666666666666,
|
| 404 |
+
"grad_norm": 0.23480646312236786,
|
| 405 |
+
"kl": 0.221240234375,
|
| 406 |
+
"learning_rate": 0.0002999092731927958,
|
| 407 |
+
"loss": 0.0292,
|
| 408 |
+
"reward": 0.921875,
|
| 409 |
+
"reward_std": 0.15895397514104842,
|
| 410 |
+
"rewards/accuracy_reward": 0.0375,
|
| 411 |
+
"rewards/format_reward": 0.884375,
|
| 412 |
+
"step": 310
|
| 413 |
+
},
|
| 414 |
+
{
|
| 415 |
+
"completion_length": 64.196875,
|
| 416 |
+
"epoch": 0.3413333333333333,
|
| 417 |
+
"grad_norm": 0.1151675432920456,
|
| 418 |
+
"kl": 0.20123291015625,
|
| 419 |
+
"learning_rate": 0.0002998329102159332,
|
| 420 |
+
"loss": 0.0491,
|
| 421 |
+
"reward": 0.83125,
|
| 422 |
+
"reward_std": 0.19258119761943818,
|
| 423 |
+
"rewards/accuracy_reward": 0.01875,
|
| 424 |
+
"rewards/format_reward": 0.8125,
|
| 425 |
+
"step": 320
|
| 426 |
+
},
|
| 427 |
+
{
|
| 428 |
+
"completion_length": 70.628125,
|
| 429 |
+
"epoch": 0.352,
|
| 430 |
+
"grad_norm": 0.1377689391374588,
|
| 431 |
+
"kl": 0.1906005859375,
|
| 432 |
+
"learning_rate": 0.0002997334263932927,
|
| 433 |
+
"loss": 0.0841,
|
| 434 |
+
"reward": 0.846875,
|
| 435 |
+
"reward_std": 0.21890811175107955,
|
| 436 |
+
"rewards/accuracy_reward": 0.015625,
|
| 437 |
+
"rewards/format_reward": 0.83125,
|
| 438 |
+
"step": 330
|
| 439 |
+
},
|
| 440 |
+
{
|
| 441 |
+
"completion_length": 61.54375,
|
| 442 |
+
"epoch": 0.3626666666666667,
|
| 443 |
+
"grad_norm": 0.0947548896074295,
|
| 444 |
+
"kl": 0.21240234375,
|
| 445 |
+
"learning_rate": 0.0002996108370763087,
|
| 446 |
+
"loss": 0.062,
|
| 447 |
+
"reward": 0.88125,
|
| 448 |
+
"reward_std": 0.13713996410369872,
|
| 449 |
+
"rewards/accuracy_reward": 0.015625,
|
| 450 |
+
"rewards/format_reward": 0.865625,
|
| 451 |
+
"step": 340
|
| 452 |
+
},
|
| 453 |
+
{
|
| 454 |
+
"completion_length": 60.109375,
|
| 455 |
+
"epoch": 0.37333333333333335,
|
| 456 |
+
"grad_norm": 0.14599719643592834,
|
| 457 |
+
"kl": 0.2236083984375,
|
| 458 |
+
"learning_rate": 0.0002994651611818448,
|
| 459 |
+
"loss": 0.0408,
|
| 460 |
+
"reward": 0.928125,
|
| 461 |
+
"reward_std": 0.18282372057437896,
|
| 462 |
+
"rewards/accuracy_reward": 0.028125,
|
| 463 |
+
"rewards/format_reward": 0.9,
|
| 464 |
+
"step": 350
|
| 465 |
+
},
|
| 466 |
+
{
|
| 467 |
+
"completion_length": 62.90625,
|
| 468 |
+
"epoch": 0.384,
|
| 469 |
+
"grad_norm": 0.3738599121570587,
|
| 470 |
+
"kl": 0.2464111328125,
|
| 471 |
+
"learning_rate": 0.00029929642118927394,
|
| 472 |
+
"loss": 0.0753,
|
| 473 |
+
"reward": 0.834375,
|
| 474 |
+
"reward_std": 0.20676814764738083,
|
| 475 |
+
"rewards/accuracy_reward": 0.025,
|
| 476 |
+
"rewards/format_reward": 0.809375,
|
| 477 |
+
"step": 360
|
| 478 |
+
},
|
| 479 |
+
{
|
| 480 |
+
"completion_length": 70.1625,
|
| 481 |
+
"epoch": 0.39466666666666667,
|
| 482 |
+
"grad_norm": 2.8762810230255127,
|
| 483 |
+
"kl": 0.88681640625,
|
| 484 |
+
"learning_rate": 0.00029910464313701013,
|
| 485 |
+
"loss": 0.2053,
|
| 486 |
+
"reward": 0.640625,
|
| 487 |
+
"reward_std": 0.38192625939846037,
|
| 488 |
+
"rewards/accuracy_reward": 0.009375,
|
| 489 |
+
"rewards/format_reward": 0.63125,
|
| 490 |
+
"step": 370
|
| 491 |
+
},
|
| 492 |
+
{
|
| 493 |
+
"completion_length": 43.578125,
|
| 494 |
+
"epoch": 0.4053333333333333,
|
| 495 |
+
"grad_norm": 0.9355350136756897,
|
| 496 |
+
"kl": 2.06865234375,
|
| 497 |
+
"learning_rate": 0.0002988898566184902,
|
| 498 |
+
"loss": 0.2631,
|
| 499 |
+
"reward": 0.725,
|
| 500 |
+
"reward_std": 0.32462068647146225,
|
| 501 |
+
"rewards/accuracy_reward": 0.0,
|
| 502 |
+
"rewards/format_reward": 0.725,
|
| 503 |
+
"step": 380
|
| 504 |
+
},
|
| 505 |
+
{
|
| 506 |
+
"completion_length": 44.19375,
|
| 507 |
+
"epoch": 0.416,
|
| 508 |
+
"grad_norm": 0.709173858165741,
|
| 509 |
+
"kl": 3.47939453125,
|
| 510 |
+
"learning_rate": 0.0002986520947776074,
|
| 511 |
+
"loss": 0.3225,
|
| 512 |
+
"reward": 0.6125,
|
| 513 |
+
"reward_std": 0.3950331017374992,
|
| 514 |
+
"rewards/accuracy_reward": 0.009375,
|
| 515 |
+
"rewards/format_reward": 0.603125,
|
| 516 |
+
"step": 390
|
| 517 |
+
},
|
| 518 |
+
{
|
| 519 |
+
"completion_length": 54.775,
|
| 520 |
+
"epoch": 0.4266666666666667,
|
| 521 |
+
"grad_norm": 0.6549698114395142,
|
| 522 |
+
"kl": 4.3202392578125,
|
| 523 |
+
"learning_rate": 0.0002983913943035968,
|
| 524 |
+
"loss": 0.3808,
|
| 525 |
+
"reward": 0.66875,
|
| 526 |
+
"reward_std": 0.3901100158691406,
|
| 527 |
+
"rewards/accuracy_reward": 0.01875,
|
| 528 |
+
"rewards/format_reward": 0.65,
|
| 529 |
+
"step": 400
|
| 530 |
+
},
|
| 531 |
+
{
|
| 532 |
+
"completion_length": 53.871875,
|
| 533 |
+
"epoch": 0.43733333333333335,
|
| 534 |
+
"grad_norm": 0.01826515607535839,
|
| 535 |
+
"kl": 2.477734375,
|
| 536 |
+
"learning_rate": 0.00029810779542537355,
|
| 537 |
+
"loss": 0.2661,
|
| 538 |
+
"reward": 0.79375,
|
| 539 |
+
"reward_std": 0.22999776750802994,
|
| 540 |
+
"rewards/accuracy_reward": 0.025,
|
| 541 |
+
"rewards/format_reward": 0.76875,
|
| 542 |
+
"step": 410
|
| 543 |
+
},
|
| 544 |
+
{
|
| 545 |
+
"completion_length": 49.434375,
|
| 546 |
+
"epoch": 0.448,
|
| 547 |
+
"grad_norm": 0.5134692192077637,
|
| 548 |
+
"kl": 2.07587890625,
|
| 549 |
+
"learning_rate": 0.0002978013419053255,
|
| 550 |
+
"loss": 0.2091,
|
| 551 |
+
"reward": 0.771875,
|
| 552 |
+
"reward_std": 0.26785253882408144,
|
| 553 |
+
"rewards/accuracy_reward": 0.0,
|
| 554 |
+
"rewards/format_reward": 0.771875,
|
| 555 |
+
"step": 420
|
| 556 |
+
},
|
| 557 |
+
{
|
| 558 |
+
"completion_length": 59.475,
|
| 559 |
+
"epoch": 0.45866666666666667,
|
| 560 |
+
"grad_norm": 0.7835673689842224,
|
| 561 |
+
"kl": 2.516943359375,
|
| 562 |
+
"learning_rate": 0.00029747208103256,
|
| 563 |
+
"loss": 0.2312,
|
| 564 |
+
"reward": 0.740625,
|
| 565 |
+
"reward_std": 0.31220938116312025,
|
| 566 |
+
"rewards/accuracy_reward": 0.0125,
|
| 567 |
+
"rewards/format_reward": 0.728125,
|
| 568 |
+
"step": 430
|
| 569 |
+
},
|
| 570 |
+
{
|
| 571 |
+
"completion_length": 58.815625,
|
| 572 |
+
"epoch": 0.4693333333333333,
|
| 573 |
+
"grad_norm": 0.021143430843949318,
|
| 574 |
+
"kl": 2.1959716796875,
|
| 575 |
+
"learning_rate": 0.0002971200636156068,
|
| 576 |
+
"loss": 0.2386,
|
| 577 |
+
"reward": 0.796875,
|
| 578 |
+
"reward_std": 0.2231356605887413,
|
| 579 |
+
"rewards/accuracy_reward": 0.0,
|
| 580 |
+
"rewards/format_reward": 0.796875,
|
| 581 |
+
"step": 440
|
| 582 |
+
},
|
| 583 |
+
{
|
| 584 |
+
"completion_length": 55.696875,
|
| 585 |
+
"epoch": 0.48,
|
| 586 |
+
"grad_norm": 1.8231980800628662,
|
| 587 |
+
"kl": 2.9314697265625,
|
| 588 |
+
"learning_rate": 0.00029674534397457745,
|
| 589 |
+
"loss": 0.3506,
|
| 590 |
+
"reward": 0.796875,
|
| 591 |
+
"reward_std": 0.2616912335157394,
|
| 592 |
+
"rewards/accuracy_reward": 0.021875,
|
| 593 |
+
"rewards/format_reward": 0.775,
|
| 594 |
+
"step": 450
|
| 595 |
+
},
|
| 596 |
+
{
|
| 597 |
+
"completion_length": 49.778125,
|
| 598 |
+
"epoch": 0.49066666666666664,
|
| 599 |
+
"grad_norm": 0.5252532362937927,
|
| 600 |
+
"kl": 1.47607421875,
|
| 601 |
+
"learning_rate": 0.00029634797993278333,
|
| 602 |
+
"loss": 0.2026,
|
| 603 |
+
"reward": 0.89375,
|
| 604 |
+
"reward_std": 0.11293471753597259,
|
| 605 |
+
"rewards/accuracy_reward": 0.0125,
|
| 606 |
+
"rewards/format_reward": 0.88125,
|
| 607 |
+
"step": 460
|
| 608 |
+
},
|
| 609 |
+
{
|
| 610 |
+
"completion_length": 57.903125,
|
| 611 |
+
"epoch": 0.5013333333333333,
|
| 612 |
+
"grad_norm": 0.10718824714422226,
|
| 613 |
+
"kl": 1.683837890625,
|
| 614 |
+
"learning_rate": 0.000295928032807813,
|
| 615 |
+
"loss": 0.1887,
|
| 616 |
+
"reward": 0.859375,
|
| 617 |
+
"reward_std": 0.1423343911767006,
|
| 618 |
+
"rewards/accuracy_reward": 0.00625,
|
| 619 |
+
"rewards/format_reward": 0.853125,
|
| 620 |
+
"step": 470
|
| 621 |
+
},
|
| 622 |
+
{
|
| 623 |
+
"completion_length": 63.734375,
|
| 624 |
+
"epoch": 0.512,
|
| 625 |
+
"grad_norm": 0.32101932168006897,
|
| 626 |
+
"kl": 2.9671875,
|
| 627 |
+
"learning_rate": 0.00029548556740206994,
|
| 628 |
+
"loss": 0.3254,
|
| 629 |
+
"reward": 0.79375,
|
| 630 |
+
"reward_std": 0.29874250292778015,
|
| 631 |
+
"rewards/accuracy_reward": 0.009375,
|
| 632 |
+
"rewards/format_reward": 0.784375,
|
| 633 |
+
"step": 480
|
| 634 |
+
},
|
| 635 |
+
{
|
| 636 |
+
"completion_length": 66.253125,
|
| 637 |
+
"epoch": 0.5226666666666666,
|
| 638 |
+
"grad_norm": 0.7132259011268616,
|
| 639 |
+
"kl": 2.6101806640625,
|
| 640 |
+
"learning_rate": 0.0002950206519927731,
|
| 641 |
+
"loss": 0.2574,
|
| 642 |
+
"reward": 0.728125,
|
| 643 |
+
"reward_std": 0.3086773693561554,
|
| 644 |
+
"rewards/accuracy_reward": 0.01875,
|
| 645 |
+
"rewards/format_reward": 0.709375,
|
| 646 |
+
"step": 490
|
| 647 |
+
},
|
| 648 |
+
{
|
| 649 |
+
"completion_length": 64.765625,
|
| 650 |
+
"epoch": 0.5333333333333333,
|
| 651 |
+
"grad_norm": 0.7293491959571838,
|
| 652 |
+
"kl": 3.3251220703125,
|
| 653 |
+
"learning_rate": 0.00029453335832142075,
|
| 654 |
+
"loss": 0.3315,
|
| 655 |
+
"reward": 0.75625,
|
| 656 |
+
"reward_std": 0.27030970752239225,
|
| 657 |
+
"rewards/accuracy_reward": 0.009375,
|
| 658 |
+
"rewards/format_reward": 0.746875,
|
| 659 |
+
"step": 500
|
| 660 |
+
},
|
| 661 |
+
{
|
| 662 |
+
"completion_length": 61.140625,
|
| 663 |
+
"epoch": 0.544,
|
| 664 |
+
"grad_norm": 0.4900813400745392,
|
| 665 |
+
"kl": 1.6069091796875,
|
| 666 |
+
"learning_rate": 0.0002940237615827202,
|
| 667 |
+
"loss": 0.162,
|
| 668 |
+
"reward": 0.86875,
|
| 669 |
+
"reward_std": 0.21899680644273758,
|
| 670 |
+
"rewards/accuracy_reward": 0.053125,
|
| 671 |
+
"rewards/format_reward": 0.815625,
|
| 672 |
+
"step": 510
|
| 673 |
+
},
|
| 674 |
+
{
|
| 675 |
+
"completion_length": 59.621875,
|
| 676 |
+
"epoch": 0.5546666666666666,
|
| 677 |
+
"grad_norm": 0.4984245002269745,
|
| 678 |
+
"kl": 1.695751953125,
|
| 679 |
+
"learning_rate": 0.00029349194041298435,
|
| 680 |
+
"loss": 0.2075,
|
| 681 |
+
"reward": 0.903125,
|
| 682 |
+
"reward_std": 0.16081304997205734,
|
| 683 |
+
"rewards/accuracy_reward": 0.034375,
|
| 684 |
+
"rewards/format_reward": 0.86875,
|
| 685 |
+
"step": 520
|
| 686 |
+
},
|
| 687 |
+
{
|
| 688 |
+
"completion_length": 62.209375,
|
| 689 |
+
"epoch": 0.5653333333333334,
|
| 690 |
+
"grad_norm": 0.25215986371040344,
|
| 691 |
+
"kl": 1.5575439453125,
|
| 692 |
+
"learning_rate": 0.0002929379768779971,
|
| 693 |
+
"loss": 0.1648,
|
| 694 |
+
"reward": 0.890625,
|
| 695 |
+
"reward_std": 0.17983439117670058,
|
| 696 |
+
"rewards/accuracy_reward": 0.040625,
|
| 697 |
+
"rewards/format_reward": 0.85,
|
| 698 |
+
"step": 530
|
| 699 |
+
},
|
| 700 |
+
{
|
| 701 |
+
"completion_length": 65.865625,
|
| 702 |
+
"epoch": 0.576,
|
| 703 |
+
"grad_norm": 0.1489488184452057,
|
| 704 |
+
"kl": 2.0063720703125,
|
| 705 |
+
"learning_rate": 0.0002923619564603501,
|
| 706 |
+
"loss": 0.187,
|
| 707 |
+
"reward": 0.78125,
|
| 708 |
+
"reward_std": 0.2043856605887413,
|
| 709 |
+
"rewards/accuracy_reward": 0.03125,
|
| 710 |
+
"rewards/format_reward": 0.75,
|
| 711 |
+
"step": 540
|
| 712 |
+
},
|
| 713 |
+
{
|
| 714 |
+
"completion_length": 68.68125,
|
| 715 |
+
"epoch": 0.5866666666666667,
|
| 716 |
+
"grad_norm": 0.24991311132907867,
|
| 717 |
+
"kl": 1.0421142578125,
|
| 718 |
+
"learning_rate": 0.00029176396804625135,
|
| 719 |
+
"loss": 0.0977,
|
| 720 |
+
"reward": 0.909375,
|
| 721 |
+
"reward_std": 0.1441847175359726,
|
| 722 |
+
"rewards/accuracy_reward": 0.021875,
|
| 723 |
+
"rewards/format_reward": 0.8875,
|
| 724 |
+
"step": 550
|
| 725 |
+
},
|
| 726 |
+
{
|
| 727 |
+
"completion_length": 64.2,
|
| 728 |
+
"epoch": 0.5973333333333334,
|
| 729 |
+
"grad_norm": 0.7193971872329712,
|
| 730 |
+
"kl": 2.2302490234375,
|
| 731 |
+
"learning_rate": 0.00029114410391180946,
|
| 732 |
+
"loss": 0.2166,
|
| 733 |
+
"reward": 0.834375,
|
| 734 |
+
"reward_std": 0.2048343911767006,
|
| 735 |
+
"rewards/accuracy_reward": 0.015625,
|
| 736 |
+
"rewards/format_reward": 0.81875,
|
| 737 |
+
"step": 560
|
| 738 |
+
},
|
| 739 |
+
{
|
| 740 |
+
"completion_length": 66.01875,
|
| 741 |
+
"epoch": 0.608,
|
| 742 |
+
"grad_norm": 0.59996098279953,
|
| 743 |
+
"kl": 2.652294921875,
|
| 744 |
+
"learning_rate": 0.0002905024597087945,
|
| 745 |
+
"loss": 0.2907,
|
| 746 |
+
"reward": 0.815625,
|
| 747 |
+
"reward_std": 0.20596464574337006,
|
| 748 |
+
"rewards/accuracy_reward": 0.028125,
|
| 749 |
+
"rewards/format_reward": 0.7875,
|
| 750 |
+
"step": 570
|
| 751 |
+
},
|
| 752 |
+
{
|
| 753 |
+
"completion_length": 69.009375,
|
| 754 |
+
"epoch": 0.6186666666666667,
|
| 755 |
+
"grad_norm": 0.32363754510879517,
|
| 756 |
+
"kl": 0.75888671875,
|
| 757 |
+
"learning_rate": 0.0002898391344498775,
|
| 758 |
+
"loss": 0.112,
|
| 759 |
+
"reward": 0.896875,
|
| 760 |
+
"reward_std": 0.14761751294136047,
|
| 761 |
+
"rewards/accuracy_reward": 0.034375,
|
| 762 |
+
"rewards/format_reward": 0.8625,
|
| 763 |
+
"step": 580
|
| 764 |
+
},
|
| 765 |
+
{
|
| 766 |
+
"completion_length": 58.490625,
|
| 767 |
+
"epoch": 0.6293333333333333,
|
| 768 |
+
"grad_norm": 0.5817243456840515,
|
| 769 |
+
"kl": 3.2273193359375,
|
| 770 |
+
"learning_rate": 0.0002891542304933521,
|
| 771 |
+
"loss": 0.3775,
|
| 772 |
+
"reward": 0.796875,
|
| 773 |
+
"reward_std": 0.24620190411806106,
|
| 774 |
+
"rewards/accuracy_reward": 0.00625,
|
| 775 |
+
"rewards/format_reward": 0.790625,
|
| 776 |
+
"step": 590
|
| 777 |
+
},
|
| 778 |
+
{
|
| 779 |
+
"completion_length": 56.890625,
|
| 780 |
+
"epoch": 0.64,
|
| 781 |
+
"grad_norm": 0.561817467212677,
|
| 782 |
+
"kl": 1.345703125,
|
| 783 |
+
"learning_rate": 0.00028844785352733924,
|
| 784 |
+
"loss": 0.1409,
|
| 785 |
+
"reward": 0.884375,
|
| 786 |
+
"reward_std": 0.1315855011343956,
|
| 787 |
+
"rewards/accuracy_reward": 0.021875,
|
| 788 |
+
"rewards/format_reward": 0.8625,
|
| 789 |
+
"step": 600
|
| 790 |
+
},
|
| 791 |
+
{
|
| 792 |
+
"completion_length": 54.61875,
|
| 793 |
+
"epoch": 0.6506666666666666,
|
| 794 |
+
"grad_norm": 0.41451311111450195,
|
| 795 |
+
"kl": 1.3966552734375,
|
| 796 |
+
"learning_rate": 0.00028772011255347873,
|
| 797 |
+
"loss": 0.1476,
|
| 798 |
+
"reward": 0.890625,
|
| 799 |
+
"reward_std": 0.16838996410369872,
|
| 800 |
+
"rewards/accuracy_reward": 0.01875,
|
| 801 |
+
"rewards/format_reward": 0.871875,
|
| 802 |
+
"step": 610
|
| 803 |
+
},
|
| 804 |
+
{
|
| 805 |
+
"completion_length": 58.15,
|
| 806 |
+
"epoch": 0.6613333333333333,
|
| 807 |
+
"grad_norm": 0.38927924633026123,
|
| 808 |
+
"kl": 2.2388427734375,
|
| 809 |
+
"learning_rate": 0.00028697111987010865,
|
| 810 |
+
"loss": 0.2576,
|
| 811 |
+
"reward": 0.871875,
|
| 812 |
+
"reward_std": 0.1995512694120407,
|
| 813 |
+
"rewards/accuracy_reward": 0.028125,
|
| 814 |
+
"rewards/format_reward": 0.84375,
|
| 815 |
+
"step": 620
|
| 816 |
+
},
|
| 817 |
+
{
|
| 818 |
+
"completion_length": 57.20625,
|
| 819 |
+
"epoch": 0.672,
|
| 820 |
+
"grad_norm": 0.09751415997743607,
|
| 821 |
+
"kl": 0.793994140625,
|
| 822 |
+
"learning_rate": 0.0002862009910549369,
|
| 823 |
+
"loss": 0.0629,
|
| 824 |
+
"reward": 0.9375,
|
| 825 |
+
"reward_std": 0.10386751294136047,
|
| 826 |
+
"rewards/accuracy_reward": 0.01875,
|
| 827 |
+
"rewards/format_reward": 0.91875,
|
| 828 |
+
"step": 630
|
| 829 |
+
},
|
| 830 |
+
{
|
| 831 |
+
"completion_length": 65.846875,
|
| 832 |
+
"epoch": 0.6826666666666666,
|
| 833 |
+
"grad_norm": 0.2675510048866272,
|
| 834 |
+
"kl": 2.466015625,
|
| 835 |
+
"learning_rate": 0.0002854098449472061,
|
| 836 |
+
"loss": 0.2627,
|
| 837 |
+
"reward": 0.79375,
|
| 838 |
+
"reward_std": 0.2520918682217598,
|
| 839 |
+
"rewards/accuracy_reward": 0.015625,
|
| 840 |
+
"rewards/format_reward": 0.778125,
|
| 841 |
+
"step": 640
|
| 842 |
+
},
|
| 843 |
+
{
|
| 844 |
+
"completion_length": 62.98125,
|
| 845 |
+
"epoch": 0.6933333333333334,
|
| 846 |
+
"grad_norm": 0.15855202078819275,
|
| 847 |
+
"kl": 1.8398193359375,
|
| 848 |
+
"learning_rate": 0.00028459780362935527,
|
| 849 |
+
"loss": 0.177,
|
| 850 |
+
"reward": 0.91875,
|
| 851 |
+
"reward_std": 0.15879059880971907,
|
| 852 |
+
"rewards/accuracy_reward": 0.0125,
|
| 853 |
+
"rewards/format_reward": 0.90625,
|
| 854 |
+
"step": 650
|
| 855 |
+
},
|
| 856 |
+
{
|
| 857 |
+
"completion_length": 62.6,
|
| 858 |
+
"epoch": 0.704,
|
| 859 |
+
"grad_norm": 0.12087615579366684,
|
| 860 |
+
"kl": 2.0813720703125,
|
| 861 |
+
"learning_rate": 0.0002837649924081816,
|
| 862 |
+
"loss": 0.1866,
|
| 863 |
+
"reward": 0.90625,
|
| 864 |
+
"reward_std": 0.19479155987501146,
|
| 865 |
+
"rewards/accuracy_reward": 0.03125,
|
| 866 |
+
"rewards/format_reward": 0.875,
|
| 867 |
+
"step": 660
|
| 868 |
+
},
|
| 869 |
+
{
|
| 870 |
+
"completion_length": 65.925,
|
| 871 |
+
"epoch": 0.7146666666666667,
|
| 872 |
+
"grad_norm": 0.39411771297454834,
|
| 873 |
+
"kl": 1.392919921875,
|
| 874 |
+
"learning_rate": 0.00028291153979550387,
|
| 875 |
+
"loss": 0.2015,
|
| 876 |
+
"reward": 0.915625,
|
| 877 |
+
"reward_std": 0.1775405988097191,
|
| 878 |
+
"rewards/accuracy_reward": 0.028125,
|
| 879 |
+
"rewards/format_reward": 0.8875,
|
| 880 |
+
"step": 670
|
| 881 |
+
},
|
| 882 |
+
{
|
| 883 |
+
"completion_length": 64.378125,
|
| 884 |
+
"epoch": 0.7253333333333334,
|
| 885 |
+
"grad_norm": 1.1659783124923706,
|
| 886 |
+
"kl": 2.8165283203125,
|
| 887 |
+
"learning_rate": 0.00028203757748833174,
|
| 888 |
+
"loss": 0.3109,
|
| 889 |
+
"reward": 0.778125,
|
| 890 |
+
"reward_std": 0.21169123351573943,
|
| 891 |
+
"rewards/accuracy_reward": 0.003125,
|
| 892 |
+
"rewards/format_reward": 0.775,
|
| 893 |
+
"step": 680
|
| 894 |
+
},
|
| 895 |
+
{
|
| 896 |
+
"completion_length": 57.334375,
|
| 897 |
+
"epoch": 0.736,
|
| 898 |
+
"grad_norm": 0.27627384662628174,
|
| 899 |
+
"kl": 1.0085693359375,
|
| 900 |
+
"learning_rate": 0.0002811432403485437,
|
| 901 |
+
"loss": 0.1226,
|
| 902 |
+
"reward": 0.859375,
|
| 903 |
+
"reward_std": 0.11540063470602036,
|
| 904 |
+
"rewards/accuracy_reward": 0.009375,
|
| 905 |
+
"rewards/format_reward": 0.85,
|
| 906 |
+
"step": 690
|
| 907 |
+
},
|
| 908 |
+
{
|
| 909 |
+
"completion_length": 54.6,
|
| 910 |
+
"epoch": 0.7466666666666667,
|
| 911 |
+
"grad_norm": 0.4506663382053375,
|
| 912 |
+
"kl": 2.3274169921875,
|
| 913 |
+
"learning_rate": 0.00028022866638207624,
|
| 914 |
+
"loss": 0.2726,
|
| 915 |
+
"reward": 0.853125,
|
| 916 |
+
"reward_std": 0.2143363133072853,
|
| 917 |
+
"rewards/accuracy_reward": 0.025,
|
| 918 |
+
"rewards/format_reward": 0.828125,
|
| 919 |
+
"step": 700
|
| 920 |
+
},
|
| 921 |
+
{
|
| 922 |
+
"completion_length": 64.646875,
|
| 923 |
+
"epoch": 0.7573333333333333,
|
| 924 |
+
"grad_norm": 0.24161870777606964,
|
| 925 |
+
"kl": 1.10751953125,
|
| 926 |
+
"learning_rate": 0.00027929399671762793,
|
| 927 |
+
"loss": 0.1497,
|
| 928 |
+
"reward": 0.878125,
|
| 929 |
+
"reward_std": 0.18096464574337007,
|
| 930 |
+
"rewards/accuracy_reward": 0.04375,
|
| 931 |
+
"rewards/format_reward": 0.834375,
|
| 932 |
+
"step": 710
|
| 933 |
+
},
|
| 934 |
+
{
|
| 935 |
+
"completion_length": 65.128125,
|
| 936 |
+
"epoch": 0.768,
|
| 937 |
+
"grad_norm": 0.22652657330036163,
|
| 938 |
+
"kl": 1.7567138671875,
|
| 939 |
+
"learning_rate": 0.00027833937558488183,
|
| 940 |
+
"loss": 0.1692,
|
| 941 |
+
"reward": 0.865625,
|
| 942 |
+
"reward_std": 0.19575843811035157,
|
| 943 |
+
"rewards/accuracy_reward": 0.059375,
|
| 944 |
+
"rewards/format_reward": 0.80625,
|
| 945 |
+
"step": 720
|
| 946 |
+
},
|
| 947 |
+
{
|
| 948 |
+
"completion_length": 76.259375,
|
| 949 |
+
"epoch": 0.7786666666666666,
|
| 950 |
+
"grad_norm": 0.46417316794395447,
|
| 951 |
+
"kl": 3.4798828125,
|
| 952 |
+
"learning_rate": 0.0002773649502922495,
|
| 953 |
+
"loss": 0.3618,
|
| 954 |
+
"reward": 0.7125,
|
| 955 |
+
"reward_std": 0.31879488229751585,
|
| 956 |
+
"rewards/accuracy_reward": 0.0125,
|
| 957 |
+
"rewards/format_reward": 0.7,
|
| 958 |
+
"step": 730
|
| 959 |
+
},
|
| 960 |
+
{
|
| 961 |
+
"completion_length": 64.928125,
|
| 962 |
+
"epoch": 0.7893333333333333,
|
| 963 |
+
"grad_norm": 0.8743041753768921,
|
| 964 |
+
"kl": 2.166650390625,
|
| 965 |
+
"learning_rate": 0.00027637087120413933,
|
| 966 |
+
"loss": 0.2562,
|
| 967 |
+
"reward": 0.840625,
|
| 968 |
+
"reward_std": 0.2851921945810318,
|
| 969 |
+
"rewards/accuracy_reward": 0.0375,
|
| 970 |
+
"rewards/format_reward": 0.803125,
|
| 971 |
+
"step": 740
|
| 972 |
+
},
|
| 973 |
+
{
|
| 974 |
+
"completion_length": 58.028125,
|
| 975 |
+
"epoch": 0.8,
|
| 976 |
+
"grad_norm": 0.18655003607273102,
|
| 977 |
+
"kl": 1.73994140625,
|
| 978 |
+
"learning_rate": 0.000275357291717754,
|
| 979 |
+
"loss": 0.191,
|
| 980 |
+
"reward": 0.909375,
|
| 981 |
+
"reward_std": 0.19460364878177644,
|
| 982 |
+
"rewards/accuracy_reward": 0.053125,
|
| 983 |
+
"rewards/format_reward": 0.85625,
|
| 984 |
+
"step": 750
|
| 985 |
+
},
|
| 986 |
+
{
|
| 987 |
+
"completion_length": 60.803125,
|
| 988 |
+
"epoch": 0.8106666666666666,
|
| 989 |
+
"grad_norm": 0.04459076747298241,
|
| 990 |
+
"kl": 1.7782470703125,
|
| 991 |
+
"learning_rate": 0.0002743243682394195,
|
| 992 |
+
"loss": 0.2117,
|
| 993 |
+
"reward": 0.83125,
|
| 994 |
+
"reward_std": 0.16213996410369874,
|
| 995 |
+
"rewards/accuracy_reward": 0.025,
|
| 996 |
+
"rewards/format_reward": 0.80625,
|
| 997 |
+
"step": 760
|
| 998 |
+
},
|
| 999 |
+
{
|
| 1000 |
+
"completion_length": 56.203125,
|
| 1001 |
+
"epoch": 0.8213333333333334,
|
| 1002 |
+
"grad_norm": 0.04220689460635185,
|
| 1003 |
+
"kl": 1.7406494140625,
|
| 1004 |
+
"learning_rate": 0.00027327226016044963,
|
| 1005 |
+
"loss": 0.1999,
|
| 1006 |
+
"reward": 0.878125,
|
| 1007 |
+
"reward_std": 0.1423343911767006,
|
| 1008 |
+
"rewards/accuracy_reward": 0.034375,
|
| 1009 |
+
"rewards/format_reward": 0.84375,
|
| 1010 |
+
"step": 770
|
| 1011 |
+
},
|
| 1012 |
+
{
|
| 1013 |
+
"completion_length": 58.375,
|
| 1014 |
+
"epoch": 0.832,
|
| 1015 |
+
"grad_norm": 0.3807085156440735,
|
| 1016 |
+
"kl": 1.8222412109375,
|
| 1017 |
+
"learning_rate": 0.00027220112983255087,
|
| 1018 |
+
"loss": 0.2296,
|
| 1019 |
+
"reward": 0.903125,
|
| 1020 |
+
"reward_std": 0.20482564270496367,
|
| 1021 |
+
"rewards/accuracy_reward": 0.034375,
|
| 1022 |
+
"rewards/format_reward": 0.86875,
|
| 1023 |
+
"step": 780
|
| 1024 |
+
},
|
| 1025 |
+
{
|
| 1026 |
+
"completion_length": 63.378125,
|
| 1027 |
+
"epoch": 0.8426666666666667,
|
| 1028 |
+
"grad_norm": 0.01206011138856411,
|
| 1029 |
+
"kl": 2.458740234375,
|
| 1030 |
+
"learning_rate": 0.00027111114254276913,
|
| 1031 |
+
"loss": 0.3096,
|
| 1032 |
+
"reward": 0.84375,
|
| 1033 |
+
"reward_std": 0.2114198923110962,
|
| 1034 |
+
"rewards/accuracy_reward": 0.021875,
|
| 1035 |
+
"rewards/format_reward": 0.821875,
|
| 1036 |
+
"step": 790
|
| 1037 |
+
},
|
| 1038 |
+
{
|
| 1039 |
+
"completion_length": 59.7625,
|
| 1040 |
+
"epoch": 0.8533333333333334,
|
| 1041 |
+
"grad_norm": 0.40591439604759216,
|
| 1042 |
+
"kl": 1.378076171875,
|
| 1043 |
+
"learning_rate": 0.00027000246648798456,
|
| 1044 |
+
"loss": 0.1403,
|
| 1045 |
+
"reward": 0.934375,
|
| 1046 |
+
"reward_std": 0.14083535224199295,
|
| 1047 |
+
"rewards/accuracy_reward": 0.03125,
|
| 1048 |
+
"rewards/format_reward": 0.903125,
|
| 1049 |
+
"step": 800
|
| 1050 |
+
},
|
| 1051 |
+
{
|
| 1052 |
+
"completion_length": 62.284375,
|
| 1053 |
+
"epoch": 0.864,
|
| 1054 |
+
"grad_norm": 0.27511999011039734,
|
| 1055 |
+
"kl": 2.2107177734375,
|
| 1056 |
+
"learning_rate": 0.0002688752727489565,
|
| 1057 |
+
"loss": 0.2636,
|
| 1058 |
+
"reward": 0.8875,
|
| 1059 |
+
"reward_std": 0.21739855110645295,
|
| 1060 |
+
"rewards/accuracy_reward": 0.028125,
|
| 1061 |
+
"rewards/format_reward": 0.859375,
|
| 1062 |
+
"step": 810
|
| 1063 |
+
},
|
| 1064 |
+
{
|
| 1065 |
+
"completion_length": 65.265625,
|
| 1066 |
+
"epoch": 0.8746666666666667,
|
| 1067 |
+
"grad_norm": 0.2582601010799408,
|
| 1068 |
+
"kl": 2.3897705078125,
|
| 1069 |
+
"learning_rate": 0.00026772973526392453,
|
| 1070 |
+
"loss": 0.2965,
|
| 1071 |
+
"reward": 0.83125,
|
| 1072 |
+
"reward_std": 0.2494538262486458,
|
| 1073 |
+
"rewards/accuracy_reward": 0.028125,
|
| 1074 |
+
"rewards/format_reward": 0.803125,
|
| 1075 |
+
"step": 820
|
| 1076 |
+
},
|
| 1077 |
+
{
|
| 1078 |
+
"completion_length": 54.865625,
|
| 1079 |
+
"epoch": 0.8853333333333333,
|
| 1080 |
+
"grad_norm": 0.23494267463684082,
|
| 1081 |
+
"kl": 2.6015625,
|
| 1082 |
+
"learning_rate": 0.0002665660308017671,
|
| 1083 |
+
"loss": 0.252,
|
| 1084 |
+
"reward": 0.9,
|
| 1085 |
+
"reward_std": 0.23950843811035155,
|
| 1086 |
+
"rewards/accuracy_reward": 0.04375,
|
| 1087 |
+
"rewards/format_reward": 0.85625,
|
| 1088 |
+
"step": 830
|
| 1089 |
+
},
|
| 1090 |
+
{
|
| 1091 |
+
"completion_length": 55.503125,
|
| 1092 |
+
"epoch": 0.896,
|
| 1093 |
+
"grad_norm": 0.20798054337501526,
|
| 1094 |
+
"kl": 1.5889892578125,
|
| 1095 |
+
"learning_rate": 0.000265384338934725,
|
| 1096 |
+
"loss": 0.1996,
|
| 1097 |
+
"reward": 0.9375,
|
| 1098 |
+
"reward_std": 0.20120493620634078,
|
| 1099 |
+
"rewards/accuracy_reward": 0.0625,
|
| 1100 |
+
"rewards/format_reward": 0.875,
|
| 1101 |
+
"step": 840
|
| 1102 |
+
},
|
| 1103 |
+
{
|
| 1104 |
+
"completion_length": 59.909375,
|
| 1105 |
+
"epoch": 0.9066666666666666,
|
| 1106 |
+
"grad_norm": 0.23807695508003235,
|
| 1107 |
+
"kl": 1.656982421875,
|
| 1108 |
+
"learning_rate": 0.00026418484201069055,
|
| 1109 |
+
"loss": 0.194,
|
| 1110 |
+
"reward": 0.840625,
|
| 1111 |
+
"reward_std": 0.17524680644273757,
|
| 1112 |
+
"rewards/accuracy_reward": 0.034375,
|
| 1113 |
+
"rewards/format_reward": 0.80625,
|
| 1114 |
+
"step": 850
|
| 1115 |
+
},
|
| 1116 |
+
{
|
| 1117 |
+
"completion_length": 56.74375,
|
| 1118 |
+
"epoch": 0.9173333333333333,
|
| 1119 |
+
"grad_norm": 0.21559438109397888,
|
| 1120 |
+
"kl": 0.813427734375,
|
| 1121 |
+
"learning_rate": 0.00026296772512507025,
|
| 1122 |
+
"loss": 0.1054,
|
| 1123 |
+
"reward": 0.884375,
|
| 1124 |
+
"reward_std": 0.13916241526603698,
|
| 1125 |
+
"rewards/accuracy_reward": 0.021875,
|
| 1126 |
+
"rewards/format_reward": 0.8625,
|
| 1127 |
+
"step": 860
|
| 1128 |
+
},
|
| 1129 |
+
{
|
| 1130 |
+
"completion_length": 62.390625,
|
| 1131 |
+
"epoch": 0.928,
|
| 1132 |
+
"grad_norm": 0.1291944831609726,
|
| 1133 |
+
"kl": 1.9663330078125,
|
| 1134 |
+
"learning_rate": 0.0002617331760922218,
|
| 1135 |
+
"loss": 0.2316,
|
| 1136 |
+
"reward": 0.85625,
|
| 1137 |
+
"reward_std": 0.15685684233903885,
|
| 1138 |
+
"rewards/accuracy_reward": 0.0125,
|
| 1139 |
+
"rewards/format_reward": 0.84375,
|
| 1140 |
+
"step": 870
|
| 1141 |
+
},
|
| 1142 |
+
{
|
| 1143 |
+
"completion_length": 56.009375,
|
| 1144 |
+
"epoch": 0.9386666666666666,
|
| 1145 |
+
"grad_norm": 1.045857548713684,
|
| 1146 |
+
"kl": 1.652001953125,
|
| 1147 |
+
"learning_rate": 0.0002604813854164726,
|
| 1148 |
+
"loss": 0.1616,
|
| 1149 |
+
"reward": 0.9375,
|
| 1150 |
+
"reward_std": 0.16336943507194518,
|
| 1151 |
+
"rewards/accuracy_reward": 0.028125,
|
| 1152 |
+
"rewards/format_reward": 0.909375,
|
| 1153 |
+
"step": 880
|
| 1154 |
+
},
|
| 1155 |
+
{
|
| 1156 |
+
"completion_length": 64.446875,
|
| 1157 |
+
"epoch": 0.9493333333333334,
|
| 1158 |
+
"grad_norm": 0.33091413974761963,
|
| 1159 |
+
"kl": 3.235400390625,
|
| 1160 |
+
"learning_rate": 0.0002592125462627231,
|
| 1161 |
+
"loss": 0.3973,
|
| 1162 |
+
"reward": 0.796875,
|
| 1163 |
+
"reward_std": 0.2716366216540337,
|
| 1164 |
+
"rewards/accuracy_reward": 0.015625,
|
| 1165 |
+
"rewards/format_reward": 0.78125,
|
| 1166 |
+
"step": 890
|
| 1167 |
+
},
|
| 1168 |
+
{
|
| 1169 |
+
"completion_length": 59.0,
|
| 1170 |
+
"epoch": 0.96,
|
| 1171 |
+
"grad_norm": 0.25974419713020325,
|
| 1172 |
+
"kl": 1.752197265625,
|
| 1173 |
+
"learning_rate": 0.00025792685442663877,
|
| 1174 |
+
"loss": 0.1938,
|
| 1175 |
+
"reward": 0.89375,
|
| 1176 |
+
"reward_std": 0.1826515957713127,
|
| 1177 |
+
"rewards/accuracy_reward": 0.028125,
|
| 1178 |
+
"rewards/format_reward": 0.865625,
|
| 1179 |
+
"step": 900
|
| 1180 |
+
},
|
| 1181 |
+
{
|
| 1182 |
+
"completion_length": 57.4125,
|
| 1183 |
+
"epoch": 0.9706666666666667,
|
| 1184 |
+
"grad_norm": 0.2569887936115265,
|
| 1185 |
+
"kl": 2.5720703125,
|
| 1186 |
+
"learning_rate": 0.00025662450830443733,
|
| 1187 |
+
"loss": 0.3213,
|
| 1188 |
+
"reward": 0.846875,
|
| 1189 |
+
"reward_std": 0.22065922170877456,
|
| 1190 |
+
"rewards/accuracy_reward": 0.03125,
|
| 1191 |
+
"rewards/format_reward": 0.815625,
|
| 1192 |
+
"step": 910
|
| 1193 |
+
},
|
| 1194 |
+
{
|
| 1195 |
+
"completion_length": 51.140625,
|
| 1196 |
+
"epoch": 0.9813333333333333,
|
| 1197 |
+
"grad_norm": 0.18798935413360596,
|
| 1198 |
+
"kl": 1.6124267578125,
|
| 1199 |
+
"learning_rate": 0.0002553057088622736,
|
| 1200 |
+
"loss": 0.2214,
|
| 1201 |
+
"reward": 0.925,
|
| 1202 |
+
"reward_std": 0.1477062076330185,
|
| 1203 |
+
"rewards/accuracy_reward": 0.015625,
|
| 1204 |
+
"rewards/format_reward": 0.909375,
|
| 1205 |
+
"step": 920
|
| 1206 |
+
},
|
| 1207 |
+
{
|
| 1208 |
+
"completion_length": 53.921875,
|
| 1209 |
+
"epoch": 0.992,
|
| 1210 |
+
"grad_norm": 0.8309330940246582,
|
| 1211 |
+
"kl": 1.651806640625,
|
| 1212 |
+
"learning_rate": 0.0002539706596052286,
|
| 1213 |
+
"loss": 0.1893,
|
| 1214 |
+
"reward": 0.909375,
|
| 1215 |
+
"reward_std": 0.16504059880971908,
|
| 1216 |
+
"rewards/accuracy_reward": 0.03125,
|
| 1217 |
+
"rewards/format_reward": 0.878125,
|
| 1218 |
+
"step": 930
|
| 1219 |
+
},
|
| 1220 |
+
{
|
| 1221 |
+
"completion_length": 59.96052631578947,
|
| 1222 |
+
"epoch": 1.0021333333333333,
|
| 1223 |
+
"grad_norm": 0.3670661151409149,
|
| 1224 |
+
"kl": 3.8713250411184212,
|
| 1225 |
+
"learning_rate": 0.000252619566545906,
|
| 1226 |
+
"loss": 0.4192,
|
| 1227 |
+
"reward": 0.7796052631578947,
|
| 1228 |
+
"reward_std": 0.2917690135930714,
|
| 1229 |
+
"rewards/accuracy_reward": 0.01644736842105263,
|
| 1230 |
+
"rewards/format_reward": 0.7631578947368421,
|
| 1231 |
+
"step": 940
|
| 1232 |
+
},
|
| 1233 |
+
{
|
| 1234 |
+
"completion_length": 59.1125,
|
| 1235 |
+
"epoch": 1.0128,
|
| 1236 |
+
"grad_norm": 0.2787770926952362,
|
| 1237 |
+
"kl": 2.920068359375,
|
| 1238 |
+
"learning_rate": 0.0002512526381726427,
|
| 1239 |
+
"loss": 0.4194,
|
| 1240 |
+
"reward": 0.734375,
|
| 1241 |
+
"reward_std": 0.3439827933907509,
|
| 1242 |
+
"rewards/accuracy_reward": 0.01875,
|
| 1243 |
+
"rewards/format_reward": 0.715625,
|
| 1244 |
+
"step": 950
|
| 1245 |
+
},
|
| 1246 |
+
{
|
| 1247 |
+
"completion_length": 57.63125,
|
| 1248 |
+
"epoch": 1.0234666666666667,
|
| 1249 |
+
"grad_norm": 0.15397749841213226,
|
| 1250 |
+
"kl": 2.7442626953125,
|
| 1251 |
+
"learning_rate": 0.00024987008541733663,
|
| 1252 |
+
"loss": 0.3308,
|
| 1253 |
+
"reward": 0.81875,
|
| 1254 |
+
"reward_std": 0.24064744114875794,
|
| 1255 |
+
"rewards/accuracy_reward": 0.0125,
|
| 1256 |
+
"rewards/format_reward": 0.80625,
|
| 1257 |
+
"step": 960
|
| 1258 |
+
},
|
| 1259 |
+
{
|
| 1260 |
+
"completion_length": 51.134375,
|
| 1261 |
+
"epoch": 1.0341333333333333,
|
| 1262 |
+
"grad_norm": 0.41957736015319824,
|
| 1263 |
+
"kl": 1.035986328125,
|
| 1264 |
+
"learning_rate": 0.0002484721216228974,
|
| 1265 |
+
"loss": 0.1489,
|
| 1266 |
+
"reward": 0.9625,
|
| 1267 |
+
"reward_std": 0.10561862289905548,
|
| 1268 |
+
"rewards/accuracy_reward": 0.021875,
|
| 1269 |
+
"rewards/format_reward": 0.940625,
|
| 1270 |
+
"step": 970
|
| 1271 |
+
},
|
| 1272 |
+
{
|
| 1273 |
+
"completion_length": 56.68125,
|
| 1274 |
+
"epoch": 1.0448,
|
| 1275 |
+
"grad_norm": 0.11578945815563202,
|
| 1276 |
+
"kl": 1.0271240234375,
|
| 1277 |
+
"learning_rate": 0.0002470589625103255,
|
| 1278 |
+
"loss": 0.1162,
|
| 1279 |
+
"reward": 0.9,
|
| 1280 |
+
"reward_std": 0.13415063470602034,
|
| 1281 |
+
"rewards/accuracy_reward": 0.034375,
|
| 1282 |
+
"rewards/format_reward": 0.865625,
|
| 1283 |
+
"step": 980
|
| 1284 |
+
},
|
| 1285 |
+
{
|
| 1286 |
+
"completion_length": 55.071875,
|
| 1287 |
+
"epoch": 1.0554666666666668,
|
| 1288 |
+
"grad_norm": 0.006299301981925964,
|
| 1289 |
+
"kl": 1.3626953125,
|
| 1290 |
+
"learning_rate": 0.0002456308261454241,
|
| 1291 |
+
"loss": 0.1452,
|
| 1292 |
+
"reward": 0.909375,
|
| 1293 |
+
"reward_std": 0.1264015957713127,
|
| 1294 |
+
"rewards/accuracy_reward": 0.021875,
|
| 1295 |
+
"rewards/format_reward": 0.8875,
|
| 1296 |
+
"step": 990
|
| 1297 |
+
},
|
| 1298 |
+
{
|
| 1299 |
+
"completion_length": 58.0875,
|
| 1300 |
+
"epoch": 1.0661333333333334,
|
| 1301 |
+
"grad_norm": 0.007178621832281351,
|
| 1302 |
+
"kl": 1.4033203125,
|
| 1303 |
+
"learning_rate": 0.00024418793290514906,
|
| 1304 |
+
"loss": 0.1534,
|
| 1305 |
+
"reward": 0.86875,
|
| 1306 |
+
"reward_std": 0.13291241526603698,
|
| 1307 |
+
"rewards/accuracy_reward": 0.01875,
|
| 1308 |
+
"rewards/format_reward": 0.85,
|
| 1309 |
+
"step": 1000
|
| 1310 |
+
},
|
| 1311 |
+
{
|
| 1312 |
+
"completion_length": 58.828125,
|
| 1313 |
+
"epoch": 1.0768,
|
| 1314 |
+
"grad_norm": 0.1767469048500061,
|
| 1315 |
+
"kl": 1.26591796875,
|
| 1316 |
+
"learning_rate": 0.0002427305054436024,
|
| 1317 |
+
"loss": 0.1309,
|
| 1318 |
+
"reward": 0.915625,
|
| 1319 |
+
"reward_std": 0.15447435528039932,
|
| 1320 |
+
"rewards/accuracy_reward": 0.034375,
|
| 1321 |
+
"rewards/format_reward": 0.88125,
|
| 1322 |
+
"step": 1010
|
| 1323 |
+
},
|
| 1324 |
+
{
|
| 1325 |
+
"completion_length": 60.309375,
|
| 1326 |
+
"epoch": 1.0874666666666666,
|
| 1327 |
+
"grad_norm": 0.20854564011096954,
|
| 1328 |
+
"kl": 2.313330078125,
|
| 1329 |
+
"learning_rate": 0.00024125876865767438,
|
| 1330 |
+
"loss": 0.2191,
|
| 1331 |
+
"reward": 0.90625,
|
| 1332 |
+
"reward_std": 0.17595286518335343,
|
| 1333 |
+
"rewards/accuracy_reward": 0.053125,
|
| 1334 |
+
"rewards/format_reward": 0.853125,
|
| 1335 |
+
"step": 1020
|
| 1336 |
+
},
|
| 1337 |
+
{
|
| 1338 |
+
"completion_length": 60.540625,
|
| 1339 |
+
"epoch": 1.0981333333333334,
|
| 1340 |
+
"grad_norm": 0.13962095975875854,
|
| 1341 |
+
"kl": 2.0788818359375,
|
| 1342 |
+
"learning_rate": 0.0002397729496523396,
|
| 1343 |
+
"loss": 0.226,
|
| 1344 |
+
"reward": 0.890625,
|
| 1345 |
+
"reward_std": 0.18282372057437896,
|
| 1346 |
+
"rewards/accuracy_reward": 0.025,
|
| 1347 |
+
"rewards/format_reward": 0.865625,
|
| 1348 |
+
"step": 1030
|
| 1349 |
+
},
|
| 1350 |
+
{
|
| 1351 |
+
"completion_length": 58.89375,
|
| 1352 |
+
"epoch": 1.1088,
|
| 1353 |
+
"grad_norm": 0.25990164279937744,
|
| 1354 |
+
"kl": 1.064794921875,
|
| 1355 |
+
"learning_rate": 0.0002382732777056119,
|
| 1356 |
+
"loss": 0.1602,
|
| 1357 |
+
"reward": 0.915625,
|
| 1358 |
+
"reward_std": 0.16433631330728532,
|
| 1359 |
+
"rewards/accuracy_reward": 0.025,
|
| 1360 |
+
"rewards/format_reward": 0.890625,
|
| 1361 |
+
"step": 1040
|
| 1362 |
+
},
|
| 1363 |
+
{
|
| 1364 |
+
"completion_length": 58.478125,
|
| 1365 |
+
"epoch": 1.1194666666666666,
|
| 1366 |
+
"grad_norm": 0.21004174649715424,
|
| 1367 |
+
"kl": 1.47158203125,
|
| 1368 |
+
"learning_rate": 0.00023675998423316457,
|
| 1369 |
+
"loss": 0.1682,
|
| 1370 |
+
"reward": 0.953125,
|
| 1371 |
+
"reward_std": 0.18810684233903885,
|
| 1372 |
+
"rewards/accuracy_reward": 0.05,
|
| 1373 |
+
"rewards/format_reward": 0.903125,
|
| 1374 |
+
"step": 1050
|
| 1375 |
+
},
|
| 1376 |
+
{
|
| 1377 |
+
"completion_length": 59.39375,
|
| 1378 |
+
"epoch": 1.1301333333333332,
|
| 1379 |
+
"grad_norm": 0.08877279609441757,
|
| 1380 |
+
"kl": 1.388037109375,
|
| 1381 |
+
"learning_rate": 0.00023523330275262037,
|
| 1382 |
+
"loss": 0.1636,
|
| 1383 |
+
"reward": 0.9125,
|
| 1384 |
+
"reward_std": 0.1637136846780777,
|
| 1385 |
+
"rewards/accuracy_reward": 0.0375,
|
| 1386 |
+
"rewards/format_reward": 0.875,
|
| 1387 |
+
"step": 1060
|
| 1388 |
+
},
|
| 1389 |
+
{
|
| 1390 |
+
"completion_length": 63.709375,
|
| 1391 |
+
"epoch": 1.1408,
|
| 1392 |
+
"grad_norm": 0.218344584107399,
|
| 1393 |
+
"kl": 1.704052734375,
|
| 1394 |
+
"learning_rate": 0.00023369346884751706,
|
| 1395 |
+
"loss": 0.2163,
|
| 1396 |
+
"reward": 0.884375,
|
| 1397 |
+
"reward_std": 0.23439744114875793,
|
| 1398 |
+
"rewards/accuracy_reward": 0.046875,
|
| 1399 |
+
"rewards/format_reward": 0.8375,
|
| 1400 |
+
"step": 1070
|
| 1401 |
+
},
|
| 1402 |
+
{
|
| 1403 |
+
"completion_length": 60.93125,
|
| 1404 |
+
"epoch": 1.1514666666666666,
|
| 1405 |
+
"grad_norm": 0.24491117894649506,
|
| 1406 |
+
"kl": 1.15849609375,
|
| 1407 |
+
"learning_rate": 0.00023214072013095434,
|
| 1408 |
+
"loss": 0.1445,
|
| 1409 |
+
"reward": 0.925,
|
| 1410 |
+
"reward_std": 0.14206304997205735,
|
| 1411 |
+
"rewards/accuracy_reward": 0.034375,
|
| 1412 |
+
"rewards/format_reward": 0.890625,
|
| 1413 |
+
"step": 1080
|
| 1414 |
+
},
|
| 1415 |
+
{
|
| 1416 |
+
"completion_length": 55.40625,
|
| 1417 |
+
"epoch": 1.1621333333333332,
|
| 1418 |
+
"grad_norm": 1.4203561544418335,
|
| 1419 |
+
"kl": 1.4958740234375,
|
| 1420 |
+
"learning_rate": 0.00023057529620892773,
|
| 1421 |
+
"loss": 0.2111,
|
| 1422 |
+
"reward": 0.946875,
|
| 1423 |
+
"reward_std": 0.18555223047733307,
|
| 1424 |
+
"rewards/accuracy_reward": 0.040625,
|
| 1425 |
+
"rewards/format_reward": 0.90625,
|
| 1426 |
+
"step": 1090
|
| 1427 |
+
},
|
| 1428 |
+
{
|
| 1429 |
+
"completion_length": 61.6375,
|
| 1430 |
+
"epoch": 1.1728,
|
| 1431 |
+
"grad_norm": 0.07859649509191513,
|
| 1432 |
+
"kl": 2.87578125,
|
| 1433 |
+
"learning_rate": 0.00022899743864335462,
|
| 1434 |
+
"loss": 0.3232,
|
| 1435 |
+
"reward": 0.825,
|
| 1436 |
+
"reward_std": 0.22410253882408143,
|
| 1437 |
+
"rewards/accuracy_reward": 0.0125,
|
| 1438 |
+
"rewards/format_reward": 0.8125,
|
| 1439 |
+
"step": 1100
|
| 1440 |
+
},
|
| 1441 |
+
{
|
| 1442 |
+
"completion_length": 56.74375,
|
| 1443 |
+
"epoch": 1.1834666666666667,
|
| 1444 |
+
"grad_norm": 0.6798639893531799,
|
| 1445 |
+
"kl": 2.165380859375,
|
| 1446 |
+
"learning_rate": 0.0002274073909147986,
|
| 1447 |
+
"loss": 0.29,
|
| 1448 |
+
"reward": 0.86875,
|
| 1449 |
+
"reward_std": 0.17693375647068024,
|
| 1450 |
+
"rewards/accuracy_reward": 0.0125,
|
| 1451 |
+
"rewards/format_reward": 0.85625,
|
| 1452 |
+
"step": 1110
|
| 1453 |
+
},
|
| 1454 |
+
{
|
| 1455 |
+
"completion_length": 56.08125,
|
| 1456 |
+
"epoch": 1.1941333333333333,
|
| 1457 |
+
"grad_norm": 0.46122825145721436,
|
| 1458 |
+
"kl": 2.6029052734375,
|
| 1459 |
+
"learning_rate": 0.000225805398384898,
|
| 1460 |
+
"loss": 0.2877,
|
| 1461 |
+
"reward": 0.85625,
|
| 1462 |
+
"reward_std": 0.15879059880971907,
|
| 1463 |
+
"rewards/accuracy_reward": 0.01875,
|
| 1464 |
+
"rewards/format_reward": 0.8375,
|
| 1465 |
+
"step": 1120
|
| 1466 |
+
},
|
| 1467 |
+
{
|
| 1468 |
+
"completion_length": 53.4875,
|
| 1469 |
+
"epoch": 1.2048,
|
| 1470 |
+
"grad_norm": 0.0872046947479248,
|
| 1471 |
+
"kl": 1.120751953125,
|
| 1472 |
+
"learning_rate": 0.0002241917082585036,
|
| 1473 |
+
"loss": 0.1583,
|
| 1474 |
+
"reward": 0.959375,
|
| 1475 |
+
"reward_std": 0.16838996410369872,
|
| 1476 |
+
"rewards/accuracy_reward": 0.046875,
|
| 1477 |
+
"rewards/format_reward": 0.9125,
|
| 1478 |
+
"step": 1130
|
| 1479 |
+
},
|
| 1480 |
+
{
|
| 1481 |
+
"completion_length": 52.09375,
|
| 1482 |
+
"epoch": 1.2154666666666667,
|
| 1483 |
+
"grad_norm": 0.2135591208934784,
|
| 1484 |
+
"kl": 1.0230712890625,
|
| 1485 |
+
"learning_rate": 0.00022256656954553245,
|
| 1486 |
+
"loss": 0.1191,
|
| 1487 |
+
"reward": 0.9625,
|
| 1488 |
+
"reward_std": 0.14858439117670058,
|
| 1489 |
+
"rewards/accuracy_reward": 0.05625,
|
| 1490 |
+
"rewards/format_reward": 0.90625,
|
| 1491 |
+
"step": 1140
|
| 1492 |
+
},
|
| 1493 |
+
{
|
| 1494 |
+
"completion_length": 50.771875,
|
| 1495 |
+
"epoch": 1.2261333333333333,
|
| 1496 |
+
"grad_norm": 0.2628862261772156,
|
| 1497 |
+
"kl": 2.2327880859375,
|
| 1498 |
+
"learning_rate": 0.00022093023302254295,
|
| 1499 |
+
"loss": 0.2802,
|
| 1500 |
+
"reward": 0.953125,
|
| 1501 |
+
"reward_std": 0.19831304997205734,
|
| 1502 |
+
"rewards/accuracy_reward": 0.053125,
|
| 1503 |
+
"rewards/format_reward": 0.9,
|
| 1504 |
+
"step": 1150
|
| 1505 |
+
},
|
| 1506 |
+
{
|
| 1507 |
+
"completion_length": 55.653125,
|
| 1508 |
+
"epoch": 1.2368000000000001,
|
| 1509 |
+
"grad_norm": 0.01043323241174221,
|
| 1510 |
+
"kl": 1.43515625,
|
| 1511 |
+
"learning_rate": 0.0002192829511940371,
|
| 1512 |
+
"loss": 0.216,
|
| 1513 |
+
"reward": 0.871875,
|
| 1514 |
+
"reward_std": 0.17604155987501144,
|
| 1515 |
+
"rewards/accuracy_reward": 0.03125,
|
| 1516 |
+
"rewards/format_reward": 0.840625,
|
| 1517 |
+
"step": 1160
|
| 1518 |
+
},
|
| 1519 |
+
{
|
| 1520 |
+
"completion_length": 56.01875,
|
| 1521 |
+
"epoch": 1.2474666666666667,
|
| 1522 |
+
"grad_norm": 0.30781543254852295,
|
| 1523 |
+
"kl": 1.352490234375,
|
| 1524 |
+
"learning_rate": 0.00021762497825349663,
|
| 1525 |
+
"loss": 0.1604,
|
| 1526 |
+
"reward": 0.875,
|
| 1527 |
+
"reward_std": 0.18801814764738084,
|
| 1528 |
+
"rewards/accuracy_reward": 0.040625,
|
| 1529 |
+
"rewards/format_reward": 0.834375,
|
| 1530 |
+
"step": 1170
|
| 1531 |
+
},
|
| 1532 |
+
{
|
| 1533 |
+
"completion_length": 57.009375,
|
| 1534 |
+
"epoch": 1.2581333333333333,
|
| 1535 |
+
"grad_norm": 0.268877774477005,
|
| 1536 |
+
"kl": 1.6961669921875,
|
| 1537 |
+
"learning_rate": 0.00021595657004415777,
|
| 1538 |
+
"loss": 0.2207,
|
| 1539 |
+
"reward": 0.896875,
|
| 1540 |
+
"reward_std": 0.18351925760507584,
|
| 1541 |
+
"rewards/accuracy_reward": 0.03125,
|
| 1542 |
+
"rewards/format_reward": 0.865625,
|
| 1543 |
+
"step": 1180
|
| 1544 |
+
},
|
| 1545 |
+
{
|
| 1546 |
+
"completion_length": 53.909375,
|
| 1547 |
+
"epoch": 1.2688,
|
| 1548 |
+
"grad_norm": 0.10004394501447678,
|
| 1549 |
+
"kl": 1.055419921875,
|
| 1550 |
+
"learning_rate": 0.00021427798401953233,
|
| 1551 |
+
"loss": 0.1206,
|
| 1552 |
+
"reward": 0.915625,
|
| 1553 |
+
"reward_std": 0.10359617173671723,
|
| 1554 |
+
"rewards/accuracy_reward": 0.0375,
|
| 1555 |
+
"rewards/format_reward": 0.878125,
|
| 1556 |
+
"step": 1190
|
| 1557 |
+
},
|
| 1558 |
+
{
|
| 1559 |
+
"completion_length": 55.93125,
|
| 1560 |
+
"epoch": 1.2794666666666665,
|
| 1561 |
+
"grad_norm": 0.16535454988479614,
|
| 1562 |
+
"kl": 2.3431884765625,
|
| 1563 |
+
"learning_rate": 0.0002125894792036794,
|
| 1564 |
+
"loss": 0.3288,
|
| 1565 |
+
"reward": 0.903125,
|
| 1566 |
+
"reward_std": 0.22568152397871016,
|
| 1567 |
+
"rewards/accuracy_reward": 0.0375,
|
| 1568 |
+
"rewards/format_reward": 0.865625,
|
| 1569 |
+
"step": 1200
|
| 1570 |
+
},
|
| 1571 |
+
{
|
| 1572 |
+
"completion_length": 55.09375,
|
| 1573 |
+
"epoch": 1.2901333333333334,
|
| 1574 |
+
"grad_norm": 0.19274021685123444,
|
| 1575 |
+
"kl": 1.0988037109375,
|
| 1576 |
+
"learning_rate": 0.0002108913161512354,
|
| 1577 |
+
"loss": 0.1432,
|
| 1578 |
+
"reward": 0.9375,
|
| 1579 |
+
"reward_std": 0.12358439117670059,
|
| 1580 |
+
"rewards/accuracy_reward": 0.034375,
|
| 1581 |
+
"rewards/format_reward": 0.903125,
|
| 1582 |
+
"step": 1210
|
| 1583 |
+
},
|
| 1584 |
+
{
|
| 1585 |
+
"completion_length": 55.675,
|
| 1586 |
+
"epoch": 1.3008,
|
| 1587 |
+
"grad_norm": 0.15594810247421265,
|
| 1588 |
+
"kl": 1.42451171875,
|
| 1589 |
+
"learning_rate": 0.0002091837569072076,
|
| 1590 |
+
"loss": 0.1693,
|
| 1591 |
+
"reward": 0.94375,
|
| 1592 |
+
"reward_std": 0.16636751294136048,
|
| 1593 |
+
"rewards/accuracy_reward": 0.046875,
|
| 1594 |
+
"rewards/format_reward": 0.896875,
|
| 1595 |
+
"step": 1220
|
| 1596 |
+
},
|
| 1597 |
+
{
|
| 1598 |
+
"completion_length": 56.88125,
|
| 1599 |
+
"epoch": 1.3114666666666666,
|
| 1600 |
+
"grad_norm": 0.3196319341659546,
|
| 1601 |
+
"kl": 1.6291015625,
|
| 1602 |
+
"learning_rate": 0.00020746706496653765,
|
| 1603 |
+
"loss": 0.2144,
|
| 1604 |
+
"reward": 0.915625,
|
| 1605 |
+
"reward_std": 0.1927691087126732,
|
| 1606 |
+
"rewards/accuracy_reward": 0.046875,
|
| 1607 |
+
"rewards/format_reward": 0.86875,
|
| 1608 |
+
"step": 1230
|
| 1609 |
+
},
|
| 1610 |
+
{
|
| 1611 |
+
"completion_length": 58.7875,
|
| 1612 |
+
"epoch": 1.3221333333333334,
|
| 1613 |
+
"grad_norm": 0.13602705299854279,
|
| 1614 |
+
"kl": 1.5197509765625,
|
| 1615 |
+
"learning_rate": 0.00020574150523344152,
|
| 1616 |
+
"loss": 0.1651,
|
| 1617 |
+
"reward": 0.94375,
|
| 1618 |
+
"reward_std": 0.16670301407575608,
|
| 1619 |
+
"rewards/accuracy_reward": 0.0375,
|
| 1620 |
+
"rewards/format_reward": 0.90625,
|
| 1621 |
+
"step": 1240
|
| 1622 |
+
},
|
| 1623 |
+
{
|
| 1624 |
+
"completion_length": 62.996875,
|
| 1625 |
+
"epoch": 1.3328,
|
| 1626 |
+
"grad_norm": 0.05853046849370003,
|
| 1627 |
+
"kl": 1.815576171875,
|
| 1628 |
+
"learning_rate": 0.00020400734398053186,
|
| 1629 |
+
"loss": 0.1795,
|
| 1630 |
+
"reward": 0.86875,
|
| 1631 |
+
"reward_std": 0.19752006977796555,
|
| 1632 |
+
"rewards/accuracy_reward": 0.0375,
|
| 1633 |
+
"rewards/format_reward": 0.83125,
|
| 1634 |
+
"step": 1250
|
| 1635 |
+
},
|
| 1636 |
+
{
|
| 1637 |
+
"completion_length": 62.54375,
|
| 1638 |
+
"epoch": 1.3434666666666666,
|
| 1639 |
+
"grad_norm": 0.007495929021388292,
|
| 1640 |
+
"kl": 1.3890869140625,
|
| 1641 |
+
"learning_rate": 0.0002022648488077294,
|
| 1642 |
+
"loss": 0.1695,
|
| 1643 |
+
"reward": 0.884375,
|
| 1644 |
+
"reward_std": 0.1775405988097191,
|
| 1645 |
+
"rewards/accuracy_reward": 0.028125,
|
| 1646 |
+
"rewards/format_reward": 0.85625,
|
| 1647 |
+
"step": 1260
|
| 1648 |
+
},
|
| 1649 |
+
{
|
| 1650 |
+
"completion_length": 61.278125,
|
| 1651 |
+
"epoch": 1.3541333333333334,
|
| 1652 |
+
"grad_norm": 0.1842016726732254,
|
| 1653 |
+
"kl": 1.7712646484375,
|
| 1654 |
+
"learning_rate": 0.0002005142886009691,
|
| 1655 |
+
"loss": 0.2379,
|
| 1656 |
+
"reward": 0.875,
|
| 1657 |
+
"reward_std": 0.16706304997205734,
|
| 1658 |
+
"rewards/accuracy_reward": 0.021875,
|
| 1659 |
+
"rewards/format_reward": 0.853125,
|
| 1660 |
+
"step": 1270
|
| 1661 |
+
},
|
| 1662 |
+
{
|
| 1663 |
+
"completion_length": 62.025,
|
| 1664 |
+
"epoch": 1.3648,
|
| 1665 |
+
"grad_norm": 0.16039888560771942,
|
| 1666 |
+
"kl": 1.9799560546875,
|
| 1667 |
+
"learning_rate": 0.00019875593349070832,
|
| 1668 |
+
"loss": 0.2323,
|
| 1669 |
+
"reward": 0.91875,
|
| 1670 |
+
"reward_std": 0.20685684233903884,
|
| 1671 |
+
"rewards/accuracy_reward": 0.046875,
|
| 1672 |
+
"rewards/format_reward": 0.871875,
|
| 1673 |
+
"step": 1280
|
| 1674 |
+
},
|
| 1675 |
+
{
|
| 1676 |
+
"completion_length": 61.0375,
|
| 1677 |
+
"epoch": 1.3754666666666666,
|
| 1678 |
+
"grad_norm": 0.15333615243434906,
|
| 1679 |
+
"kl": 2.3615478515625,
|
| 1680 |
+
"learning_rate": 0.0001969900548102427,
|
| 1681 |
+
"loss": 0.2778,
|
| 1682 |
+
"reward": 0.84375,
|
| 1683 |
+
"reward_std": 0.20719234347343446,
|
| 1684 |
+
"rewards/accuracy_reward": 0.01875,
|
| 1685 |
+
"rewards/format_reward": 0.825,
|
| 1686 |
+
"step": 1290
|
| 1687 |
+
},
|
| 1688 |
+
{
|
| 1689 |
+
"completion_length": 58.328125,
|
| 1690 |
+
"epoch": 1.3861333333333334,
|
| 1691 |
+
"grad_norm": 0.07369455695152283,
|
| 1692 |
+
"kl": 2.516748046875,
|
| 1693 |
+
"learning_rate": 0.00019521692505383657,
|
| 1694 |
+
"loss": 0.3136,
|
| 1695 |
+
"reward": 0.85,
|
| 1696 |
+
"reward_std": 0.19249776750802994,
|
| 1697 |
+
"rewards/accuracy_reward": 0.025,
|
| 1698 |
+
"rewards/format_reward": 0.825,
|
| 1699 |
+
"step": 1300
|
| 1700 |
+
},
|
| 1701 |
+
{
|
| 1702 |
+
"completion_length": 55.35625,
|
| 1703 |
+
"epoch": 1.3968,
|
| 1704 |
+
"grad_norm": 0.2832612693309784,
|
| 1705 |
+
"kl": 1.73642578125,
|
| 1706 |
+
"learning_rate": 0.000193436817834674,
|
| 1707 |
+
"loss": 0.2319,
|
| 1708 |
+
"reward": 0.925,
|
| 1709 |
+
"reward_std": 0.21794123351573944,
|
| 1710 |
+
"rewards/accuracy_reward": 0.034375,
|
| 1711 |
+
"rewards/format_reward": 0.890625,
|
| 1712 |
+
"step": 1310
|
| 1713 |
+
},
|
| 1714 |
+
{
|
| 1715 |
+
"completion_length": 59.0875,
|
| 1716 |
+
"epoch": 1.4074666666666666,
|
| 1717 |
+
"grad_norm": 0.24120619893074036,
|
| 1718 |
+
"kl": 2.8723876953125,
|
| 1719 |
+
"learning_rate": 0.0001916500078426373,
|
| 1720 |
+
"loss": 0.3392,
|
| 1721 |
+
"reward": 0.8375,
|
| 1722 |
+
"reward_std": 0.22023502588272095,
|
| 1723 |
+
"rewards/accuracy_reward": 0.025,
|
| 1724 |
+
"rewards/format_reward": 0.8125,
|
| 1725 |
+
"step": 1320
|
| 1726 |
+
},
|
| 1727 |
+
{
|
| 1728 |
+
"completion_length": 55.025,
|
| 1729 |
+
"epoch": 1.4181333333333335,
|
| 1730 |
+
"grad_norm": 0.18106360733509064,
|
| 1731 |
+
"kl": 1.674365234375,
|
| 1732 |
+
"learning_rate": 0.0001898567708019196,
|
| 1733 |
+
"loss": 0.2313,
|
| 1734 |
+
"reward": 0.88125,
|
| 1735 |
+
"reward_std": 0.17693375647068024,
|
| 1736 |
+
"rewards/accuracy_reward": 0.01875,
|
| 1737 |
+
"rewards/format_reward": 0.8625,
|
| 1738 |
+
"step": 1330
|
| 1739 |
+
},
|
| 1740 |
+
{
|
| 1741 |
+
"completion_length": 55.15625,
|
| 1742 |
+
"epoch": 1.4288,
|
| 1743 |
+
"grad_norm": 0.1365566849708557,
|
| 1744 |
+
"kl": 2.2543212890625,
|
| 1745 |
+
"learning_rate": 0.00018805738342847727,
|
| 1746 |
+
"loss": 0.3175,
|
| 1747 |
+
"reward": 0.878125,
|
| 1748 |
+
"reward_std": 0.2048343911767006,
|
| 1749 |
+
"rewards/accuracy_reward": 0.028125,
|
| 1750 |
+
"rewards/format_reward": 0.85,
|
| 1751 |
+
"step": 1340
|
| 1752 |
+
},
|
| 1753 |
+
{
|
| 1754 |
+
"completion_length": 55.5625,
|
| 1755 |
+
"epoch": 1.4394666666666667,
|
| 1756 |
+
"grad_norm": 0.10590548813343048,
|
| 1757 |
+
"kl": 1.425244140625,
|
| 1758 |
+
"learning_rate": 0.00018625212338733,
|
| 1759 |
+
"loss": 0.1371,
|
| 1760 |
+
"reward": 0.8875,
|
| 1761 |
+
"reward_std": 0.10915063470602035,
|
| 1762 |
+
"rewards/accuracy_reward": 0.028125,
|
| 1763 |
+
"rewards/format_reward": 0.859375,
|
| 1764 |
+
"step": 1350
|
| 1765 |
+
},
|
| 1766 |
+
{
|
| 1767 |
+
"completion_length": 53.225,
|
| 1768 |
+
"epoch": 1.4501333333333333,
|
| 1769 |
+
"grad_norm": 0.15103192627429962,
|
| 1770 |
+
"kl": 1.1132080078125,
|
| 1771 |
+
"learning_rate": 0.00018444126924971387,
|
| 1772 |
+
"loss": 0.1228,
|
| 1773 |
+
"reward": 0.953125,
|
| 1774 |
+
"reward_std": 0.11838996410369873,
|
| 1775 |
+
"rewards/accuracy_reward": 0.0375,
|
| 1776 |
+
"rewards/format_reward": 0.915625,
|
| 1777 |
+
"step": 1360
|
| 1778 |
+
},
|
| 1779 |
+
{
|
| 1780 |
+
"completion_length": 57.265625,
|
| 1781 |
+
"epoch": 1.4607999999999999,
|
| 1782 |
+
"grad_norm": 0.05684982240200043,
|
| 1783 |
+
"kl": 1.13671875,
|
| 1784 |
+
"learning_rate": 0.0001826251004500947,
|
| 1785 |
+
"loss": 0.1437,
|
| 1786 |
+
"reward": 0.9125,
|
| 1787 |
+
"reward_std": 0.19223694801330565,
|
| 1788 |
+
"rewards/accuracy_reward": 0.065625,
|
| 1789 |
+
"rewards/format_reward": 0.846875,
|
| 1790 |
+
"step": 1370
|
| 1791 |
+
},
|
| 1792 |
+
{
|
| 1793 |
+
"completion_length": 59.325,
|
| 1794 |
+
"epoch": 1.4714666666666667,
|
| 1795 |
+
"grad_norm": 0.17307031154632568,
|
| 1796 |
+
"kl": 1.8568115234375,
|
| 1797 |
+
"learning_rate": 0.0001808038972430486,
|
| 1798 |
+
"loss": 0.2279,
|
| 1799 |
+
"reward": 0.871875,
|
| 1800 |
+
"reward_std": 0.16398502588272096,
|
| 1801 |
+
"rewards/accuracy_reward": 0.01875,
|
| 1802 |
+
"rewards/format_reward": 0.853125,
|
| 1803 |
+
"step": 1380
|
| 1804 |
+
},
|
| 1805 |
+
{
|
| 1806 |
+
"completion_length": 59.646875,
|
| 1807 |
+
"epoch": 1.4821333333333333,
|
| 1808 |
+
"grad_norm": 0.007796150632202625,
|
| 1809 |
+
"kl": 2.4506591796875,
|
| 1810 |
+
"learning_rate": 0.00017897794066001524,
|
| 1811 |
+
"loss": 0.2992,
|
| 1812 |
+
"reward": 0.84375,
|
| 1813 |
+
"reward_std": 0.20420301407575608,
|
| 1814 |
+
"rewards/accuracy_reward": 0.034375,
|
| 1815 |
+
"rewards/format_reward": 0.809375,
|
| 1816 |
+
"step": 1390
|
| 1817 |
+
},
|
| 1818 |
+
{
|
| 1819 |
+
"completion_length": 58.3,
|
| 1820 |
+
"epoch": 1.4928,
|
| 1821 |
+
"grad_norm": 0.1803148239850998,
|
| 1822 |
+
"kl": 1.1746826171875,
|
| 1823 |
+
"learning_rate": 0.00017714751246593197,
|
| 1824 |
+
"loss": 0.1374,
|
| 1825 |
+
"reward": 0.85625,
|
| 1826 |
+
"reward_std": 0.09665063470602035,
|
| 1827 |
+
"rewards/accuracy_reward": 0.0125,
|
| 1828 |
+
"rewards/format_reward": 0.84375,
|
| 1829 |
+
"step": 1400
|
| 1830 |
+
},
|
| 1831 |
+
{
|
| 1832 |
+
"completion_length": 51.30625,
|
| 1833 |
+
"epoch": 1.5034666666666667,
|
| 1834 |
+
"grad_norm": 0.12448029220104218,
|
| 1835 |
+
"kl": 1.7854248046875,
|
| 1836 |
+
"learning_rate": 0.00017531289511575425,
|
| 1837 |
+
"loss": 0.2174,
|
| 1838 |
+
"reward": 0.940625,
|
| 1839 |
+
"reward_std": 0.17032372057437897,
|
| 1840 |
+
"rewards/accuracy_reward": 0.04375,
|
| 1841 |
+
"rewards/format_reward": 0.896875,
|
| 1842 |
+
"step": 1410
|
| 1843 |
+
},
|
| 1844 |
+
{
|
| 1845 |
+
"completion_length": 50.446875,
|
| 1846 |
+
"epoch": 1.5141333333333333,
|
| 1847 |
+
"grad_norm": 0.1189781054854393,
|
| 1848 |
+
"kl": 1.4447998046875,
|
| 1849 |
+
"learning_rate": 0.0001734743717108699,
|
| 1850 |
+
"loss": 0.1672,
|
| 1851 |
+
"reward": 0.959375,
|
| 1852 |
+
"reward_std": 0.13282372057437897,
|
| 1853 |
+
"rewards/accuracy_reward": 0.0375,
|
| 1854 |
+
"rewards/format_reward": 0.921875,
|
| 1855 |
+
"step": 1420
|
| 1856 |
+
},
|
| 1857 |
+
{
|
| 1858 |
+
"completion_length": 55.278125,
|
| 1859 |
+
"epoch": 1.5248,
|
| 1860 |
+
"grad_norm": 0.10093328356742859,
|
| 1861 |
+
"kl": 1.5136474609375,
|
| 1862 |
+
"learning_rate": 0.0001716322259554132,
|
| 1863 |
+
"loss": 0.1768,
|
| 1864 |
+
"reward": 0.96875,
|
| 1865 |
+
"reward_std": 0.19523502588272096,
|
| 1866 |
+
"rewards/accuracy_reward": 0.065625,
|
| 1867 |
+
"rewards/format_reward": 0.903125,
|
| 1868 |
+
"step": 1430
|
| 1869 |
+
},
|
| 1870 |
+
{
|
| 1871 |
+
"completion_length": 59.934375,
|
| 1872 |
+
"epoch": 1.5354666666666668,
|
| 1873 |
+
"grad_norm": 0.2610551714897156,
|
| 1874 |
+
"kl": 1.778369140625,
|
| 1875 |
+
"learning_rate": 0.00016978674211248673,
|
| 1876 |
+
"loss": 0.2314,
|
| 1877 |
+
"reward": 0.84375,
|
| 1878 |
+
"reward_std": 0.20420301407575608,
|
| 1879 |
+
"rewards/accuracy_reward": 0.03125,
|
| 1880 |
+
"rewards/format_reward": 0.8125,
|
| 1881 |
+
"step": 1440
|
| 1882 |
+
},
|
| 1883 |
+
{
|
| 1884 |
+
"completion_length": 54.96875,
|
| 1885 |
+
"epoch": 1.5461333333333334,
|
| 1886 |
+
"grad_norm": 0.19814546406269073,
|
| 1887 |
+
"kl": 2.6193603515625,
|
| 1888 |
+
"learning_rate": 0.00016793820496029623,
|
| 1889 |
+
"loss": 0.3738,
|
| 1890 |
+
"reward": 0.88125,
|
| 1891 |
+
"reward_std": 0.2356409251689911,
|
| 1892 |
+
"rewards/accuracy_reward": 0.025,
|
| 1893 |
+
"rewards/format_reward": 0.85625,
|
| 1894 |
+
"step": 1450
|
| 1895 |
+
},
|
| 1896 |
+
{
|
| 1897 |
+
"completion_length": 51.703125,
|
| 1898 |
+
"epoch": 1.5568,
|
| 1899 |
+
"grad_norm": 0.1247173473238945,
|
| 1900 |
+
"kl": 2.2877197265625,
|
| 1901 |
+
"learning_rate": 0.000166086899748206,
|
| 1902 |
+
"loss": 0.236,
|
| 1903 |
+
"reward": 0.940625,
|
| 1904 |
+
"reward_std": 0.2197028651833534,
|
| 1905 |
+
"rewards/accuracy_reward": 0.053125,
|
| 1906 |
+
"rewards/format_reward": 0.8875,
|
| 1907 |
+
"step": 1460
|
| 1908 |
+
},
|
| 1909 |
+
{
|
| 1910 |
+
"completion_length": 51.096875,
|
| 1911 |
+
"epoch": 1.5674666666666668,
|
| 1912 |
+
"grad_norm": 0.16843904554843903,
|
| 1913 |
+
"kl": 1.2693115234375,
|
| 1914 |
+
"learning_rate": 0.0001642331121527223,
|
| 1915 |
+
"loss": 0.1801,
|
| 1916 |
+
"reward": 0.959375,
|
| 1917 |
+
"reward_std": 0.14867308586835862,
|
| 1918 |
+
"rewards/accuracy_reward": 0.04375,
|
| 1919 |
+
"rewards/format_reward": 0.915625,
|
| 1920 |
+
"step": 1470
|
| 1921 |
+
},
|
| 1922 |
+
{
|
| 1923 |
+
"completion_length": 55.465625,
|
| 1924 |
+
"epoch": 1.5781333333333334,
|
| 1925 |
+
"grad_norm": 0.12530925869941711,
|
| 1926 |
+
"kl": 1.403857421875,
|
| 1927 |
+
"learning_rate": 0.0001623771282334099,
|
| 1928 |
+
"loss": 0.1621,
|
| 1929 |
+
"reward": 0.921875,
|
| 1930 |
+
"reward_std": 0.17568152397871017,
|
| 1931 |
+
"rewards/accuracy_reward": 0.046875,
|
| 1932 |
+
"rewards/format_reward": 0.875,
|
| 1933 |
+
"step": 1480
|
| 1934 |
+
},
|
| 1935 |
+
{
|
| 1936 |
+
"completion_length": 58.23125,
|
| 1937 |
+
"epoch": 1.5888,
|
| 1938 |
+
"grad_norm": 0.016702894121408463,
|
| 1939 |
+
"kl": 0.8815673828125,
|
| 1940 |
+
"learning_rate": 0.00016051923438875035,
|
| 1941 |
+
"loss": 0.0918,
|
| 1942 |
+
"reward": 0.8875,
|
| 1943 |
+
"reward_std": 0.0879347175359726,
|
| 1944 |
+
"rewards/accuracy_reward": 0.034375,
|
| 1945 |
+
"rewards/format_reward": 0.853125,
|
| 1946 |
+
"step": 1490
|
| 1947 |
+
},
|
| 1948 |
+
{
|
| 1949 |
+
"completion_length": 53.565625,
|
| 1950 |
+
"epoch": 1.5994666666666668,
|
| 1951 |
+
"grad_norm": 0.09671846032142639,
|
| 1952 |
+
"kl": 0.7630126953125,
|
| 1953 |
+
"learning_rate": 0.00015865971731194738,
|
| 1954 |
+
"loss": 0.0861,
|
| 1955 |
+
"reward": 0.98125,
|
| 1956 |
+
"reward_std": 0.11971687823534012,
|
| 1957 |
+
"rewards/accuracy_reward": 0.040625,
|
| 1958 |
+
"rewards/format_reward": 0.940625,
|
| 1959 |
+
"step": 1500
|
| 1960 |
+
},
|
| 1961 |
+
{
|
| 1962 |
+
"completion_length": 57.234375,
|
| 1963 |
+
"epoch": 1.6101333333333332,
|
| 1964 |
+
"grad_norm": 0.16410210728645325,
|
| 1965 |
+
"kl": 0.922265625,
|
| 1966 |
+
"learning_rate": 0.00015679886394668707,
|
| 1967 |
+
"loss": 0.1231,
|
| 1968 |
+
"reward": 0.925,
|
| 1969 |
+
"reward_std": 0.10915063470602035,
|
| 1970 |
+
"rewards/accuracy_reward": 0.028125,
|
| 1971 |
+
"rewards/format_reward": 0.896875,
|
| 1972 |
+
"step": 1510
|
| 1973 |
+
},
|
| 1974 |
+
{
|
| 1975 |
+
"completion_length": 95.821875,
|
| 1976 |
+
"epoch": 1.6208,
|
| 1977 |
+
"grad_norm": 0.09543804824352264,
|
| 1978 |
+
"kl": 6.0548583984375,
|
| 1979 |
+
"learning_rate": 0.00015493696144285935,
|
| 1980 |
+
"loss": 0.4094,
|
| 1981 |
+
"reward": 0.284375,
|
| 1982 |
+
"reward_std": 0.2681046098470688,
|
| 1983 |
+
"rewards/accuracy_reward": 0.025,
|
| 1984 |
+
"rewards/format_reward": 0.259375,
|
| 1985 |
+
"step": 1520
|
| 1986 |
+
},
|
| 1987 |
+
{
|
| 1988 |
+
"completion_length": 113.446875,
|
| 1989 |
+
"epoch": 1.6314666666666666,
|
| 1990 |
+
"grad_norm": 0.006384687032550573,
|
| 1991 |
+
"kl": 0.34674072265625,
|
| 1992 |
+
"learning_rate": 0.00015307429711224754,
|
| 1993 |
+
"loss": 0.0323,
|
| 1994 |
+
"reward": 0.05,
|
| 1995 |
+
"reward_std": 0.08221687823534012,
|
| 1996 |
+
"rewards/accuracy_reward": 0.03125,
|
| 1997 |
+
"rewards/format_reward": 0.01875,
|
| 1998 |
+
"step": 1530
|
| 1999 |
+
},
|
| 2000 |
+
{
|
| 2001 |
+
"completion_length": 116.7,
|
| 2002 |
+
"epoch": 1.6421333333333332,
|
| 2003 |
+
"grad_norm": 0.03033365309238434,
|
| 2004 |
+
"kl": 0.18465576171875,
|
| 2005 |
+
"learning_rate": 0.0001512111583841933,
|
| 2006 |
+
"loss": 0.0367,
|
| 2007 |
+
"reward": 0.053125,
|
| 2008 |
+
"reward_std": 0.10625,
|
| 2009 |
+
"rewards/accuracy_reward": 0.028125,
|
| 2010 |
+
"rewards/format_reward": 0.025,
|
| 2011 |
+
"step": 1540
|
| 2012 |
+
},
|
| 2013 |
+
{
|
| 2014 |
+
"completion_length": 117.84375,
|
| 2015 |
+
"epoch": 1.6528,
|
| 2016 |
+
"grad_norm": 0.007193129975348711,
|
| 2017 |
+
"kl": 0.1654541015625,
|
| 2018 |
+
"learning_rate": 0.00014934783276124278,
|
| 2019 |
+
"loss": 0.0284,
|
| 2020 |
+
"reward": 0.059375,
|
| 2021 |
+
"reward_std": 0.08318375647068024,
|
| 2022 |
+
"rewards/accuracy_reward": 0.025,
|
| 2023 |
+
"rewards/format_reward": 0.034375,
|
| 2024 |
+
"step": 1550
|
| 2025 |
+
},
|
| 2026 |
+
{
|
| 2027 |
+
"completion_length": 111.459375,
|
| 2028 |
+
"epoch": 1.6634666666666666,
|
| 2029 |
+
"grad_norm": 0.024860132485628128,
|
| 2030 |
+
"kl": 0.17579345703125,
|
| 2031 |
+
"learning_rate": 0.00014748460777478208,
|
| 2032 |
+
"loss": 0.0751,
|
| 2033 |
+
"reward": 0.13125,
|
| 2034 |
+
"reward_std": 0.20580126941204072,
|
| 2035 |
+
"rewards/accuracy_reward": 0.009375,
|
| 2036 |
+
"rewards/format_reward": 0.121875,
|
| 2037 |
+
"step": 1560
|
| 2038 |
+
},
|
| 2039 |
+
{
|
| 2040 |
+
"completion_length": 91.90625,
|
| 2041 |
+
"epoch": 1.6741333333333333,
|
| 2042 |
+
"grad_norm": 0.07996781170368195,
|
| 2043 |
+
"kl": 0.19302978515625,
|
| 2044 |
+
"learning_rate": 0.00014562177094066812,
|
| 2045 |
+
"loss": 0.1666,
|
| 2046 |
+
"reward": 0.478125,
|
| 2047 |
+
"reward_std": 0.42759600281715393,
|
| 2048 |
+
"rewards/accuracy_reward": 0.021875,
|
| 2049 |
+
"rewards/format_reward": 0.45625,
|
| 2050 |
+
"step": 1570
|
| 2051 |
+
},
|
| 2052 |
+
{
|
| 2053 |
+
"completion_length": 73.571875,
|
| 2054 |
+
"epoch": 1.6848,
|
| 2055 |
+
"grad_norm": 0.07270823419094086,
|
| 2056 |
+
"kl": 0.2430419921875,
|
| 2057 |
+
"learning_rate": 0.0001437596097148615,
|
| 2058 |
+
"loss": 0.1744,
|
| 2059 |
+
"reward": 0.76875,
|
| 2060 |
+
"reward_std": 0.332449671626091,
|
| 2061 |
+
"rewards/accuracy_reward": 0.028125,
|
| 2062 |
+
"rewards/format_reward": 0.740625,
|
| 2063 |
+
"step": 1580
|
| 2064 |
+
},
|
| 2065 |
+
{
|
| 2066 |
+
"completion_length": 64.4875,
|
| 2067 |
+
"epoch": 1.6954666666666667,
|
| 2068 |
+
"grad_norm": 0.1185784786939621,
|
| 2069 |
+
"kl": 0.27333984375,
|
| 2070 |
+
"learning_rate": 0.00014189841144906926,
|
| 2071 |
+
"loss": 0.1684,
|
| 2072 |
+
"reward": 0.80625,
|
| 2073 |
+
"reward_std": 0.28343056291341784,
|
| 2074 |
+
"rewards/accuracy_reward": 0.028125,
|
| 2075 |
+
"rewards/format_reward": 0.778125,
|
| 2076 |
+
"step": 1590
|
| 2077 |
+
},
|
| 2078 |
+
{
|
| 2079 |
+
"completion_length": 59.8375,
|
| 2080 |
+
"epoch": 1.7061333333333333,
|
| 2081 |
+
"grad_norm": 0.30180656909942627,
|
| 2082 |
+
"kl": 0.5548828125,
|
| 2083 |
+
"learning_rate": 0.00014003846334640323,
|
| 2084 |
+
"loss": 0.2054,
|
| 2085 |
+
"reward": 0.740625,
|
| 2086 |
+
"reward_std": 0.29256718456745145,
|
| 2087 |
+
"rewards/accuracy_reward": 0.0125,
|
| 2088 |
+
"rewards/format_reward": 0.728125,
|
| 2089 |
+
"step": 1600
|
| 2090 |
+
},
|
| 2091 |
+
{
|
| 2092 |
+
"completion_length": 59.284375,
|
| 2093 |
+
"epoch": 1.7168,
|
| 2094 |
+
"grad_norm": 0.26433998346328735,
|
| 2095 |
+
"kl": 2.827392578125,
|
| 2096 |
+
"learning_rate": 0.00013818005241706145,
|
| 2097 |
+
"loss": 0.469,
|
| 2098 |
+
"reward": 0.70625,
|
| 2099 |
+
"reward_std": 0.33853629529476165,
|
| 2100 |
+
"rewards/accuracy_reward": 0.00625,
|
| 2101 |
+
"rewards/format_reward": 0.7,
|
| 2102 |
+
"step": 1610
|
| 2103 |
+
},
|
| 2104 |
+
{
|
| 2105 |
+
"completion_length": 53.78125,
|
| 2106 |
+
"epoch": 1.7274666666666667,
|
| 2107 |
+
"grad_norm": 0.2971569299697876,
|
| 2108 |
+
"kl": 3.8951171875,
|
| 2109 |
+
"learning_rate": 0.00013632346543403947,
|
| 2110 |
+
"loss": 0.451,
|
| 2111 |
+
"reward": 0.81875,
|
| 2112 |
+
"reward_std": 0.23273502588272094,
|
| 2113 |
+
"rewards/accuracy_reward": 0.0125,
|
| 2114 |
+
"rewards/format_reward": 0.80625,
|
| 2115 |
+
"step": 1620
|
| 2116 |
+
},
|
| 2117 |
+
{
|
| 2118 |
+
"completion_length": 53.903125,
|
| 2119 |
+
"epoch": 1.7381333333333333,
|
| 2120 |
+
"grad_norm": 0.0691404640674591,
|
| 2121 |
+
"kl": 1.3744140625,
|
| 2122 |
+
"learning_rate": 0.00013446898888887804,
|
| 2123 |
+
"loss": 0.1657,
|
| 2124 |
+
"reward": 0.93125,
|
| 2125 |
+
"reward_std": 0.13943375647068024,
|
| 2126 |
+
"rewards/accuracy_reward": 0.015625,
|
| 2127 |
+
"rewards/format_reward": 0.915625,
|
| 2128 |
+
"step": 1630
|
| 2129 |
+
},
|
| 2130 |
+
{
|
| 2131 |
+
"completion_length": 57.153125,
|
| 2132 |
+
"epoch": 1.7488000000000001,
|
| 2133 |
+
"grad_norm": 0.03758076950907707,
|
| 2134 |
+
"kl": 0.640966796875,
|
| 2135 |
+
"learning_rate": 0.00013261690894745442,
|
| 2136 |
+
"loss": 0.0775,
|
| 2137 |
+
"reward": 0.884375,
|
| 2138 |
+
"reward_std": 0.07596687823534012,
|
| 2139 |
+
"rewards/accuracy_reward": 0.0125,
|
| 2140 |
+
"rewards/format_reward": 0.871875,
|
| 2141 |
+
"step": 1640
|
| 2142 |
+
},
|
| 2143 |
+
{
|
| 2144 |
+
"completion_length": 58.0125,
|
| 2145 |
+
"epoch": 1.7594666666666665,
|
| 2146 |
+
"grad_norm": 0.009222053922712803,
|
| 2147 |
+
"kl": 1.1447265625,
|
| 2148 |
+
"learning_rate": 0.00013076751140582394,
|
| 2149 |
+
"loss": 0.1472,
|
| 2150 |
+
"reward": 0.88125,
|
| 2151 |
+
"reward_std": 0.14963996410369873,
|
| 2152 |
+
"rewards/accuracy_reward": 0.05,
|
| 2153 |
+
"rewards/format_reward": 0.83125,
|
| 2154 |
+
"step": 1650
|
| 2155 |
+
},
|
| 2156 |
+
{
|
| 2157 |
+
"completion_length": 55.746875,
|
| 2158 |
+
"epoch": 1.7701333333333333,
|
| 2159 |
+
"grad_norm": 0.029693789780139923,
|
| 2160 |
+
"kl": 1.351123046875,
|
| 2161 |
+
"learning_rate": 0.00012892108164611857,
|
| 2162 |
+
"loss": 0.161,
|
| 2163 |
+
"reward": 0.890625,
|
| 2164 |
+
"reward_std": 0.14867308586835862,
|
| 2165 |
+
"rewards/accuracy_reward": 0.021875,
|
| 2166 |
+
"rewards/format_reward": 0.86875,
|
| 2167 |
+
"step": 1660
|
| 2168 |
+
},
|
| 2169 |
+
{
|
| 2170 |
+
"completion_length": 53.184375,
|
| 2171 |
+
"epoch": 1.7808000000000002,
|
| 2172 |
+
"grad_norm": 0.23443636298179626,
|
| 2173 |
+
"kl": 1.46533203125,
|
| 2174 |
+
"learning_rate": 0.00012707790459250904,
|
| 2175 |
+
"loss": 0.1583,
|
| 2176 |
+
"reward": 0.9625,
|
| 2177 |
+
"reward_std": 0.14665063470602036,
|
| 2178 |
+
"rewards/accuracy_reward": 0.034375,
|
| 2179 |
+
"rewards/format_reward": 0.928125,
|
| 2180 |
+
"step": 1670
|
| 2181 |
+
},
|
| 2182 |
+
{
|
| 2183 |
+
"completion_length": 52.959375,
|
| 2184 |
+
"epoch": 1.7914666666666665,
|
| 2185 |
+
"grad_norm": 0.010363437235355377,
|
| 2186 |
+
"kl": 1.73623046875,
|
| 2187 |
+
"learning_rate": 0.0001252382646672384,
|
| 2188 |
+
"loss": 0.1757,
|
| 2189 |
+
"reward": 0.921875,
|
| 2190 |
+
"reward_std": 0.16504059880971908,
|
| 2191 |
+
"rewards/accuracy_reward": 0.021875,
|
| 2192 |
+
"rewards/format_reward": 0.9,
|
| 2193 |
+
"step": 1680
|
| 2194 |
+
},
|
| 2195 |
+
{
|
| 2196 |
+
"completion_length": 55.971875,
|
| 2197 |
+
"epoch": 1.8021333333333334,
|
| 2198 |
+
"grad_norm": 0.0745161771774292,
|
| 2199 |
+
"kl": 1.418701171875,
|
| 2200 |
+
"learning_rate": 0.00012340244574673238,
|
| 2201 |
+
"loss": 0.1882,
|
| 2202 |
+
"reward": 0.91875,
|
| 2203 |
+
"reward_std": 0.1851816728711128,
|
| 2204 |
+
"rewards/accuracy_reward": 0.046875,
|
| 2205 |
+
"rewards/format_reward": 0.871875,
|
| 2206 |
+
"step": 1690
|
| 2207 |
+
},
|
| 2208 |
+
{
|
| 2209 |
+
"completion_length": 57.903125,
|
| 2210 |
+
"epoch": 1.8128,
|
| 2211 |
+
"grad_norm": 0.09005508571863174,
|
| 2212 |
+
"kl": 1.6597900390625,
|
| 2213 |
+
"learning_rate": 0.000121570731117794,
|
| 2214 |
+
"loss": 0.1998,
|
| 2215 |
+
"reward": 0.8875,
|
| 2216 |
+
"reward_std": 0.1477808892726898,
|
| 2217 |
+
"rewards/accuracy_reward": 0.01875,
|
| 2218 |
+
"rewards/format_reward": 0.86875,
|
| 2219 |
+
"step": 1700
|
| 2220 |
+
},
|
| 2221 |
+
{
|
| 2222 |
+
"completion_length": 58.240625,
|
| 2223 |
+
"epoch": 1.8234666666666666,
|
| 2224 |
+
"grad_norm": 0.09877178072929382,
|
| 2225 |
+
"kl": 1.344873046875,
|
| 2226 |
+
"learning_rate": 0.00011974340343388972,
|
| 2227 |
+
"loss": 0.163,
|
| 2228 |
+
"reward": 0.921875,
|
| 2229 |
+
"reward_std": 0.18511751294136047,
|
| 2230 |
+
"rewards/accuracy_reward": 0.034375,
|
| 2231 |
+
"rewards/format_reward": 0.8875,
|
| 2232 |
+
"step": 1710
|
| 2233 |
+
},
|
| 2234 |
+
{
|
| 2235 |
+
"completion_length": 66.65,
|
| 2236 |
+
"epoch": 1.8341333333333334,
|
| 2237 |
+
"grad_norm": 0.09796544909477234,
|
| 2238 |
+
"kl": 2.161865234375,
|
| 2239 |
+
"learning_rate": 0.00011792074467153248,
|
| 2240 |
+
"loss": 0.2649,
|
| 2241 |
+
"reward": 0.81875,
|
| 2242 |
+
"reward_std": 0.20843056291341783,
|
| 2243 |
+
"rewards/accuracy_reward": 0.034375,
|
| 2244 |
+
"rewards/format_reward": 0.784375,
|
| 2245 |
+
"step": 1720
|
| 2246 |
+
},
|
| 2247 |
+
{
|
| 2248 |
+
"completion_length": 65.9,
|
| 2249 |
+
"epoch": 1.8448,
|
| 2250 |
+
"grad_norm": 0.12498176097869873,
|
| 2251 |
+
"kl": 2.451318359375,
|
| 2252 |
+
"learning_rate": 0.00011610303608677008,
|
| 2253 |
+
"loss": 0.3047,
|
| 2254 |
+
"reward": 0.809375,
|
| 2255 |
+
"reward_std": 0.268188039958477,
|
| 2256 |
+
"rewards/accuracy_reward": 0.040625,
|
| 2257 |
+
"rewards/format_reward": 0.76875,
|
| 2258 |
+
"step": 1730
|
| 2259 |
+
},
|
| 2260 |
+
{
|
| 2261 |
+
"completion_length": 61.346875,
|
| 2262 |
+
"epoch": 1.8554666666666666,
|
| 2263 |
+
"grad_norm": 0.40386486053466797,
|
| 2264 |
+
"kl": 3.258935546875,
|
| 2265 |
+
"learning_rate": 0.00011429055817178411,
|
| 2266 |
+
"loss": 0.3857,
|
| 2267 |
+
"reward": 0.846875,
|
| 2268 |
+
"reward_std": 0.28369315564632414,
|
| 2269 |
+
"rewards/accuracy_reward": 0.028125,
|
| 2270 |
+
"rewards/format_reward": 0.81875,
|
| 2271 |
+
"step": 1740
|
| 2272 |
+
},
|
| 2273 |
+
{
|
| 2274 |
+
"completion_length": 58.859375,
|
| 2275 |
+
"epoch": 1.8661333333333334,
|
| 2276 |
+
"grad_norm": 0.12184485048055649,
|
| 2277 |
+
"kl": 3.230029296875,
|
| 2278 |
+
"learning_rate": 0.00011248359061160698,
|
| 2279 |
+
"loss": 0.3751,
|
| 2280 |
+
"reward": 0.86875,
|
| 2281 |
+
"reward_std": 0.2617799282073975,
|
| 2282 |
+
"rewards/accuracy_reward": 0.03125,
|
| 2283 |
+
"rewards/format_reward": 0.8375,
|
| 2284 |
+
"step": 1750
|
| 2285 |
+
},
|
| 2286 |
+
{
|
| 2287 |
+
"completion_length": 57.69375,
|
| 2288 |
+
"epoch": 1.8768,
|
| 2289 |
+
"grad_norm": 0.1783817708492279,
|
| 2290 |
+
"kl": 2.4540283203125,
|
| 2291 |
+
"learning_rate": 0.00011068241224096347,
|
| 2292 |
+
"loss": 0.2785,
|
| 2293 |
+
"reward": 0.875,
|
| 2294 |
+
"reward_std": 0.20430223047733306,
|
| 2295 |
+
"rewards/accuracy_reward": 0.01875,
|
| 2296 |
+
"rewards/format_reward": 0.85625,
|
| 2297 |
+
"step": 1760
|
| 2298 |
+
},
|
| 2299 |
+
{
|
| 2300 |
+
"completion_length": 64.459375,
|
| 2301 |
+
"epoch": 1.8874666666666666,
|
| 2302 |
+
"grad_norm": 0.038270145654678345,
|
| 2303 |
+
"kl": 2.579345703125,
|
| 2304 |
+
"learning_rate": 0.00010888730100124353,
|
| 2305 |
+
"loss": 0.2952,
|
| 2306 |
+
"reward": 0.815625,
|
| 2307 |
+
"reward_std": 0.24689744114875795,
|
| 2308 |
+
"rewards/accuracy_reward": 0.025,
|
| 2309 |
+
"rewards/format_reward": 0.790625,
|
| 2310 |
+
"step": 1770
|
| 2311 |
+
},
|
| 2312 |
+
{
|
| 2313 |
+
"completion_length": 61.403125,
|
| 2314 |
+
"epoch": 1.8981333333333335,
|
| 2315 |
+
"grad_norm": 0.07670488953590393,
|
| 2316 |
+
"kl": 2.2768310546875,
|
| 2317 |
+
"learning_rate": 0.00010709853389761286,
|
| 2318 |
+
"loss": 0.3084,
|
| 2319 |
+
"reward": 0.884375,
|
| 2320 |
+
"reward_std": 0.23545301407575608,
|
| 2321 |
+
"rewards/accuracy_reward": 0.0375,
|
| 2322 |
+
"rewards/format_reward": 0.846875,
|
| 2323 |
+
"step": 1780
|
| 2324 |
+
},
|
| 2325 |
+
{
|
| 2326 |
+
"completion_length": 62.98125,
|
| 2327 |
+
"epoch": 1.9088,
|
| 2328 |
+
"grad_norm": 0.21110066771507263,
|
| 2329 |
+
"kl": 3.0247314453125,
|
| 2330 |
+
"learning_rate": 0.00010531638695626811,
|
| 2331 |
+
"loss": 0.3866,
|
| 2332 |
+
"reward": 0.8,
|
| 2333 |
+
"reward_std": 0.2520918682217598,
|
| 2334 |
+
"rewards/accuracy_reward": 0.03125,
|
| 2335 |
+
"rewards/format_reward": 0.76875,
|
| 2336 |
+
"step": 1790
|
| 2337 |
+
},
|
| 2338 |
+
{
|
| 2339 |
+
"completion_length": 64.06875,
|
| 2340 |
+
"epoch": 1.9194666666666667,
|
| 2341 |
+
"grad_norm": 0.19934044778347015,
|
| 2342 |
+
"kl": 4.1655029296875,
|
| 2343 |
+
"learning_rate": 0.00010354113518184303,
|
| 2344 |
+
"loss": 0.4661,
|
| 2345 |
+
"reward": 0.784375,
|
| 2346 |
+
"reward_std": 0.2908942475914955,
|
| 2347 |
+
"rewards/accuracy_reward": 0.028125,
|
| 2348 |
+
"rewards/format_reward": 0.75625,
|
| 2349 |
+
"step": 1800
|
| 2350 |
+
},
|
| 2351 |
+
{
|
| 2352 |
+
"completion_length": 57.765625,
|
| 2353 |
+
"epoch": 1.9301333333333335,
|
| 2354 |
+
"grad_norm": 0.07659115642309189,
|
| 2355 |
+
"kl": 1.541015625,
|
| 2356 |
+
"learning_rate": 0.000101773052514972,
|
| 2357 |
+
"loss": 0.1994,
|
| 2358 |
+
"reward": 0.865625,
|
| 2359 |
+
"reward_std": 0.17630237936973572,
|
| 2360 |
+
"rewards/accuracy_reward": 0.025,
|
| 2361 |
+
"rewards/format_reward": 0.840625,
|
| 2362 |
+
"step": 1810
|
| 2363 |
+
},
|
| 2364 |
+
{
|
| 2365 |
+
"completion_length": 58.328125,
|
| 2366 |
+
"epoch": 1.9407999999999999,
|
| 2367 |
+
"grad_norm": 0.053584493696689606,
|
| 2368 |
+
"kl": 1.616796875,
|
| 2369 |
+
"learning_rate": 0.00010001241179001836,
|
| 2370 |
+
"loss": 0.2072,
|
| 2371 |
+
"reward": 0.88125,
|
| 2372 |
+
"reward_std": 0.15386751294136047,
|
| 2373 |
+
"rewards/accuracy_reward": 0.0125,
|
| 2374 |
+
"rewards/format_reward": 0.86875,
|
| 2375 |
+
"step": 1820
|
| 2376 |
+
},
|
| 2377 |
+
{
|
| 2378 |
+
"completion_length": 59.36875,
|
| 2379 |
+
"epoch": 1.9514666666666667,
|
| 2380 |
+
"grad_norm": 0.06573835760354996,
|
| 2381 |
+
"kl": 1.567236328125,
|
| 2382 |
+
"learning_rate": 9.825948469297301e-05,
|
| 2383 |
+
"loss": 0.2048,
|
| 2384 |
+
"reward": 0.921875,
|
| 2385 |
+
"reward_std": 0.19004059880971907,
|
| 2386 |
+
"rewards/accuracy_reward": 0.053125,
|
| 2387 |
+
"rewards/format_reward": 0.86875,
|
| 2388 |
+
"step": 1830
|
| 2389 |
+
},
|
| 2390 |
+
{
|
| 2391 |
+
"completion_length": 55.890625,
|
| 2392 |
+
"epoch": 1.9621333333333333,
|
| 2393 |
+
"grad_norm": 0.18969739973545074,
|
| 2394 |
+
"kl": 1.7246337890625,
|
| 2395 |
+
"learning_rate": 9.651454171953012e-05,
|
| 2396 |
+
"loss": 0.2224,
|
| 2397 |
+
"reward": 0.946875,
|
| 2398 |
+
"reward_std": 0.1664562076330185,
|
| 2399 |
+
"rewards/accuracy_reward": 0.040625,
|
| 2400 |
+
"rewards/format_reward": 0.90625,
|
| 2401 |
+
"step": 1840
|
| 2402 |
+
},
|
| 2403 |
+
{
|
| 2404 |
+
"completion_length": 60.59375,
|
| 2405 |
+
"epoch": 1.9727999999999999,
|
| 2406 |
+
"grad_norm": 0.04010459780693054,
|
| 2407 |
+
"kl": 2.70771484375,
|
| 2408 |
+
"learning_rate": 9.477785213334706e-05,
|
| 2409 |
+
"loss": 0.3228,
|
| 2410 |
+
"reward": 0.834375,
|
| 2411 |
+
"reward_std": 0.22910557091236114,
|
| 2412 |
+
"rewards/accuracy_reward": 0.025,
|
| 2413 |
+
"rewards/format_reward": 0.809375,
|
| 2414 |
+
"step": 1850
|
| 2415 |
+
},
|
| 2416 |
+
{
|
| 2417 |
+
"completion_length": 63.846875,
|
| 2418 |
+
"epoch": 1.9834666666666667,
|
| 2419 |
+
"grad_norm": 0.2044885903596878,
|
| 2420 |
+
"kl": 3.81484375,
|
| 2421 |
+
"learning_rate": 9.30496839244936e-05,
|
| 2422 |
+
"loss": 0.4808,
|
| 2423 |
+
"reward": 0.753125,
|
| 2424 |
+
"reward_std": 0.307637582719326,
|
| 2425 |
+
"rewards/accuracy_reward": 0.028125,
|
| 2426 |
+
"rewards/format_reward": 0.725,
|
| 2427 |
+
"step": 1860
|
| 2428 |
+
},
|
| 2429 |
+
{
|
| 2430 |
+
"completion_length": 63.05,
|
| 2431 |
+
"epoch": 1.9941333333333333,
|
| 2432 |
+
"grad_norm": 0.32608747482299805,
|
| 2433 |
+
"kl": 2.995166015625,
|
| 2434 |
+
"learning_rate": 9.133030376809867e-05,
|
| 2435 |
+
"loss": 0.4066,
|
| 2436 |
+
"reward": 0.734375,
|
| 2437 |
+
"reward_std": 0.31027562469244,
|
| 2438 |
+
"rewards/accuracy_reward": 0.009375,
|
| 2439 |
+
"rewards/format_reward": 0.725,
|
| 2440 |
+
"step": 1870
|
| 2441 |
+
}
|
| 2442 |
+
],
|
| 2443 |
+
"logging_steps": 10,
|
| 2444 |
+
"max_steps": 2811,
|
| 2445 |
+
"num_input_tokens_seen": 0,
|
| 2446 |
+
"num_train_epochs": 3,
|
| 2447 |
+
"save_steps": 500,
|
| 2448 |
+
"stateful_callbacks": {
|
| 2449 |
+
"TrainerControl": {
|
| 2450 |
+
"args": {
|
| 2451 |
+
"should_epoch_stop": false,
|
| 2452 |
+
"should_evaluate": false,
|
| 2453 |
+
"should_log": false,
|
| 2454 |
+
"should_save": true,
|
| 2455 |
+
"should_training_stop": false
|
| 2456 |
+
},
|
| 2457 |
+
"attributes": {}
|
| 2458 |
+
}
|
| 2459 |
+
},
|
| 2460 |
+
"total_flos": 0.0,
|
| 2461 |
+
"train_batch_size": 8,
|
| 2462 |
+
"trial_name": null,
|
| 2463 |
+
"trial_params": null
|
| 2464 |
+
}
|
checkpoint-1876/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7e596a9f480193cbd2a4bf4d6fda1f9ed131e1dbe00394449bfdaab1880a0f79
|
| 3 |
+
size 7544
|
checkpoint-1876/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-1876/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import json
|
| 25 |
+
from tqdm import tqdm
|
| 26 |
+
from collections import OrderedDict
|
| 27 |
+
from dataclasses import dataclass
|
| 28 |
+
|
| 29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 31 |
+
from deepspeed.utils import logger
|
| 32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
@dataclass
|
| 38 |
+
class zero_model_state:
|
| 39 |
+
buffers: dict()
|
| 40 |
+
param_shapes: dict()
|
| 41 |
+
shared_params: list
|
| 42 |
+
ds_version: int
|
| 43 |
+
frozen_param_shapes: dict()
|
| 44 |
+
frozen_param_fragments: dict()
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
debug = 0
|
| 48 |
+
|
| 49 |
+
# load to cpu
|
| 50 |
+
device = torch.device('cpu')
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def atoi(text):
|
| 54 |
+
return int(text) if text.isdigit() else text
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def natural_keys(text):
|
| 58 |
+
'''
|
| 59 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 61 |
+
(See Toothy's implementation in the comments)
|
| 62 |
+
'''
|
| 63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 67 |
+
if not os.path.isdir(checkpoint_dir):
|
| 68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 69 |
+
|
| 70 |
+
# there should be only one file
|
| 71 |
+
if zero_stage <= 2:
|
| 72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 73 |
+
elif zero_stage == 3:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 75 |
+
|
| 76 |
+
if not os.path.exists(file):
|
| 77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 78 |
+
|
| 79 |
+
return file
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 85 |
+
|
| 86 |
+
if len(ckpt_files) == 0:
|
| 87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 88 |
+
|
| 89 |
+
return ckpt_files
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def get_optim_files(checkpoint_dir):
|
| 93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def get_model_state_files(checkpoint_dir):
|
| 97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def parse_model_states(files):
|
| 101 |
+
zero_model_states = []
|
| 102 |
+
for file in files:
|
| 103 |
+
state_dict = torch.load(file, map_location=device)
|
| 104 |
+
|
| 105 |
+
if BUFFER_NAMES not in state_dict:
|
| 106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 108 |
+
if debug:
|
| 109 |
+
print("Found buffers:", buffer_names)
|
| 110 |
+
|
| 111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 114 |
+
|
| 115 |
+
# collect parameters that are included in param_shapes
|
| 116 |
+
param_names = []
|
| 117 |
+
for s in param_shapes:
|
| 118 |
+
for name in s.keys():
|
| 119 |
+
param_names.append(name)
|
| 120 |
+
|
| 121 |
+
# update with frozen parameters
|
| 122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 123 |
+
if frozen_param_shapes is not None:
|
| 124 |
+
if debug:
|
| 125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 126 |
+
param_names += list(frozen_param_shapes.keys())
|
| 127 |
+
|
| 128 |
+
# handle shared params
|
| 129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 130 |
+
|
| 131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 132 |
+
|
| 133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 134 |
+
|
| 135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 136 |
+
param_shapes=param_shapes,
|
| 137 |
+
shared_params=shared_params,
|
| 138 |
+
ds_version=ds_version,
|
| 139 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 140 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 141 |
+
zero_model_states.append(z_model_state)
|
| 142 |
+
|
| 143 |
+
return zero_model_states
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 147 |
+
total_files = len(files)
|
| 148 |
+
state_dicts = []
|
| 149 |
+
for f in files:
|
| 150 |
+
state_dict = torch.load(f, map_location=device)
|
| 151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 152 |
+
# and also handle the case where it was already removed by another helper script
|
| 153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 154 |
+
state_dicts.append(state_dict)
|
| 155 |
+
|
| 156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 160 |
+
|
| 161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 163 |
+
# use the max of the partition_count to get the dp world_size.
|
| 164 |
+
|
| 165 |
+
if type(world_size) is list:
|
| 166 |
+
world_size = max(world_size)
|
| 167 |
+
|
| 168 |
+
if world_size != total_files:
|
| 169 |
+
raise ValueError(
|
| 170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
# the groups are named differently in each stage
|
| 175 |
+
if zero_stage <= 2:
|
| 176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 177 |
+
elif zero_stage == 3:
|
| 178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 179 |
+
else:
|
| 180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 181 |
+
|
| 182 |
+
if zero_stage <= 2:
|
| 183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 184 |
+
elif zero_stage == 3:
|
| 185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 187 |
+
#
|
| 188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 190 |
+
|
| 191 |
+
fp32_flat_groups = [
|
| 192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 193 |
+
]
|
| 194 |
+
|
| 195 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 199 |
+
"""
|
| 200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 201 |
+
|
| 202 |
+
Args:
|
| 203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 204 |
+
|
| 205 |
+
"""
|
| 206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 207 |
+
|
| 208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 211 |
+
|
| 212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 213 |
+
|
| 214 |
+
zero_model_states = parse_model_states(model_files)
|
| 215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 216 |
+
|
| 217 |
+
if zero_stage <= 2:
|
| 218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 219 |
+
exclude_frozen_parameters)
|
| 220 |
+
elif zero_stage == 3:
|
| 221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 222 |
+
exclude_frozen_parameters)
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 227 |
+
return
|
| 228 |
+
|
| 229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 231 |
+
|
| 232 |
+
if debug:
|
| 233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 235 |
+
|
| 236 |
+
wanted_params = len(frozen_param_shapes)
|
| 237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 241 |
+
|
| 242 |
+
total_params = 0
|
| 243 |
+
total_numel = 0
|
| 244 |
+
for name, shape in frozen_param_shapes.items():
|
| 245 |
+
total_params += 1
|
| 246 |
+
unpartitioned_numel = shape.numel()
|
| 247 |
+
total_numel += unpartitioned_numel
|
| 248 |
+
|
| 249 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 250 |
+
|
| 251 |
+
if debug:
|
| 252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 253 |
+
|
| 254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def _has_callable(obj, fn):
|
| 258 |
+
attr = getattr(obj, fn, None)
|
| 259 |
+
return callable(attr)
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 263 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 264 |
+
|
| 265 |
+
# Reconstruction protocol:
|
| 266 |
+
#
|
| 267 |
+
# XXX: document this
|
| 268 |
+
|
| 269 |
+
if debug:
|
| 270 |
+
for i in range(world_size):
|
| 271 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 273 |
+
|
| 274 |
+
# XXX: memory usage doubles here (zero2)
|
| 275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 276 |
+
merged_single_partition_of_fp32_groups = []
|
| 277 |
+
for i in range(num_param_groups):
|
| 278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 281 |
+
avail_numel = sum(
|
| 282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 283 |
+
|
| 284 |
+
if debug:
|
| 285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 287 |
+
# not asserting if there is a mismatch due to possible padding
|
| 288 |
+
print(f"Have {avail_numel} numels to process.")
|
| 289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 290 |
+
|
| 291 |
+
# params
|
| 292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 293 |
+
# out-of-core computing solution
|
| 294 |
+
total_numel = 0
|
| 295 |
+
total_params = 0
|
| 296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 297 |
+
offset = 0
|
| 298 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 299 |
+
for name, shape in shapes.items():
|
| 300 |
+
|
| 301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 302 |
+
total_numel += unpartitioned_numel
|
| 303 |
+
total_params += 1
|
| 304 |
+
|
| 305 |
+
if debug:
|
| 306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 308 |
+
offset += unpartitioned_numel
|
| 309 |
+
|
| 310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 314 |
+
align_to = 2 * world_size
|
| 315 |
+
|
| 316 |
+
def zero2_align(x):
|
| 317 |
+
return align_to * math.ceil(x / align_to)
|
| 318 |
+
|
| 319 |
+
if debug:
|
| 320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 321 |
+
|
| 322 |
+
offset = zero2_align(offset)
|
| 323 |
+
avail_numel = zero2_align(avail_numel)
|
| 324 |
+
|
| 325 |
+
if debug:
|
| 326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 327 |
+
|
| 328 |
+
# Sanity check
|
| 329 |
+
if offset != avail_numel:
|
| 330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 331 |
+
|
| 332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 336 |
+
exclude_frozen_parameters):
|
| 337 |
+
state_dict = OrderedDict()
|
| 338 |
+
|
| 339 |
+
# buffers
|
| 340 |
+
buffers = zero_model_states[0].buffers
|
| 341 |
+
state_dict.update(buffers)
|
| 342 |
+
if debug:
|
| 343 |
+
print(f"added {len(buffers)} buffers")
|
| 344 |
+
|
| 345 |
+
if not exclude_frozen_parameters:
|
| 346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 347 |
+
|
| 348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 349 |
+
|
| 350 |
+
# recover shared parameters
|
| 351 |
+
for pair in zero_model_states[0].shared_params:
|
| 352 |
+
if pair[1] in state_dict:
|
| 353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 354 |
+
|
| 355 |
+
return state_dict
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 359 |
+
remainder = unpartitioned_numel % world_size
|
| 360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 362 |
+
return partitioned_numel, padding_numel
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 367 |
+
return
|
| 368 |
+
|
| 369 |
+
if debug:
|
| 370 |
+
for i in range(world_size):
|
| 371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 373 |
+
|
| 374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 375 |
+
wanted_params = len(frozen_param_shapes)
|
| 376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 380 |
+
|
| 381 |
+
total_params = 0
|
| 382 |
+
total_numel = 0
|
| 383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 384 |
+
total_params += 1
|
| 385 |
+
unpartitioned_numel = shape.numel()
|
| 386 |
+
total_numel += unpartitioned_numel
|
| 387 |
+
|
| 388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 390 |
+
|
| 391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 392 |
+
|
| 393 |
+
if debug:
|
| 394 |
+
print(
|
| 395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 402 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 406 |
+
|
| 407 |
+
# merge list of dicts, preserving order
|
| 408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 409 |
+
|
| 410 |
+
if debug:
|
| 411 |
+
for i in range(world_size):
|
| 412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 413 |
+
|
| 414 |
+
wanted_params = len(param_shapes)
|
| 415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 416 |
+
# not asserting if there is a mismatch due to possible padding
|
| 417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 420 |
+
|
| 421 |
+
# params
|
| 422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 423 |
+
# out-of-core computing solution
|
| 424 |
+
offset = 0
|
| 425 |
+
total_numel = 0
|
| 426 |
+
total_params = 0
|
| 427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
| 428 |
+
unpartitioned_numel = shape.numel()
|
| 429 |
+
total_numel += unpartitioned_numel
|
| 430 |
+
total_params += 1
|
| 431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 432 |
+
|
| 433 |
+
if debug:
|
| 434 |
+
print(
|
| 435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
# XXX: memory usage doubles here
|
| 439 |
+
state_dict[name] = torch.cat(
|
| 440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 442 |
+
offset += partitioned_numel
|
| 443 |
+
|
| 444 |
+
offset *= world_size
|
| 445 |
+
|
| 446 |
+
# Sanity check
|
| 447 |
+
if offset != avail_numel:
|
| 448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 449 |
+
|
| 450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 451 |
+
|
| 452 |
+
|
| 453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 454 |
+
exclude_frozen_parameters):
|
| 455 |
+
state_dict = OrderedDict()
|
| 456 |
+
|
| 457 |
+
# buffers
|
| 458 |
+
buffers = zero_model_states[0].buffers
|
| 459 |
+
state_dict.update(buffers)
|
| 460 |
+
if debug:
|
| 461 |
+
print(f"added {len(buffers)} buffers")
|
| 462 |
+
|
| 463 |
+
if not exclude_frozen_parameters:
|
| 464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 465 |
+
|
| 466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 467 |
+
|
| 468 |
+
# recover shared parameters
|
| 469 |
+
for pair in zero_model_states[0].shared_params:
|
| 470 |
+
if pair[1] in state_dict:
|
| 471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 472 |
+
|
| 473 |
+
return state_dict
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
| 477 |
+
"""
|
| 478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 480 |
+
via a model hub.
|
| 481 |
+
|
| 482 |
+
Args:
|
| 483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 486 |
+
|
| 487 |
+
Returns:
|
| 488 |
+
- pytorch ``state_dict``
|
| 489 |
+
|
| 490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 492 |
+
the checkpoint.
|
| 493 |
+
|
| 494 |
+
A typical usage might be ::
|
| 495 |
+
|
| 496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 497 |
+
# do the training and checkpoint saving
|
| 498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 499 |
+
model = model.cpu() # move to cpu
|
| 500 |
+
model.load_state_dict(state_dict)
|
| 501 |
+
# submit to model hub or save the model to share with others
|
| 502 |
+
|
| 503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 506 |
+
|
| 507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 508 |
+
|
| 509 |
+
"""
|
| 510 |
+
if tag is None:
|
| 511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 512 |
+
if os.path.isfile(latest_path):
|
| 513 |
+
with open(latest_path, 'r') as fd:
|
| 514 |
+
tag = fd.read().strip()
|
| 515 |
+
else:
|
| 516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 517 |
+
|
| 518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 519 |
+
|
| 520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 522 |
+
|
| 523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 524 |
+
|
| 525 |
+
|
| 526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 527 |
+
output_dir,
|
| 528 |
+
max_shard_size="5GB",
|
| 529 |
+
safe_serialization=False,
|
| 530 |
+
tag=None,
|
| 531 |
+
exclude_frozen_parameters=False):
|
| 532 |
+
"""
|
| 533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 535 |
+
|
| 536 |
+
Args:
|
| 537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 543 |
+
"""
|
| 544 |
+
# Dependency pre-check
|
| 545 |
+
if safe_serialization:
|
| 546 |
+
try:
|
| 547 |
+
from safetensors.torch import save_file
|
| 548 |
+
except ImportError:
|
| 549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 550 |
+
raise
|
| 551 |
+
if max_shard_size is not None:
|
| 552 |
+
try:
|
| 553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 554 |
+
except ImportError:
|
| 555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 556 |
+
raise
|
| 557 |
+
|
| 558 |
+
# Convert zero checkpoint to state_dict
|
| 559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
| 560 |
+
|
| 561 |
+
# Shard the model if it is too big.
|
| 562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 563 |
+
if max_shard_size is not None:
|
| 564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
| 566 |
+
filename_pattern=filename_pattern,
|
| 567 |
+
max_shard_size=max_shard_size)
|
| 568 |
+
else:
|
| 569 |
+
from collections import namedtuple
|
| 570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 573 |
+
|
| 574 |
+
# Save the model
|
| 575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
| 578 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 579 |
+
if safe_serialization:
|
| 580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
| 581 |
+
else:
|
| 582 |
+
torch.save(shard, output_path)
|
| 583 |
+
|
| 584 |
+
# Save index if sharded
|
| 585 |
+
if state_dict_split.is_sharded:
|
| 586 |
+
index = {
|
| 587 |
+
"metadata": state_dict_split.metadata,
|
| 588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 589 |
+
}
|
| 590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 594 |
+
f.write(content)
|
| 595 |
+
|
| 596 |
+
|
| 597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 598 |
+
"""
|
| 599 |
+
1. Put the provided model to cpu
|
| 600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 601 |
+
3. Load it into the provided model
|
| 602 |
+
|
| 603 |
+
Args:
|
| 604 |
+
- ``model``: the model object to update
|
| 605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 607 |
+
|
| 608 |
+
Returns:
|
| 609 |
+
- ``model`: modified model
|
| 610 |
+
|
| 611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 613 |
+
conveniently placed for you in the checkpoint folder.
|
| 614 |
+
|
| 615 |
+
A typical usage might be ::
|
| 616 |
+
|
| 617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 619 |
+
# submit to model hub or save the model to share with others
|
| 620 |
+
|
| 621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 624 |
+
|
| 625 |
+
"""
|
| 626 |
+
logger.info(f"Extracting fp32 weights")
|
| 627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 628 |
+
|
| 629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 630 |
+
model = model.cpu()
|
| 631 |
+
model.load_state_dict(state_dict, strict=False)
|
| 632 |
+
|
| 633 |
+
return model
|
| 634 |
+
|
| 635 |
+
|
| 636 |
+
if __name__ == "__main__":
|
| 637 |
+
parser = argparse.ArgumentParser()
|
| 638 |
+
parser.add_argument("checkpoint_dir",
|
| 639 |
+
type=str,
|
| 640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 641 |
+
parser.add_argument("output_dir",
|
| 642 |
+
type=str,
|
| 643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 644 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 645 |
+
parser.add_argument(
|
| 646 |
+
"--max_shard_size",
|
| 647 |
+
type=str,
|
| 648 |
+
default="5GB",
|
| 649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 652 |
+
"without CPU OOM issues.")
|
| 653 |
+
parser.add_argument(
|
| 654 |
+
"--safe_serialization",
|
| 655 |
+
default=False,
|
| 656 |
+
action='store_true',
|
| 657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 658 |
+
parser.add_argument("-t",
|
| 659 |
+
"--tag",
|
| 660 |
+
type=str,
|
| 661 |
+
default=None,
|
| 662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 665 |
+
args = parser.parse_args()
|
| 666 |
+
|
| 667 |
+
debug = args.debug
|
| 668 |
+
|
| 669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 670 |
+
args.output_dir,
|
| 671 |
+
max_shard_size=args.max_shard_size,
|
| 672 |
+
safe_serialization=args.safe_serialization,
|
| 673 |
+
tag=args.tag,
|
| 674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
checkpoint-2811/README.md
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: Qwen/Qwen2.5-1.5B
|
| 3 |
+
library_name: peft
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
| 200 |
+
### Framework versions
|
| 201 |
+
|
| 202 |
+
- PEFT 0.14.0
|
checkpoint-2811/adapter_config.json
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "Qwen/Qwen2.5-1.5B",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"eva_config": null,
|
| 7 |
+
"exclude_modules": null,
|
| 8 |
+
"fan_in_fan_out": false,
|
| 9 |
+
"inference_mode": true,
|
| 10 |
+
"init_lora_weights": true,
|
| 11 |
+
"layer_replication": null,
|
| 12 |
+
"layers_pattern": null,
|
| 13 |
+
"layers_to_transform": null,
|
| 14 |
+
"loftq_config": {},
|
| 15 |
+
"lora_alpha": 8,
|
| 16 |
+
"lora_bias": false,
|
| 17 |
+
"lora_dropout": 0.0,
|
| 18 |
+
"megatron_config": null,
|
| 19 |
+
"megatron_core": "megatron.core",
|
| 20 |
+
"modules_to_save": null,
|
| 21 |
+
"peft_type": "LORA",
|
| 22 |
+
"r": 32,
|
| 23 |
+
"rank_pattern": {},
|
| 24 |
+
"revision": null,
|
| 25 |
+
"target_modules": [
|
| 26 |
+
"q_proj",
|
| 27 |
+
"v_proj",
|
| 28 |
+
"embed_tokens",
|
| 29 |
+
"k_proj"
|
| 30 |
+
],
|
| 31 |
+
"task_type": "CAUSAL_LM",
|
| 32 |
+
"use_dora": false,
|
| 33 |
+
"use_rslora": false
|
| 34 |
+
}
|
checkpoint-2811/adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d0e2d12773cde23612f66f956756bfff79b5088a590085701d068e152e8b9f0d
|
| 3 |
+
size 488520640
|
checkpoint-2811/added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
checkpoint-2811/global_step2810/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6dd7034c580e6acd4b359e2cea8d943b8921122f1d8c1cc9cb50dc1a4196b681
|
| 3 |
+
size 130520624
|
checkpoint-2811/global_step2810/mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ded2b4ee29d3c0bb6b96ec7a9d4e62d8b04f5fdea19018fb908b35ad044528d1
|
| 3 |
+
size 488645432
|
checkpoint-2811/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step2810
|
checkpoint-2811/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-2811/rng_state.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b6647a496131c714e6f25c6ed38080948283f93dbdaa708df34a03fc09a51826
|
| 3 |
+
size 14244
|
checkpoint-2811/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5a702cef1bbbaf4b23cf4944bfd88935ecce43dafe80ceae33d9d07e5c46a0fa
|
| 3 |
+
size 1064
|
checkpoint-2811/special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|endoftext|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
checkpoint-2811/tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5eee858c5123a4279c3e1f7b81247343f356ac767940b2692a928ad929543214
|
| 3 |
+
size 11422063
|
checkpoint-2811/tokenizer_config.json
ADDED
|
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
}
|
| 181 |
+
},
|
| 182 |
+
"additional_special_tokens": [
|
| 183 |
+
"<|im_start|>",
|
| 184 |
+
"<|im_end|>",
|
| 185 |
+
"<|object_ref_start|>",
|
| 186 |
+
"<|object_ref_end|>",
|
| 187 |
+
"<|box_start|>",
|
| 188 |
+
"<|box_end|>",
|
| 189 |
+
"<|quad_start|>",
|
| 190 |
+
"<|quad_end|>",
|
| 191 |
+
"<|vision_start|>",
|
| 192 |
+
"<|vision_end|>",
|
| 193 |
+
"<|vision_pad|>",
|
| 194 |
+
"<|image_pad|>",
|
| 195 |
+
"<|video_pad|>"
|
| 196 |
+
],
|
| 197 |
+
"bos_token": null,
|
| 198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
| 199 |
+
"clean_up_tokenization_spaces": false,
|
| 200 |
+
"eos_token": "<|endoftext|>",
|
| 201 |
+
"errors": "replace",
|
| 202 |
+
"extra_special_tokens": {},
|
| 203 |
+
"model_max_length": 131072,
|
| 204 |
+
"pad_token": "<|endoftext|>",
|
| 205 |
+
"padding_side": "left",
|
| 206 |
+
"split_special_tokens": false,
|
| 207 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 208 |
+
"unk_token": null
|
| 209 |
+
}
|
checkpoint-2811/trainer_state.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-2811/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7e596a9f480193cbd2a4bf4d6fda1f9ed131e1dbe00394449bfdaab1880a0f79
|
| 3 |
+
size 7544
|
checkpoint-2811/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-2811/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import json
|
| 25 |
+
from tqdm import tqdm
|
| 26 |
+
from collections import OrderedDict
|
| 27 |
+
from dataclasses import dataclass
|
| 28 |
+
|
| 29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 31 |
+
from deepspeed.utils import logger
|
| 32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
@dataclass
|
| 38 |
+
class zero_model_state:
|
| 39 |
+
buffers: dict()
|
| 40 |
+
param_shapes: dict()
|
| 41 |
+
shared_params: list
|
| 42 |
+
ds_version: int
|
| 43 |
+
frozen_param_shapes: dict()
|
| 44 |
+
frozen_param_fragments: dict()
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
debug = 0
|
| 48 |
+
|
| 49 |
+
# load to cpu
|
| 50 |
+
device = torch.device('cpu')
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def atoi(text):
|
| 54 |
+
return int(text) if text.isdigit() else text
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def natural_keys(text):
|
| 58 |
+
'''
|
| 59 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 61 |
+
(See Toothy's implementation in the comments)
|
| 62 |
+
'''
|
| 63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 67 |
+
if not os.path.isdir(checkpoint_dir):
|
| 68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 69 |
+
|
| 70 |
+
# there should be only one file
|
| 71 |
+
if zero_stage <= 2:
|
| 72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 73 |
+
elif zero_stage == 3:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 75 |
+
|
| 76 |
+
if not os.path.exists(file):
|
| 77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 78 |
+
|
| 79 |
+
return file
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 85 |
+
|
| 86 |
+
if len(ckpt_files) == 0:
|
| 87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 88 |
+
|
| 89 |
+
return ckpt_files
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def get_optim_files(checkpoint_dir):
|
| 93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def get_model_state_files(checkpoint_dir):
|
| 97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def parse_model_states(files):
|
| 101 |
+
zero_model_states = []
|
| 102 |
+
for file in files:
|
| 103 |
+
state_dict = torch.load(file, map_location=device)
|
| 104 |
+
|
| 105 |
+
if BUFFER_NAMES not in state_dict:
|
| 106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 108 |
+
if debug:
|
| 109 |
+
print("Found buffers:", buffer_names)
|
| 110 |
+
|
| 111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 114 |
+
|
| 115 |
+
# collect parameters that are included in param_shapes
|
| 116 |
+
param_names = []
|
| 117 |
+
for s in param_shapes:
|
| 118 |
+
for name in s.keys():
|
| 119 |
+
param_names.append(name)
|
| 120 |
+
|
| 121 |
+
# update with frozen parameters
|
| 122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 123 |
+
if frozen_param_shapes is not None:
|
| 124 |
+
if debug:
|
| 125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 126 |
+
param_names += list(frozen_param_shapes.keys())
|
| 127 |
+
|
| 128 |
+
# handle shared params
|
| 129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 130 |
+
|
| 131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 132 |
+
|
| 133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 134 |
+
|
| 135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 136 |
+
param_shapes=param_shapes,
|
| 137 |
+
shared_params=shared_params,
|
| 138 |
+
ds_version=ds_version,
|
| 139 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 140 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 141 |
+
zero_model_states.append(z_model_state)
|
| 142 |
+
|
| 143 |
+
return zero_model_states
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 147 |
+
total_files = len(files)
|
| 148 |
+
state_dicts = []
|
| 149 |
+
for f in files:
|
| 150 |
+
state_dict = torch.load(f, map_location=device)
|
| 151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 152 |
+
# and also handle the case where it was already removed by another helper script
|
| 153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 154 |
+
state_dicts.append(state_dict)
|
| 155 |
+
|
| 156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 160 |
+
|
| 161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 163 |
+
# use the max of the partition_count to get the dp world_size.
|
| 164 |
+
|
| 165 |
+
if type(world_size) is list:
|
| 166 |
+
world_size = max(world_size)
|
| 167 |
+
|
| 168 |
+
if world_size != total_files:
|
| 169 |
+
raise ValueError(
|
| 170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
# the groups are named differently in each stage
|
| 175 |
+
if zero_stage <= 2:
|
| 176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 177 |
+
elif zero_stage == 3:
|
| 178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 179 |
+
else:
|
| 180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 181 |
+
|
| 182 |
+
if zero_stage <= 2:
|
| 183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 184 |
+
elif zero_stage == 3:
|
| 185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 187 |
+
#
|
| 188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 190 |
+
|
| 191 |
+
fp32_flat_groups = [
|
| 192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 193 |
+
]
|
| 194 |
+
|
| 195 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 199 |
+
"""
|
| 200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 201 |
+
|
| 202 |
+
Args:
|
| 203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 204 |
+
|
| 205 |
+
"""
|
| 206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 207 |
+
|
| 208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 211 |
+
|
| 212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 213 |
+
|
| 214 |
+
zero_model_states = parse_model_states(model_files)
|
| 215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 216 |
+
|
| 217 |
+
if zero_stage <= 2:
|
| 218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 219 |
+
exclude_frozen_parameters)
|
| 220 |
+
elif zero_stage == 3:
|
| 221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 222 |
+
exclude_frozen_parameters)
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 227 |
+
return
|
| 228 |
+
|
| 229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 231 |
+
|
| 232 |
+
if debug:
|
| 233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 235 |
+
|
| 236 |
+
wanted_params = len(frozen_param_shapes)
|
| 237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 241 |
+
|
| 242 |
+
total_params = 0
|
| 243 |
+
total_numel = 0
|
| 244 |
+
for name, shape in frozen_param_shapes.items():
|
| 245 |
+
total_params += 1
|
| 246 |
+
unpartitioned_numel = shape.numel()
|
| 247 |
+
total_numel += unpartitioned_numel
|
| 248 |
+
|
| 249 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 250 |
+
|
| 251 |
+
if debug:
|
| 252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 253 |
+
|
| 254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def _has_callable(obj, fn):
|
| 258 |
+
attr = getattr(obj, fn, None)
|
| 259 |
+
return callable(attr)
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 263 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 264 |
+
|
| 265 |
+
# Reconstruction protocol:
|
| 266 |
+
#
|
| 267 |
+
# XXX: document this
|
| 268 |
+
|
| 269 |
+
if debug:
|
| 270 |
+
for i in range(world_size):
|
| 271 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 273 |
+
|
| 274 |
+
# XXX: memory usage doubles here (zero2)
|
| 275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 276 |
+
merged_single_partition_of_fp32_groups = []
|
| 277 |
+
for i in range(num_param_groups):
|
| 278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 281 |
+
avail_numel = sum(
|
| 282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 283 |
+
|
| 284 |
+
if debug:
|
| 285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 287 |
+
# not asserting if there is a mismatch due to possible padding
|
| 288 |
+
print(f"Have {avail_numel} numels to process.")
|
| 289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 290 |
+
|
| 291 |
+
# params
|
| 292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 293 |
+
# out-of-core computing solution
|
| 294 |
+
total_numel = 0
|
| 295 |
+
total_params = 0
|
| 296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 297 |
+
offset = 0
|
| 298 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 299 |
+
for name, shape in shapes.items():
|
| 300 |
+
|
| 301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 302 |
+
total_numel += unpartitioned_numel
|
| 303 |
+
total_params += 1
|
| 304 |
+
|
| 305 |
+
if debug:
|
| 306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 308 |
+
offset += unpartitioned_numel
|
| 309 |
+
|
| 310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 314 |
+
align_to = 2 * world_size
|
| 315 |
+
|
| 316 |
+
def zero2_align(x):
|
| 317 |
+
return align_to * math.ceil(x / align_to)
|
| 318 |
+
|
| 319 |
+
if debug:
|
| 320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 321 |
+
|
| 322 |
+
offset = zero2_align(offset)
|
| 323 |
+
avail_numel = zero2_align(avail_numel)
|
| 324 |
+
|
| 325 |
+
if debug:
|
| 326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 327 |
+
|
| 328 |
+
# Sanity check
|
| 329 |
+
if offset != avail_numel:
|
| 330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 331 |
+
|
| 332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 336 |
+
exclude_frozen_parameters):
|
| 337 |
+
state_dict = OrderedDict()
|
| 338 |
+
|
| 339 |
+
# buffers
|
| 340 |
+
buffers = zero_model_states[0].buffers
|
| 341 |
+
state_dict.update(buffers)
|
| 342 |
+
if debug:
|
| 343 |
+
print(f"added {len(buffers)} buffers")
|
| 344 |
+
|
| 345 |
+
if not exclude_frozen_parameters:
|
| 346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 347 |
+
|
| 348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 349 |
+
|
| 350 |
+
# recover shared parameters
|
| 351 |
+
for pair in zero_model_states[0].shared_params:
|
| 352 |
+
if pair[1] in state_dict:
|
| 353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 354 |
+
|
| 355 |
+
return state_dict
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 359 |
+
remainder = unpartitioned_numel % world_size
|
| 360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 362 |
+
return partitioned_numel, padding_numel
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 367 |
+
return
|
| 368 |
+
|
| 369 |
+
if debug:
|
| 370 |
+
for i in range(world_size):
|
| 371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 373 |
+
|
| 374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 375 |
+
wanted_params = len(frozen_param_shapes)
|
| 376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 380 |
+
|
| 381 |
+
total_params = 0
|
| 382 |
+
total_numel = 0
|
| 383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 384 |
+
total_params += 1
|
| 385 |
+
unpartitioned_numel = shape.numel()
|
| 386 |
+
total_numel += unpartitioned_numel
|
| 387 |
+
|
| 388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 390 |
+
|
| 391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 392 |
+
|
| 393 |
+
if debug:
|
| 394 |
+
print(
|
| 395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 402 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 406 |
+
|
| 407 |
+
# merge list of dicts, preserving order
|
| 408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 409 |
+
|
| 410 |
+
if debug:
|
| 411 |
+
for i in range(world_size):
|
| 412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 413 |
+
|
| 414 |
+
wanted_params = len(param_shapes)
|
| 415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 416 |
+
# not asserting if there is a mismatch due to possible padding
|
| 417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 420 |
+
|
| 421 |
+
# params
|
| 422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 423 |
+
# out-of-core computing solution
|
| 424 |
+
offset = 0
|
| 425 |
+
total_numel = 0
|
| 426 |
+
total_params = 0
|
| 427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
| 428 |
+
unpartitioned_numel = shape.numel()
|
| 429 |
+
total_numel += unpartitioned_numel
|
| 430 |
+
total_params += 1
|
| 431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 432 |
+
|
| 433 |
+
if debug:
|
| 434 |
+
print(
|
| 435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
# XXX: memory usage doubles here
|
| 439 |
+
state_dict[name] = torch.cat(
|
| 440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 442 |
+
offset += partitioned_numel
|
| 443 |
+
|
| 444 |
+
offset *= world_size
|
| 445 |
+
|
| 446 |
+
# Sanity check
|
| 447 |
+
if offset != avail_numel:
|
| 448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 449 |
+
|
| 450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 451 |
+
|
| 452 |
+
|
| 453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 454 |
+
exclude_frozen_parameters):
|
| 455 |
+
state_dict = OrderedDict()
|
| 456 |
+
|
| 457 |
+
# buffers
|
| 458 |
+
buffers = zero_model_states[0].buffers
|
| 459 |
+
state_dict.update(buffers)
|
| 460 |
+
if debug:
|
| 461 |
+
print(f"added {len(buffers)} buffers")
|
| 462 |
+
|
| 463 |
+
if not exclude_frozen_parameters:
|
| 464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 465 |
+
|
| 466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 467 |
+
|
| 468 |
+
# recover shared parameters
|
| 469 |
+
for pair in zero_model_states[0].shared_params:
|
| 470 |
+
if pair[1] in state_dict:
|
| 471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 472 |
+
|
| 473 |
+
return state_dict
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
| 477 |
+
"""
|
| 478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 480 |
+
via a model hub.
|
| 481 |
+
|
| 482 |
+
Args:
|
| 483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 486 |
+
|
| 487 |
+
Returns:
|
| 488 |
+
- pytorch ``state_dict``
|
| 489 |
+
|
| 490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 492 |
+
the checkpoint.
|
| 493 |
+
|
| 494 |
+
A typical usage might be ::
|
| 495 |
+
|
| 496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 497 |
+
# do the training and checkpoint saving
|
| 498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 499 |
+
model = model.cpu() # move to cpu
|
| 500 |
+
model.load_state_dict(state_dict)
|
| 501 |
+
# submit to model hub or save the model to share with others
|
| 502 |
+
|
| 503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 506 |
+
|
| 507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 508 |
+
|
| 509 |
+
"""
|
| 510 |
+
if tag is None:
|
| 511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 512 |
+
if os.path.isfile(latest_path):
|
| 513 |
+
with open(latest_path, 'r') as fd:
|
| 514 |
+
tag = fd.read().strip()
|
| 515 |
+
else:
|
| 516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 517 |
+
|
| 518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 519 |
+
|
| 520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 522 |
+
|
| 523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 524 |
+
|
| 525 |
+
|
| 526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 527 |
+
output_dir,
|
| 528 |
+
max_shard_size="5GB",
|
| 529 |
+
safe_serialization=False,
|
| 530 |
+
tag=None,
|
| 531 |
+
exclude_frozen_parameters=False):
|
| 532 |
+
"""
|
| 533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 535 |
+
|
| 536 |
+
Args:
|
| 537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 543 |
+
"""
|
| 544 |
+
# Dependency pre-check
|
| 545 |
+
if safe_serialization:
|
| 546 |
+
try:
|
| 547 |
+
from safetensors.torch import save_file
|
| 548 |
+
except ImportError:
|
| 549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 550 |
+
raise
|
| 551 |
+
if max_shard_size is not None:
|
| 552 |
+
try:
|
| 553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 554 |
+
except ImportError:
|
| 555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 556 |
+
raise
|
| 557 |
+
|
| 558 |
+
# Convert zero checkpoint to state_dict
|
| 559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
| 560 |
+
|
| 561 |
+
# Shard the model if it is too big.
|
| 562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 563 |
+
if max_shard_size is not None:
|
| 564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
| 566 |
+
filename_pattern=filename_pattern,
|
| 567 |
+
max_shard_size=max_shard_size)
|
| 568 |
+
else:
|
| 569 |
+
from collections import namedtuple
|
| 570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 573 |
+
|
| 574 |
+
# Save the model
|
| 575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
| 578 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 579 |
+
if safe_serialization:
|
| 580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
| 581 |
+
else:
|
| 582 |
+
torch.save(shard, output_path)
|
| 583 |
+
|
| 584 |
+
# Save index if sharded
|
| 585 |
+
if state_dict_split.is_sharded:
|
| 586 |
+
index = {
|
| 587 |
+
"metadata": state_dict_split.metadata,
|
| 588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 589 |
+
}
|
| 590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 594 |
+
f.write(content)
|
| 595 |
+
|
| 596 |
+
|
| 597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 598 |
+
"""
|
| 599 |
+
1. Put the provided model to cpu
|
| 600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 601 |
+
3. Load it into the provided model
|
| 602 |
+
|
| 603 |
+
Args:
|
| 604 |
+
- ``model``: the model object to update
|
| 605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 607 |
+
|
| 608 |
+
Returns:
|
| 609 |
+
- ``model`: modified model
|
| 610 |
+
|
| 611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 613 |
+
conveniently placed for you in the checkpoint folder.
|
| 614 |
+
|
| 615 |
+
A typical usage might be ::
|
| 616 |
+
|
| 617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 619 |
+
# submit to model hub or save the model to share with others
|
| 620 |
+
|
| 621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 624 |
+
|
| 625 |
+
"""
|
| 626 |
+
logger.info(f"Extracting fp32 weights")
|
| 627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 628 |
+
|
| 629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 630 |
+
model = model.cpu()
|
| 631 |
+
model.load_state_dict(state_dict, strict=False)
|
| 632 |
+
|
| 633 |
+
return model
|
| 634 |
+
|
| 635 |
+
|
| 636 |
+
if __name__ == "__main__":
|
| 637 |
+
parser = argparse.ArgumentParser()
|
| 638 |
+
parser.add_argument("checkpoint_dir",
|
| 639 |
+
type=str,
|
| 640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 641 |
+
parser.add_argument("output_dir",
|
| 642 |
+
type=str,
|
| 643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 644 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 645 |
+
parser.add_argument(
|
| 646 |
+
"--max_shard_size",
|
| 647 |
+
type=str,
|
| 648 |
+
default="5GB",
|
| 649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 652 |
+
"without CPU OOM issues.")
|
| 653 |
+
parser.add_argument(
|
| 654 |
+
"--safe_serialization",
|
| 655 |
+
default=False,
|
| 656 |
+
action='store_true',
|
| 657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 658 |
+
parser.add_argument("-t",
|
| 659 |
+
"--tag",
|
| 660 |
+
type=str,
|
| 661 |
+
default=None,
|
| 662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 665 |
+
args = parser.parse_args()
|
| 666 |
+
|
| 667 |
+
debug = args.debug
|
| 668 |
+
|
| 669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 670 |
+
args.output_dir,
|
| 671 |
+
max_shard_size=args.max_shard_size,
|
| 672 |
+
safe_serialization=args.safe_serialization,
|
| 673 |
+
tag=args.tag,
|
| 674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
checkpoint-938/README.md
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: Qwen/Qwen2.5-1.5B
|
| 3 |
+
library_name: peft
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
| 200 |
+
### Framework versions
|
| 201 |
+
|
| 202 |
+
- PEFT 0.14.0
|
checkpoint-938/adapter_config.json
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "Qwen/Qwen2.5-1.5B",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"eva_config": null,
|
| 7 |
+
"exclude_modules": null,
|
| 8 |
+
"fan_in_fan_out": false,
|
| 9 |
+
"inference_mode": true,
|
| 10 |
+
"init_lora_weights": true,
|
| 11 |
+
"layer_replication": null,
|
| 12 |
+
"layers_pattern": null,
|
| 13 |
+
"layers_to_transform": null,
|
| 14 |
+
"loftq_config": {},
|
| 15 |
+
"lora_alpha": 8,
|
| 16 |
+
"lora_bias": false,
|
| 17 |
+
"lora_dropout": 0.0,
|
| 18 |
+
"megatron_config": null,
|
| 19 |
+
"megatron_core": "megatron.core",
|
| 20 |
+
"modules_to_save": null,
|
| 21 |
+
"peft_type": "LORA",
|
| 22 |
+
"r": 32,
|
| 23 |
+
"rank_pattern": {},
|
| 24 |
+
"revision": null,
|
| 25 |
+
"target_modules": [
|
| 26 |
+
"q_proj",
|
| 27 |
+
"v_proj",
|
| 28 |
+
"embed_tokens",
|
| 29 |
+
"k_proj"
|
| 30 |
+
],
|
| 31 |
+
"task_type": "CAUSAL_LM",
|
| 32 |
+
"use_dora": false,
|
| 33 |
+
"use_rslora": false
|
| 34 |
+
}
|
checkpoint-938/adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c32b4744a5f1e25fab4fcef69341d68015e77a0722895c2178ac5d0909e2dd89
|
| 3 |
+
size 488520640
|
checkpoint-938/added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
checkpoint-938/global_step937/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6c69eca94feda5cb826eb693257e9258b78632b4b266e40c3212f1d5c7800fe2
|
| 3 |
+
size 130520624
|
checkpoint-938/global_step937/mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5112b9399d6c69ae4dd09f6f8f74af27784d1b9795cde3e95246128f650ad458
|
| 3 |
+
size 488645432
|
checkpoint-938/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step937
|
checkpoint-938/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-938/rng_state.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:85ff83c9a62e5d58853a2656865d280c0e257ccdcd65dad6bd3060f966059592
|
| 3 |
+
size 14244
|
checkpoint-938/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7328f6df045aa7953e963c7065b6c08cd9c4b4a17f305d9186fb192f49d75a3f
|
| 3 |
+
size 1064
|