--- license: cc-by-nc-4.0 language: - en base_model: - facebook/metaclip-2-worldwide-s16 pipeline_tag: image-classification library_name: transformers tags: - text-generation-inference - gender-identifier --- ![1](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/Abs7c5gHKnPjZg28GSZGy.png) # **MetaCLIP-2-Gender-Identifier** > **MetaCLIP-2-Gender-Identifier** is an image classification vision-language encoder model fine-tuned from **[facebook/metaclip-2-worldwide-s16](https://huggingface.co/facebook/metaclip-2-worldwide-s16)** for a single-label classification task. > It is designed to predict the gender of a person from an image using the **MetaClip2ForImageClassification** architecture. >[!note] MetaCLIP 2: A Worldwide Scaling Recipe : https://huggingface.co/papers/2507.22062 ``` Classification Report: precision recall f1-score support female 0.9815 0.9631 0.9722 1600 male 0.9638 0.9819 0.9728 1600 accuracy 0.9725 3200 macro avg 0.9727 0.9725 0.9725 3200 weighted avg 0.9727 0.9725 0.9725 3200 ``` ![download](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/SWDn8PT5FxrZixb-Jq0pq.png) --- The model categorizes images into two gender classes: * **Class 0:** "female" * **Class 1:** "male" # **Run with Transformers** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr import torch from transformers import AutoImageProcessor, AutoModelForImageClassification from PIL import Image # Model name from Hugging Face Hub model_name = "prithivMLmods/MetaCLIP-2-Gender-Identifier" # Load processor and model processor = AutoImageProcessor.from_pretrained(model_name) model = AutoModelForImageClassification.from_pretrained(model_name) model.eval() # Define labels LABELS = { 0: "female", 1: "male" } def age_classification(image): """Predict the age group of a person from an image.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() predictions = {LABELS[i]: round(probs[i], 3) for i in range(len(probs))} return predictions # Build Gradio interface iface = gr.Interface( fn=age_classification, inputs=gr.Image(type="numpy", label="Upload Image"), outputs=gr.Label(label="Predicted Gender"), title="MetaCLIP-2-Gender-Identifier", description="Upload an image to predict the person's gender." ) # Launch app if __name__ == "__main__": iface.launch() ``` # **Sample Inference:** ![Screenshot 2025-11-13 at 14-09-26 MetaCLIP-2-Geneder-Identifier](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/eTLAyS2ouGnZDxSwi6HnT.png) ![Screenshot 2025-11-13 at 14-06-43 MetaCLIP-2-Geneder-Identifier](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/ilq2pBgONk4WP3U7dX2YI.png) ![Screenshot 2025-11-13 at 14-08-03 MetaCLIP-2-Geneder-Identifier](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/EXJdYEPJMh7LMPJEoNonT.png) ![Screenshot 2025-11-13 at 14-08-52 MetaCLIP-2-Geneder-Identifier](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/jvYUEQHX_-Eq2JI1pKLcr.png) # **Intended Use:** The **MetaCLIP-2-Gender-Identifier** model is designed to classify images into gender categories. Potential use cases include: * **Demographic Analysis:** Supporting research and business insights into gender-based distribution. * **Health and Fitness Applications:** Assisting in gender-specific analytics and recommendations. * **Security and Access Control:** Supporting gender-based identity verification systems. * **Retail and Marketing:** Enabling improved personalization and customer segmentation. * **Forensics and Surveillance:** Assisting in identity estimation for investigative purposes.