Fredrik Hansen commited on
Commit
d347e23
·
0 Parent(s):

Initial release: SecurityGPT 14B

Browse files
.gitattributes ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gguf filter=lfs diff=lfs merge=lfs -text
8
+ *.gz filter=lfs diff=lfs merge=lfs -text
9
+ *.h5 filter=lfs diff=lfs merge=lfs -text
10
+ *.joblib filter=lfs diff=lfs merge=lfs -text
11
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
12
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
13
+ *.model filter=lfs diff=lfs merge=lfs -text
14
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
15
+ *.npy filter=lfs diff=lfs merge=lfs -text
16
+ *.npz filter=lfs diff=lfs merge=lfs -text
17
+ *.onnx filter=lfs diff=lfs merge=lfs -text
18
+ *.ot filter=lfs diff=lfs merge=lfs -text
19
+ *.parquet filter=lfs diff=lfs merge=lfs -text
20
+ *.pb filter=lfs diff=lfs merge=lfs -text
21
+ *.pickle filter=lfs diff=lfs merge=lfs -text
22
+ *.pkl filter=lfs diff=lfs merge=lfs -text
23
+ *.pt filter=lfs diff=lfs merge=lfs -text
24
+ *.pth filter=lfs diff=lfs merge=lfs -text
25
+ *.rar filter=lfs diff=lfs merge=lfs -text
26
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
27
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
29
+ *.tar filter=lfs diff=lfs merge=lfs -text
30
+ *.tflite filter=lfs diff=lfs merge=lfs -text
31
+ *.tgz filter=lfs diff=lfs merge=lfs -text
32
+ *.wasm filter=lfs diff=lfs merge=lfs -text
33
+ *.xz filter=lfs diff=lfs merge=lfs -text
34
+ *.zip filter=lfs diff=lfs merge=lfs -text
35
+ *.zst filter=lfs diff=lfs merge=lfs -text
36
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
37
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
DEPLOYMENT.md ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # SecurityGPT Deployment Guide
2
+
3
+ Comprehensive guide for deploying SecurityGPT in various environments.
4
+
5
+ ## Table of Contents
6
+
7
+ 1. [Quick Start](#quick-start)
8
+ 2. [Hugging Face Hub](#hugging-face-hub)
9
+ 3. [Ollama Deployment](#ollama-deployment)
10
+ 4. [Docker Deployment](#docker-deployment)
11
+ 5. [API Server](#api-server)
12
+ 6. [Cloud Deployment](#cloud-deployment)
13
+ 7. [Production Considerations](#production-considerations)
14
+
15
+ ---
16
+
17
+ ## Quick Start
18
+
19
+ ### Option 1: Hugging Face Transformers (Simplest)
20
+
21
+ ```python
22
+ from transformers import AutoModelForCausalLM, AutoTokenizer
23
+
24
+ model_name = "pki/securitygpt-14b"
25
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
26
+ model = AutoModelForCausalLM.from_pretrained(
27
+ model_name,
28
+ device_map="auto",
29
+ trust_remote_code=True
30
+ )
31
+
32
+ # Generate
33
+ messages = [{"role": "user", "content": "Create a FastAPI endpoint"}]
34
+ inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True)
35
+ outputs = model.generate(inputs.to("cuda"), max_new_tokens=512)
36
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
37
+ ```
38
+
39
+ ### Option 2: Ollama (Recommended for Production)
40
+
41
+ ```bash
42
+ # Download GGUF model
43
+ wget https://huggingface.co/pki/securitygpt-14b/resolve/main/securitygpt-14b-q8.gguf
44
+
45
+ # Create Modelfile
46
+ cat > Modelfile <<EOF
47
+ FROM ./securitygpt-14b-q8.gguf
48
+ PARAMETER temperature 0.7
49
+ PARAMETER num_ctx 32768
50
+ EOF
51
+
52
+ # Deploy
53
+ ollama create securitygpt:14b -f Modelfile
54
+ ollama run securitygpt:14b
55
+ ```
56
+
57
+ ---
58
+
59
+ ## Hugging Face Hub
60
+
61
+ ### Upload Model to Hub
62
+
63
+ **Prerequisites:**
64
+ - Hugging Face account
65
+ - Hub token with write access
66
+ - git-lfs installed
67
+
68
+ **Step 1: Install Requirements**
69
+ ```bash
70
+ pip install huggingface_hub
71
+ huggingface-cli login
72
+ ```
73
+
74
+ **Step 2: Prepare Model Files**
75
+ ```bash
76
+ cd llm-training-repo/models
77
+ cp merged_gguf_q4/* ../huggingface/
78
+
79
+ # Or upload merged PyTorch model
80
+ cp -r merged_model/* ../huggingface/
81
+ ```
82
+
83
+ **Step 3: Create Repository**
84
+ ```python
85
+ from huggingface_hub import HfApi, create_repo
86
+
87
+ api = HfApi()
88
+
89
+ # Create repo
90
+ repo_id = "pki/securitygpt-14b"
91
+ create_repo(repo_id, private=False, repo_type="model")
92
+
93
+ # Upload model files
94
+ api.upload_folder(
95
+ folder_path="./huggingface",
96
+ repo_id=repo_id,
97
+ repo_type="model"
98
+ )
99
+ ```
100
+
101
+ **Step 4: Test Download**
102
+ ```python
103
+ from transformers import AutoModelForCausalLM
104
+
105
+ model = AutoModelForCausalLM.from_pretrained("pki/securitygpt-14b")
106
+ ```
107
+
108
+ ### Model Card on Hub
109
+
110
+ The `MODEL_CARD.md` should be renamed to `README.md` in your Hub repo:
111
+
112
+ ```bash
113
+ cp huggingface/MODEL_CARD.md huggingface/README.md
114
+ ```
115
+
116
+ ---
117
+
118
+ ## Ollama Deployment
119
+
120
+ Ollama provides the easiest deployment for local and production use.
121
+
122
+ ### Local Deployment
123
+
124
+ **Step 1: Install Ollama**
125
+ ```bash
126
+ # Linux
127
+ curl -fsSL https://ollama.com/install.sh | sh
128
+
129
+ # macOS
130
+ brew install ollama
131
+
132
+ # Windows
133
+ # Download from https://ollama.com/download
134
+ ```
135
+
136
+ **Step 2: Get GGUF Model**
137
+
138
+ Option A: Download from Hugging Face
139
+ ```bash
140
+ wget https://huggingface.co/pki/securitygpt-14b/resolve/main/securitygpt-14b-q8.gguf
141
+ ```
142
+
143
+ Option B: Convert locally (if you have PyTorch model)
144
+ ```bash
145
+ # Clone llama.cpp
146
+ git clone https://github.com/ggerganov/llama.cpp
147
+ cd llama.cpp
148
+ make
149
+
150
+ # Convert
151
+ python convert_hf_to_gguf.py /path/to/merged_model \
152
+ --outfile securitygpt-14b-f16.gguf --outtype f16
153
+
154
+ # Quantize
155
+ ./llama-quantize securitygpt-14b-f16.gguf securitygpt-14b-q8.gguf Q8_0
156
+ ```
157
+
158
+ **Step 3: Create Modelfile**
159
+ ```dockerfile
160
+ FROM ./securitygpt-14b-q8.gguf
161
+
162
+ PARAMETER temperature 0.7
163
+ PARAMETER top_p 0.9
164
+ PARAMETER top_k 50
165
+ PARAMETER num_ctx 32768
166
+ PARAMETER num_predict 2048
167
+ PARAMETER stop "<|im_start|>"
168
+ PARAMETER stop "<|im_end|>"
169
+
170
+ TEMPLATE """<|im_start|>system
171
+ {{ .System }}<|im_end|>
172
+ <|im_start|>user
173
+ {{ .Prompt }}<|im_end|>
174
+ <|im_start|>assistant
175
+ """
176
+
177
+ SYSTEM """You are SecurityGPT, a specialized AI assistant for secure software development. You follow security best practices including: argon2 password hashing (NEVER bcrypt), input validation, SQL injection prevention, XSS protection, proper authentication, and comprehensive error handling."""
178
+
179
+ MESSAGE user "Create a FastAPI endpoint for user authentication"
180
+ MESSAGE assistant "I'll create a secure FastAPI authentication endpoint with argon2 password hashing, JWT tokens, and proper validation..."
181
+ ```
182
+
183
+ **Step 4: Deploy**
184
+ ```bash
185
+ ollama create securitygpt:14b -f Modelfile
186
+ ollama list # Verify it's listed
187
+
188
+ # Test
189
+ ollama run securitygpt:14b "Create a secure login endpoint"
190
+ ```
191
+
192
+ ### Remote Deployment
193
+
194
+ **Deploy to Remote Server:**
195
+ ```bash
196
+ # Copy GGUF to server
197
+ scp securitygpt-14b-q8.gguf user@server:/models/
198
+ scp Modelfile user@server:/models/
199
+
200
+ # SSH to server
201
+ ssh user@server
202
+
203
+ # Create model
204
+ cd /models
205
+ ollama create securitygpt:14b -f Modelfile
206
+
207
+ # Serve (if not running)
208
+ ollama serve
209
+ ```
210
+
211
+ **Access remotely:**
212
+ ```bash
213
+ # Set Ollama host
214
+ export OLLAMA_HOST=http://server-ip:11434
215
+
216
+ # Use
217
+ ollama run securitygpt:14b "Your prompt"
218
+ ```
219
+
220
+ ### Ollama with Docker
221
+
222
+ ```bash
223
+ # Run Ollama in container
224
+ docker run -d \
225
+ --name ollama \
226
+ --gpus all \
227
+ -v ollama-data:/root/.ollama \
228
+ -p 11434:11434 \
229
+ ollama/ollama
230
+
231
+ # Create model inside container
232
+ docker exec -it ollama ollama create securitygpt:14b -f /path/to/Modelfile
233
+ ```
234
+
235
+ ---
236
+
237
+ ## Docker Deployment
238
+
239
+ ### Custom Docker Image
240
+
241
+ **Dockerfile:**
242
+ ```dockerfile
243
+ FROM nvidia/cuda:12.4.0-runtime-ubuntu22.04
244
+
245
+ # Install Python
246
+ RUN apt-get update && apt-get install -y \
247
+ python3.11 \
248
+ python3-pip \
249
+ git \
250
+ && rm -rf /var/lib/apt/lists/*
251
+
252
+ # Install dependencies
253
+ COPY requirements.txt .
254
+ RUN pip3 install --no-cache-dir -r requirements.txt
255
+
256
+ # Copy model (or download in entrypoint)
257
+ COPY merged_model /app/model
258
+
259
+ # API server
260
+ COPY api_server.py /app/
261
+ WORKDIR /app
262
+
263
+ EXPOSE 8000
264
+
265
+ CMD ["python3", "api_server.py"]
266
+ ```
267
+
268
+ **requirements.txt:**
269
+ ```
270
+ transformers==4.57.3
271
+ torch==2.5.0
272
+ fastapi==0.110.0
273
+ uvicorn[standard]==0.27.0
274
+ pydantic==2.10.0
275
+ ```
276
+
277
+ **api_server.py:**
278
+ ```python
279
+ from fastapi import FastAPI, HTTPException
280
+ from pydantic import BaseModel
281
+ from transformers import AutoModelForCausalLM, AutoTokenizer
282
+ import torch
283
+
284
+ app = FastAPI(title="SecurityGPT API")
285
+
286
+ # Load model on startup
287
+ @app.on_event("startup")
288
+ async def load_model():
289
+ global model, tokenizer
290
+ model = AutoModelForCausalLM.from_pretrained(
291
+ "/app/model",
292
+ torch_dtype=torch.bfloat16,
293
+ device_map="auto"
294
+ )
295
+ tokenizer = AutoTokenizer.from_pretrained("/app/model")
296
+
297
+ class GenerateRequest(BaseModel):
298
+ prompt: str
299
+ max_tokens: int = 512
300
+ temperature: float = 0.7
301
+
302
+ @app.post("/generate")
303
+ async def generate(request: GenerateRequest):
304
+ try:
305
+ messages = [{"role": "user", "content": request.prompt}]
306
+ text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
307
+ inputs = tokenizer([text], return_tensors="pt").to(model.device)
308
+
309
+ outputs = model.generate(
310
+ **inputs,
311
+ max_new_tokens=request.max_tokens,
312
+ temperature=request.temperature
313
+ )
314
+
315
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
316
+ return {"response": response}
317
+ except Exception as e:
318
+ raise HTTPException(500, str(e))
319
+
320
+ @app.get("/health")
321
+ async def health():
322
+ return {"status": "healthy"}
323
+
324
+ if __name__ == "__main__":
325
+ import uvicorn
326
+ uvicorn.run(app, host="0.0.0.0", port=8000)
327
+ ```
328
+
329
+ **Build and Run:**
330
+ ```bash
331
+ docker build -t securitygpt:14b .
332
+
333
+ docker run -d \
334
+ --name securitygpt-api \
335
+ --gpus all \
336
+ -p 8000:8000 \
337
+ securitygpt:14b
338
+ ```
339
+
340
+ **Test:**
341
+ ```bash
342
+ curl -X POST http://localhost:8000/generate \
343
+ -H "Content-Type: application/json" \
344
+ -d '{"prompt": "Create a FastAPI endpoint", "max_tokens": 512}'
345
+ ```
346
+
347
+ ---
348
+
349
+ ## API Server
350
+
351
+ ### FastAPI Server (Production-Ready)
352
+
353
+ **server.py:**
354
+ ```python
355
+ from fastapi import FastAPI, HTTPException, Depends, Security
356
+ from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
357
+ from pydantic import BaseModel, Field
358
+ from transformers import AutoModelForCausalLM, AutoTokenizer
359
+ import torch
360
+ import logging
361
+
362
+ # Setup logging
363
+ logging.basicConfig(level=logging.INFO)
364
+ logger = logging.getLogger(__name__)
365
+
366
+ # Security
367
+ security = HTTPBearer()
368
+
369
+ app = FastAPI(
370
+ title="SecurityGPT API",
371
+ description="Secure code generation API",
372
+ version="1.0.0"
373
+ )
374
+
375
+ # Global model storage
376
+ model = None
377
+ tokenizer = None
378
+
379
+ @app.on_event("startup")
380
+ async def startup_event():
381
+ global model, tokenizer
382
+ logger.info("Loading SecurityGPT model...")
383
+
384
+ model = AutoModelForCausalLM.from_pretrained(
385
+ "pki/securitygpt-14b",
386
+ torch_dtype=torch.bfloat16,
387
+ device_map="auto",
388
+ trust_remote_code=True
389
+ )
390
+ tokenizer = AutoTokenizer.from_pretrained(
391
+ "pki/securitygpt-14b",
392
+ trust_remote_code=True
393
+ )
394
+
395
+ logger.info("Model loaded successfully")
396
+
397
+ class GenerateRequest(BaseModel):
398
+ prompt: str = Field(..., min_length=1, max_length=8000)
399
+ system_prompt: str = Field(
400
+ default="You are a security-focused coding assistant.",
401
+ max_length=500
402
+ )
403
+ max_tokens: int = Field(default=512, ge=1, le=2048)
404
+ temperature: float = Field(default=0.7, ge=0.0, le=2.0)
405
+ top_p: float = Field(default=0.9, ge=0.0, le=1.0)
406
+
407
+ class GenerateResponse(BaseModel):
408
+ response: str
409
+ tokens_generated: int
410
+
411
+ def verify_token(credentials: HTTPAuthorizationCredentials = Security(security)):
412
+ """Verify API token (implement your auth logic)."""
413
+ token = credentials.credentials
414
+ # TODO: Implement actual token verification
415
+ if token != "your-secret-token":
416
+ raise HTTPException(401, "Invalid token")
417
+ return token
418
+
419
+ @app.post("/api/v1/generate", response_model=GenerateResponse)
420
+ async def generate(
421
+ request: GenerateRequest,
422
+ token: str = Depends(verify_token)
423
+ ):
424
+ """Generate code based on prompt."""
425
+ try:
426
+ messages = [
427
+ {"role": "system", "content": request.system_prompt},
428
+ {"role": "user", "content": request.prompt}
429
+ ]
430
+
431
+ text = tokenizer.apply_chat_template(
432
+ messages,
433
+ tokenize=False,
434
+ add_generation_prompt=True
435
+ )
436
+
437
+ inputs = tokenizer([text], return_tensors="pt").to(model.device)
438
+
439
+ outputs = model.generate(
440
+ **inputs,
441
+ max_new_tokens=request.max_tokens,
442
+ temperature=request.temperature,
443
+ top_p=request.top_p,
444
+ do_sample=True
445
+ )
446
+
447
+ response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
448
+ tokens_generated = len(outputs[0]) - len(inputs['input_ids'][0])
449
+
450
+ return GenerateResponse(
451
+ response=response_text,
452
+ tokens_generated=tokens_generated
453
+ )
454
+
455
+ except Exception as e:
456
+ logger.error(f"Generation error: {str(e)}")
457
+ raise HTTPException(500, f"Generation failed: {str(e)}")
458
+
459
+ @app.get("/health")
460
+ async def health():
461
+ """Health check endpoint."""
462
+ return {
463
+ "status": "healthy",
464
+ "model_loaded": model is not None
465
+ }
466
+
467
+ if __name__ == "__main__":
468
+ import uvicorn
469
+ uvicorn.run(
470
+ app,
471
+ host="0.0.0.0",
472
+ port=8000,
473
+ log_level="info"
474
+ )
475
+ ```
476
+
477
+ **Run:**
478
+ ```bash
479
+ python server.py
480
+ ```
481
+
482
+ **Client Example:**
483
+ ```python
484
+ import requests
485
+
486
+ response = requests.post(
487
+ "http://localhost:8000/api/v1/generate",
488
+ headers={"Authorization": "Bearer your-secret-token"},
489
+ json={
490
+ "prompt": "Create a FastAPI user signup endpoint",
491
+ "max_tokens": 512,
492
+ "temperature": 0.7
493
+ }
494
+ )
495
+
496
+ print(response.json()['response'])
497
+ ```
498
+
499
+ ---
500
+
501
+ ## Cloud Deployment
502
+
503
+ ### AWS EC2
504
+
505
+ **Instance Recommendations:**
506
+ - **g5.xlarge** - 1x A10G (24GB VRAM) - $1.006/hr
507
+ - **g5.2xlarge** - 1x A10G (24GB VRAM) + more CPU/RAM - $1.212/hr
508
+ - **p3.2xlarge** - 1x V100 (16GB VRAM) - needs Q4 quantization
509
+
510
+ **Setup:**
511
+ ```bash
512
+ # Launch instance with Deep Learning AMI
513
+ # SSH to instance
514
+
515
+ # Install Ollama
516
+ curl -fsSL https://ollama.com/install.sh | sh
517
+
518
+ # Download model
519
+ wget https://huggingface.co/pki/securitygpt-14b/resolve/main/securitygpt-14b-q8.gguf
520
+
521
+ # Deploy
522
+ ollama create securitygpt:14b -f Modelfile
523
+ ollama serve
524
+ ```
525
+
526
+ ### Google Cloud Platform
527
+
528
+ **Instance Recommendations:**
529
+ - **n1-standard-4 + 1x NVIDIA T4** - $0.35/hr + $0.35/hr
530
+ - **n1-standard-8 + 1x NVIDIA A100** - Better performance
531
+
532
+ **Setup:**
533
+ ```bash
534
+ # Create instance with GPU
535
+ gcloud compute instances create securitygpt \
536
+ --zone=us-central1-a \
537
+ --machine-type=n1-standard-4 \
538
+ --accelerator=type=nvidia-tesla-t4,count=1 \
539
+ --image-family=pytorch-latest-gpu \
540
+ --image-project=deeplearning-platform-release
541
+
542
+ # SSH and deploy
543
+ gcloud compute ssh securitygpt
544
+ # ... install Ollama and model
545
+ ```
546
+
547
+ ### Azure
548
+
549
+ **VM Recommendations:**
550
+ - **NC6s_v3** - 1x V100 (16GB) - Q4 quantization required
551
+ - **NC24ads_A100_v4** - 1x A100 (80GB) - Full model + headroom
552
+
553
+ ### Runpod / Lambda Labs / Vast.ai
554
+
555
+ **Budget GPU Cloud Options:**
556
+
557
+ ```bash
558
+ # Runpod example
559
+ # 1. Create pod with RTX 4090
560
+ # 2. Use Jupyter or SSH template
561
+ # 3. Deploy Ollama
562
+
563
+ pip install runpod
564
+ # ... follow Runpod deployment docs
565
+ ```
566
+
567
+ ---
568
+
569
+ ## Production Considerations
570
+
571
+ ### Performance Optimization
572
+
573
+ **1. Quantization Choice**
574
+
575
+ | Quantization | Size | VRAM | Quality | Speed |
576
+ |--------------|------|------|---------|-------|
577
+ | FP16 | 28GB | 28GB | Best | Slowest |
578
+ | Q8_0 | 15GB | 16GB | Excellent | Fast |
579
+ | Q5_K_M | 10GB | 12GB | Good | Faster |
580
+ | Q4_K_M | 8GB | 10GB | Acceptable | Fastest |
581
+
582
+ **Recommendation:** Q8_0 for production (best quality/speed trade-off)
583
+
584
+ **2. Batching**
585
+
586
+ ```python
587
+ # Process multiple prompts efficiently
588
+ prompts = ["prompt1", "prompt2", "prompt3"]
589
+
590
+ # Tokenize all at once
591
+ inputs = tokenizer(prompts, return_tensors="pt", padding=True).to("cuda")
592
+
593
+ # Generate batch
594
+ outputs = model.generate(**inputs, max_new_tokens=512)
595
+
596
+ # Decode all
597
+ responses = tokenizer.batch_decode(outputs, skip_special_tokens=True)
598
+ ```
599
+
600
+ **3. Caching**
601
+
602
+ ```python
603
+ import redis
604
+ import hashlib
605
+
606
+ redis_client = redis.Redis(host='localhost', port=6379)
607
+
608
+ def generate_cached(prompt: str):
609
+ # Check cache
610
+ cache_key = hashlib.sha256(prompt.encode()).hexdigest()
611
+ cached = redis_client.get(cache_key)
612
+
613
+ if cached:
614
+ return cached.decode()
615
+
616
+ # Generate
617
+ response = generate(prompt)
618
+
619
+ # Cache for 1 hour
620
+ redis_client.setex(cache_key, 3600, response)
621
+
622
+ return response
623
+ ```
624
+
625
+ ### Monitoring
626
+
627
+ **Prometheus Metrics:**
628
+ ```python
629
+ from prometheus_client import Counter, Histogram, Gauge
630
+ import time
631
+
632
+ requests_total = Counter('securitygpt_requests_total', 'Total requests')
633
+ request_duration = Histogram('securitygpt_request_duration_seconds', 'Request duration')
634
+ tokens_generated = Counter('securitygpt_tokens_generated_total', 'Total tokens generated')
635
+ gpu_memory = Gauge('securitygpt_gpu_memory_bytes', 'GPU memory usage')
636
+
637
+ @app.post("/generate")
638
+ async def generate(request: GenerateRequest):
639
+ requests_total.inc()
640
+
641
+ start_time = time.time()
642
+
643
+ # ... generation logic ...
644
+
645
+ request_duration.observe(time.time() - start_time)
646
+ tokens_generated.inc(num_tokens)
647
+
648
+ # Update GPU memory
649
+ if torch.cuda.is_available():
650
+ gpu_memory.set(torch.cuda.memory_allocated())
651
+
652
+ return response
653
+ ```
654
+
655
+ ### Security
656
+
657
+ **API Authentication:**
658
+ ```python
659
+ from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
660
+ from jose import jwt
661
+
662
+ SECRET_KEY = "your-secret-key"
663
+
664
+ def verify_jwt(credentials: HTTPAuthorizationCredentials):
665
+ try:
666
+ payload = jwt.decode(credentials.credentials, SECRET_KEY, algorithms=["HS256"])
667
+ return payload
668
+ except:
669
+ raise HTTPException(401, "Invalid token")
670
+ ```
671
+
672
+ **Rate Limiting:**
673
+ ```python
674
+ from slowapi import Limiter
675
+ from slowapi.util import get_remote_address
676
+
677
+ limiter = Limiter(key_func=get_remote_address)
678
+ app.state.limiter = limiter
679
+
680
+ @app.post("/generate")
681
+ @limiter.limit("10/minute")
682
+ async def generate(request: Request, ...):
683
+ ...
684
+ ```
685
+
686
+ ### Scaling
687
+
688
+ **Horizontal Scaling with Load Balancer:**
689
+
690
+ ```
691
+ ┌─────────────┐
692
+ │ Nginx LB │
693
+ └──────┬──────┘
694
+
695
+ ┌─────────┬────────┼────────┬─────────┐
696
+ │ │ │ │ │
697
+ ┌────▼───┐ ┌──▼────┐ ┌─▼─────┐ ┌▼────────┐
698
+ │ API 1 │ │ API 2 │ │ API 3 │ │ API N │
699
+ │+ Model │ │+ Model│ │+ Model│ │+ Model │
700
+ └────────┘ └───────┘ └───────┘ └─────────┘
701
+ ```
702
+
703
+ **Nginx config:**
704
+ ```nginx
705
+ upstream securitygpt_backend {
706
+ server 10.0.1.10:8000;
707
+ server 10.0.1.11:8000;
708
+ server 10.0.1.12:8000;
709
+ }
710
+
711
+ server {
712
+ listen 80;
713
+ location /api {
714
+ proxy_pass http://securitygpt_backend;
715
+ }
716
+ }
717
+ ```
718
+
719
+ ---
720
+
721
+ ## Troubleshooting
722
+
723
+ ### Model Won't Load
724
+
725
+ **Check:**
726
+ 1. GPU availability: `nvidia-smi`
727
+ 2. VRAM sufficient for model size
728
+ 3. CUDA version compatible with PyTorch
729
+ 4. Model files not corrupted
730
+
731
+ ### Slow Inference
732
+
733
+ **Check:**
734
+ 1. GPU utilization (`nvidia-smi`)
735
+ 2. Using CUDA (`model.device`)
736
+ 3. Quantization applied
737
+ 4. Batch size not too large
738
+
739
+ ### Out of Memory
740
+
741
+ **Solutions:**
742
+ 1. Use smaller quantization (Q4 instead of Q8)
743
+ 2. Reduce context length
744
+ 3. Use gradient checkpointing
745
+ 4. Clear CUDA cache: `torch.cuda.empty_cache()`
746
+
747
+ ---
748
+
749
+ ## Support
750
+
751
+ - **Issues:** GitHub/GitLab repository
752
+ - **Discussions:** Hugging Face model page
753
+ - **Documentation:** This deployment guide
754
+
755
+ ---
756
+
757
+ **Ready to deploy!** Choose deployment method based on your needs:
758
+ - **Development:** Local Ollama
759
+ - **Production:** API server with Docker/K8s
760
+ - **Cloud:** AWS/GCP/Azure with Ollama
README.md ADDED
@@ -0,0 +1,379 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ base_model: Qwen/Qwen2.5-Coder-14B-Instruct
6
+ tags:
7
+ - security
8
+ - code-generation
9
+ - cybersecurity
10
+ - fastapi
11
+ - python
12
+ - typescript
13
+ - react
14
+ - qlora
15
+ - unsloth
16
+ model_type: qwen2
17
+ pipeline_tag: text-generation
18
+ inference: true
19
+ ---
20
+
21
+ # SecurityGPT 14B
22
+
23
+ **SecurityGPT** is a 14-billion parameter code generation model fine-tuned for security-focused development tasks. Built on Qwen2.5-Coder-14B-Instruct, it specializes in generating secure, production-ready code with emphasis on best practices for web applications, API development, and cybersecurity.
24
+
25
+ ## Model Description
26
+
27
+ - **Developed by:** [email protected]
28
+ - **Model type:** Causal Language Model (Decoder-only Transformer)
29
+ - **Language(s):** English
30
+ - **Base model:** [Qwen/Qwen2.5-Coder-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-14B-Instruct)
31
+ - **License:** Apache 2.0 (same as base model)
32
+ - **Finetuned from:** Qwen2.5-Coder-14B-Instruct
33
+ - **Context length:** 32,768 tokens
34
+ - **Parameters:** 14 billion
35
+
36
+ ### Model Architecture
37
+
38
+ ```
39
+ Architecture: Qwen2ForCausalLM
40
+ - Hidden size: 5,120
41
+ - Num layers: 48
42
+ - Attention heads: 40
43
+ - KV heads: 8 (GQA)
44
+ - Intermediate size: 13,824
45
+ - Vocab size: 152,064
46
+ - RoPE theta: 1,000,000
47
+ - Activation: SiLU
48
+ ```
49
+
50
+ ### Key Features
51
+
52
+ ✅ **Security-First Design**
53
+ - Secure password hashing (argon2, NEVER bcrypt)
54
+ - SQL injection prevention
55
+ - XSS protection patterns
56
+ - Input validation & sanitization
57
+ - Proper authentication flows
58
+
59
+ ✅ **Best Practice Enforcement**
60
+ - RESTful API design (`/api/v1/` versioning)
61
+ - Modern dependency management (Poetry for Python)
62
+ - Production-ready error handling
63
+ - Comprehensive audit logging
64
+
65
+ ✅ **Technology Stack Coverage**
66
+ - **Backend:** Python, FastAPI, Flask, SQLAlchemy
67
+ - **Frontend:** React, TypeScript, Tailwind CSS
68
+ - **Databases:** PostgreSQL, Redis, OpenSearch
69
+ - **DevOps:** Docker, FreeBSD, GitLab CI/CD
70
+
71
+ ## Intended Use
72
+
73
+ ### Primary Use Cases
74
+
75
+ 1. **Secure API Development** - Generate FastAPI/Flask endpoints with proper authentication, validation, and error handling
76
+ 2. **Web Application Development** - Create React/TypeScript components following modern patterns
77
+ 3. **Security Code Review** - Identify and fix security vulnerabilities in existing code
78
+ 4. **Infrastructure as Code** - Generate secure deployment configurations
79
+ 5. **DevOps Automation** - Create CI/CD pipelines and automation scripts
80
+
81
+ ### Out-of-Scope Use
82
+
83
+ ⚠️ This model is NOT intended for:
84
+ - Malicious code generation or exploit development
85
+ - Production security auditing (use professional security tools)
86
+ - Medical, legal, or financial advice
87
+ - Real-time critical systems without human review
88
+
89
+ ## Training Details
90
+
91
+ ### Training Method
92
+
93
+ **QLoRA (Quantized Low-Rank Adaptation)** using [Unsloth](https://github.com/unslothai/unsloth) for optimization.
94
+
95
+ **LoRA Configuration:**
96
+ ```python
97
+ Rank (r): 128
98
+ Alpha: 256
99
+ Dropout: 0 (Unsloth optimized)
100
+ Target modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
101
+ Quantization: 4-bit (QLoRA)
102
+ ```
103
+
104
+ **Training Hyperparameters:**
105
+ ```python
106
+ Batch size: 8 per device
107
+ Gradient accumulation: 4 steps (effective batch = 32)
108
+ Learning rate: 1e-4
109
+ Epochs: 5
110
+ Max sequence length: 2,048 tokens
111
+ Optimizer: AdamW 8-bit
112
+ LR scheduler: Cosine
113
+ Weight decay: 0.01
114
+ Precision: BF16
115
+
116
+ ```
117
+
118
+ ### Training Data
119
+
120
+ The model was fine-tuned on 16,000 instruction-output pairs focused on:
121
+ - Secure coding patterns and practices
122
+ - Web application development (FastAPI, React)
123
+ - Database operations and security
124
+ - Authentication and authorization
125
+ - API design and implementation
126
+ - DevOps and infrastructure configuration
127
+
128
+ **Data composition:**
129
+ - Security-focused coding examples
130
+ - Real-world application patterns
131
+ - Best practice demonstrations
132
+ - Common vulnerability mitigations
133
+
134
+
135
+ ### Training Loss
136
+
137
+ Final training loss: **0.026**
138
+
139
+ ## Usage
140
+
141
+ ### Quick Start with Transformers
142
+
143
+ ```python
144
+ from transformers import AutoModelForCausalLM, AutoTokenizer
145
+ import torch
146
+
147
+ # Load model and tokenizer
148
+ model_name = "pki/securitygpt-14b"
149
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
150
+ model = AutoModelForCausalLM.from_pretrained(
151
+ model_name,
152
+ torch_dtype=torch.bfloat16,
153
+ device_map="auto",
154
+ trust_remote_code=True
155
+ )
156
+
157
+ # Format prompt with Qwen chat template
158
+ messages = [
159
+ {"role": "system", "content": "You are a helpful AI coding assistant specialized in secure software development."},
160
+ {"role": "user", "content": "Create a FastAPI endpoint for user signup with email and password validation."}
161
+ ]
162
+
163
+ text = tokenizer.apply_chat_template(
164
+ messages,
165
+ tokenize=False,
166
+ add_generation_prompt=True
167
+ )
168
+
169
+ # Generate
170
+ inputs = tokenizer([text], return_tensors="pt").to(model.device)
171
+ outputs = model.generate(
172
+ **inputs,
173
+ max_new_tokens=1024,
174
+ temperature=0.4,
175
+ top_p=0.9,
176
+ do_sample=True
177
+ )
178
+
179
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
180
+ print(response)
181
+ ```
182
+
183
+ ### Using with Ollama (Recommended for Deployment)
184
+
185
+ **Step 1: Convert to GGUF** (if not already converted)
186
+ ```bash
187
+ # Convert merged model to GGUF
188
+ python llama.cpp/convert_hf_to_gguf.py merged_model/ \
189
+ --outfile securitygpt-14b-f16.gguf --outtype f16
190
+
191
+ # Quantize for deployment (Q8 recommended)
192
+ llama.cpp/llama-quantize \
193
+ securitygpt-14b-f16.gguf \
194
+ securitygpt-14b-q8.gguf Q8_0
195
+ ```
196
+
197
+ **Step 2: Create Modelfile**
198
+ ```dockerfile
199
+ FROM ./securitygpt-14b-q8.gguf
200
+
201
+ PARAMETER temperature 0.5
202
+ PARAMETER top_p 0.9
203
+ PARAMETER num_ctx 32768
204
+ PARAMETER stop "<|im_start|>"
205
+ PARAMETER stop "<|im_end|>"
206
+
207
+ TEMPLATE """<|im_start|>system
208
+ You are a helpful AI coding assistant specialized in secure software development.<|im_end|>
209
+ <|im_start|>user
210
+ {{ .Prompt }}<|im_end|>
211
+ <|im_start|>assistant
212
+ """
213
+
214
+ SYSTEM """You are SecurityGPT, a specialized AI assistant for secure software development. You follow security best practices including: argon2 password hashing, input validation, SQL injection prevention, XSS protection, proper authentication, and comprehensive error handling."""
215
+ ```
216
+
217
+ **Step 3: Deploy with Ollama**
218
+ ```bash
219
+ ollama create securitygpt:14b -f Modelfile
220
+ ollama run securitygpt:14b
221
+ ```
222
+
223
+ ### Example Prompts
224
+
225
+ **1. Secure Authentication Endpoint**
226
+ ```
227
+ Create a FastAPI endpoint for user login with JWT token generation.
228
+ Use argon2 for password hashing and include proper error handling.
229
+ ```
230
+
231
+ **2. React Component with Security**
232
+ ```
233
+ Create a React login form component with email validation,
234
+ password strength checking, and CSRF protection.
235
+ ```
236
+
237
+ **3. Database Security**
238
+ ```
239
+ Write a SQLAlchemy model for user authentication with
240
+ secure password storage and audit logging.
241
+ ```
242
+
243
+ **4. API Security Review**
244
+ ```
245
+ Review this API endpoint for security vulnerabilities:
246
+ [paste code]
247
+ ```
248
+
249
+ ## Performance & Benchmarks
250
+
251
+ ### Response Quality
252
+ - **Code correctness:** High (generates syntactically correct code)
253
+ - **Security adherence:** Excellent (consistently applies security best practices)
254
+ - **Best practice compliance:** Excellent (follows modern development patterns)
255
+
256
+
257
+ ## Limitations & Biases
258
+
259
+ ### Known Limitations
260
+
261
+ 1. **Domain Specificity**
262
+ - Optimized for web development (FastAPI, React)
263
+ - May be less effective for other domains (embedded systems, game development)
264
+
265
+ 2. **Training Data Constraints**
266
+ - Trained on patterns up to knowledge cutoff
267
+ - May not reflect latest framework versions
268
+ - Limited to English language code and documentation
269
+
270
+ 3. **Context Length**
271
+ - Maximum 32,768 tokens (though effectively handles ~16-24K for quality)
272
+ - Very large codebases may need chunking
273
+
274
+ 4. **Security Limitations**
275
+ - Code generation should ALWAYS be reviewed by humans
276
+ - Not a replacement for professional security audits
277
+ - May not catch all edge cases or vulnerabilities
278
+
279
+ ### Potential Biases
280
+
281
+ - **Technology stack bias:** Strong preference for specific tech stack (FastAPI, React, PostgreSQL)
282
+ - **Pattern repetition:** May favor certain code patterns from training data
283
+ - **Verbosity:** Sometimes generates more comprehensive solutions than requested
284
+
285
+ ### Mitigation Strategies
286
+
287
+ ✅ **Always review generated code** before production use
288
+ ✅ **Run security scanners** on generated code
289
+ ✅ **Test thoroughly** including edge cases
290
+ ✅ **Use alongside** professional security tools
291
+ ✅ **Keep dependencies updated** as model may reference older versions
292
+
293
+ ## Ethical Considerations
294
+
295
+ ### Responsible Use
296
+
297
+ This model should be used responsibly:
298
+
299
+ - ✅ **DO:** Use for learning, prototyping, and accelerating development
300
+ - ✅ **DO:** Review and test all generated code
301
+ - ✅ **DO:** Follow applicable security standards and regulations
302
+ - ⚠️ **DON'T:** Use for malicious purposes or exploit development
303
+ - ⚠️ **DON'T:** Deploy generated code without human review
304
+ - ⚠️ **DON'T:** Rely solely on AI for security-critical systems
305
+
306
+ ### Environmental Impact
307
+
308
+ - **Inference efficiency:** QLoRA and quantization reduce deployment costs
309
+ - **Optimization:** Unsloth reduces training time and energy consumption
310
+
311
+ ## Citation
312
+
313
+ If you use SecurityGPT in your research or projects, please cite:
314
+
315
+ ```bibtex
316
+ @misc{securitygpt2026,
317
+ title={SecurityGPT: A Security-Focused Code Generation Model},
318
+ author={[email protected]},
319
+ year={2026},
320
+ publisher={Hugging Face},
321
+ howpublished={\url{https://huggingface.co/pki/securitygpt-14b}},
322
+ note={Fine-tuned from Qwen2.5-Coder-14B-Instruct}
323
+ }
324
+ ```
325
+
326
+ **Base model citation:**
327
+ ```bibtex
328
+ @article{qwen2.5,
329
+ title={Qwen2.5-Coder Technical Report},
330
+ author={Qwen Team},
331
+ journal={arXiv preprint},
332
+ year={2024}
333
+ }
334
+ ```
335
+
336
+ ## Model Card Contact
337
+
338
+ For questions, issues, or collaboration:
339
+ - **Issues:** Open an issue on the model repository
340
+ - **Discussions:** Use Hugging Face discussions tab
341
+ - **Email:** Contact through Hugging Face profile
342
+
343
+ ## Changelog
344
+
345
+ ### v1.0.0 (2025-12)
346
+ - Initial release
347
+ - Fine-tuned on 16,000 security-focused examples
348
+ - Supports 32K context window
349
+ - Optimized for FastAPI, React, and security best practices
350
+
351
+ ## Acknowledgments
352
+
353
+ - **Base model:** [Qwen Team](https://huggingface.co/Qwen) for Qwen2.5-Coder-14B-Instruct
354
+ - **Training framework:** [Unsloth AI](https://github.com/unslothai/unsloth) for optimization
355
+ - **Quantization:** [llama.cpp](https://github.com/ggerganov/llama.cpp) for GGUF conversion
356
+ - **Deployment:** [Ollama](https://ollama.ai) for inference serving
357
+
358
+ ## License
359
+
360
+ This model is released under the **Apache 2.0 License**, same as the base Qwen2.5-Coder model.
361
+
362
+ ```
363
+
364
+ Licensed under the Apache License, Version 2.0 (the "License");
365
+ you may not use this file except in compliance with the License.
366
+ You may obtain a copy of the License at
367
+
368
+ http://www.apache.org/licenses/LICENSE-2.0
369
+
370
+ Unless required by applicable law or agreed to in writing, software
371
+ distributed under the License is distributed on an "AS IS" BASIS,
372
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
373
+ See the License for the specific language governing permissions and
374
+ limitations under the License.
375
+ ```
376
+
377
+ ---
378
+
379
+ **Disclaimer:** This model is provided as-is for research and development purposes. Always review and test generated code before production deployment. The authors are not responsible for any damages resulting from the use of this model.
USAGE_EXAMPLES.md ADDED
@@ -0,0 +1,657 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # SecurityGPT Usage Examples
2
+
3
+ Practical examples for using SecurityGPT in various development scenarios.
4
+
5
+ ## Table of Contents
6
+
7
+ 1. [Basic Usage](#basic-usage)
8
+ 2. [Secure API Development](#secure-api-development)
9
+ 3. [Frontend Development](#frontend-development)
10
+ 4. [Database Operations](#database-operations)
11
+ 5. [Security Reviews](#security-reviews)
12
+ 6. [DevOps & Infrastructure](#devops--infrastructure)
13
+ 7. [Advanced Patterns](#advanced-patterns)
14
+
15
+ ---
16
+
17
+ ## Basic Usage
18
+
19
+ ### Example 1: Simple Code Generation
20
+
21
+ ```python
22
+ from transformers import AutoModelForCausalLM, AutoTokenizer
23
+
24
+ model_name = "pki/securitygpt-14b"
25
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
26
+ model = AutoModelForCausalLM.from_pretrained(
27
+ model_name,
28
+ device_map="auto",
29
+ trust_remote_code=True
30
+ )
31
+
32
+ # Simple prompt
33
+ prompt = "Write a Python function to validate email addresses using regex"
34
+
35
+ messages = [
36
+ {"role": "system", "content": "You are a helpful coding assistant."},
37
+ {"role": "user", "content": prompt}
38
+ ]
39
+
40
+ text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
41
+ inputs = tokenizer([text], return_tensors="pt").to(model.device)
42
+
43
+ outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.7)
44
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
45
+ print(response)
46
+ ```
47
+
48
+ ### Example 2: Using Ollama CLI
49
+
50
+ ```bash
51
+ # Simple query
52
+ ollama run securitygpt:14b "Create a FastAPI health check endpoint"
53
+
54
+ # With context
55
+ ollama run securitygpt:14b "Create a user authentication endpoint with JWT tokens and argon2 password hashing"
56
+
57
+ # Code review
58
+ ollama run securitygpt:14b "Review this code for security issues: $(cat auth.py)"
59
+ ```
60
+
61
+ ---
62
+
63
+ ## Secure API Development
64
+
65
+ ### Example 3: FastAPI User Authentication
66
+
67
+ **Prompt:**
68
+ ```
69
+ Create a complete FastAPI authentication system with:
70
+ - User signup endpoint with email validation
71
+ - Login endpoint with JWT token generation
72
+ - Password hashing using argon2
73
+ - Proper error handling
74
+ - Input validation using Pydantic
75
+ ```
76
+
77
+ **Expected Output Pattern:**
78
+ ```python
79
+ from fastapi import APIRouter, HTTPException, Depends
80
+ from pydantic import BaseModel, EmailStr, Field
81
+ from passlib.context import CryptContext
82
+ from datetime import datetime, timedelta
83
+ import jwt
84
+
85
+ router = APIRouter(prefix="/api/v1/auth", tags=["authentication"])
86
+
87
+ # Password hashing with argon2 (NEVER bcrypt)
88
+ pwd_context = CryptContext(schemes=["argon2"], deprecated="auto")
89
+
90
+ class UserSignup(BaseModel):
91
+ email: EmailStr
92
+ password: str = Field(..., min_length=8)
93
+ full_name: str = Field(..., min_length=2)
94
+
95
+ class UserLogin(BaseModel):
96
+ email: EmailStr
97
+ password: str
98
+
99
+ @router.post("/signup")
100
+ async def signup(user: UserSignup):
101
+ """Create new user with secure password hashing."""
102
+ # Validate password strength
103
+ if len(user.password) < 8:
104
+ raise HTTPException(400, "Password must be at least 8 characters")
105
+
106
+ # Hash password with argon2
107
+ hashed_password = pwd_context.hash(user.password)
108
+
109
+ # Store user in database
110
+ # ... (database logic)
111
+
112
+ return {"message": "User created successfully"}
113
+
114
+ @router.post("/login")
115
+ async def login(credentials: UserLogin):
116
+ """Authenticate user and return JWT token."""
117
+ # Get user from database
118
+ # user = get_user_by_email(credentials.email)
119
+
120
+ # Verify password
121
+ if not pwd_context.verify(credentials.password, user.hashed_password):
122
+ raise HTTPException(401, "Invalid credentials")
123
+
124
+ # Generate JWT token
125
+ token_data = {
126
+ "sub": user.email,
127
+ "exp": datetime.utcnow() + timedelta(hours=24)
128
+ }
129
+ token = jwt.encode(token_data, SECRET_KEY, algorithm="HS256")
130
+
131
+ return {"access_token": token, "token_type": "bearer"}
132
+ ```
133
+
134
+ ### Example 4: API with Input Validation
135
+
136
+ **Prompt:**
137
+ ```
138
+ Create a FastAPI endpoint for creating blog posts with:
139
+ - Title validation (max 200 chars)
140
+ - Content validation
141
+ - Tag validation (max 5 tags)
142
+ - SQL injection prevention
143
+ - Proper error responses
144
+ ```
145
+
146
+ ---
147
+
148
+ ## Frontend Development
149
+
150
+ ### Example 5: Secure React Login Form
151
+
152
+ **Prompt:**
153
+ ```
154
+ Create a React login component with:
155
+ - Email and password inputs
156
+ - Client-side validation
157
+ - XSS protection
158
+ - CSRF token handling
159
+ - Loading states
160
+ - Error display
161
+ - TypeScript types
162
+ ```
163
+
164
+ **Expected Output Pattern:**
165
+ ```typescript
166
+ import React, { useState } from 'react';
167
+ import DOMPurify from 'dompurify';
168
+
169
+ interface LoginFormProps {
170
+ onSubmit: (email: string, password: string) => Promise<void>;
171
+ csrfToken: string;
172
+ }
173
+
174
+ interface FormErrors {
175
+ email?: string;
176
+ password?: string;
177
+ general?: string;
178
+ }
179
+
180
+ export const LoginForm: React.FC<LoginFormProps> = ({ onSubmit, csrfToken }) => {
181
+ const [email, setEmail] = useState('');
182
+ const [password, setPassword] = useState('');
183
+ const [errors, setErrors] = useState<FormErrors>({});
184
+ const [loading, setLoading] = useState(false);
185
+
186
+ const validateEmail = (email: string): boolean => {
187
+ const regex = /^[^\s@]+@[^\s@]+\.[^\s@]+$/;
188
+ return regex.test(email);
189
+ };
190
+
191
+ const handleSubmit = async (e: React.FormEvent) => {
192
+ e.preventDefault();
193
+
194
+ // Clear previous errors
195
+ setErrors({});
196
+
197
+ // Validate inputs
198
+ const newErrors: FormErrors = {};
199
+
200
+ if (!validateEmail(email)) {
201
+ newErrors.email = 'Invalid email address';
202
+ }
203
+
204
+ if (password.length < 8) {
205
+ newErrors.password = 'Password must be at least 8 characters';
206
+ }
207
+
208
+ if (Object.keys(newErrors).length > 0) {
209
+ setErrors(newErrors);
210
+ return;
211
+ }
212
+
213
+ // Sanitize inputs (XSS protection)
214
+ const cleanEmail = DOMPurify.sanitize(email);
215
+
216
+ try {
217
+ setLoading(true);
218
+ await onSubmit(cleanEmail, password);
219
+ } catch (error) {
220
+ setErrors({ general: 'Login failed. Please try again.' });
221
+ } finally {
222
+ setLoading(false);
223
+ }
224
+ };
225
+
226
+ return (
227
+ <form onSubmit={handleSubmit}>
228
+ <input type="hidden" name="csrf_token" value={csrfToken} />
229
+
230
+ <div>
231
+ <label htmlFor="email">Email</label>
232
+ <input
233
+ id="email"
234
+ type="email"
235
+ value={email}
236
+ onChange={(e) => setEmail(e.target.value)}
237
+ disabled={loading}
238
+ required
239
+ />
240
+ {errors.email && <span className="error">{errors.email}</span>}
241
+ </div>
242
+
243
+ <div>
244
+ <label htmlFor="password">Password</label>
245
+ <input
246
+ id="password"
247
+ type="password"
248
+ value={password}
249
+ onChange={(e) => setPassword(e.target.value)}
250
+ disabled={loading}
251
+ required
252
+ />
253
+ {errors.password && <span className="error">{errors.password}</span>}
254
+ </div>
255
+
256
+ {errors.general && <div className="error">{errors.general}</div>}
257
+
258
+ <button type="submit" disabled={loading}>
259
+ {loading ? 'Logging in...' : 'Login'}
260
+ </button>
261
+ </form>
262
+ );
263
+ };
264
+ ```
265
+
266
+ ### Example 6: API Client with Error Handling
267
+
268
+ **Prompt:**
269
+ ```
270
+ Create a TypeScript API client class with:
271
+ - Axios integration
272
+ - JWT token management
273
+ - Request interceptors
274
+ - Error handling
275
+ - Retry logic
276
+ - Type safety
277
+ ```
278
+
279
+ ---
280
+
281
+ ## Database Operations
282
+
283
+ ### Example 7: Secure SQLAlchemy Model
284
+
285
+ **Prompt:**
286
+ ```
287
+ Create a SQLAlchemy User model with:
288
+ - Secure password storage
289
+ - Email uniqueness constraint
290
+ - Timestamps (created_at, updated_at)
291
+ - Soft delete support
292
+ - Audit logging
293
+ ```
294
+
295
+ **Expected Output:**
296
+ ```python
297
+ from sqlalchemy import Column, Integer, String, DateTime, Boolean
298
+ from sqlalchemy.ext.declarative import declarative_base
299
+ from datetime import datetime
300
+ from passlib.context import CryptContext
301
+
302
+ Base = declarative_base()
303
+ pwd_context = CryptContext(schemes=["argon2"], deprecated="auto")
304
+
305
+ class User(Base):
306
+ __tablename__ = "users"
307
+
308
+ id = Column(Integer, primary_key=True, index=True)
309
+ email = Column(String(255), unique=True, index=True, nullable=False)
310
+ hashed_password = Column(String(255), nullable=False)
311
+ full_name = Column(String(255))
312
+ is_active = Column(Boolean, default=True)
313
+ is_deleted = Column(Boolean, default=False)
314
+ created_at = Column(DateTime, default=datetime.utcnow, nullable=False)
315
+ updated_at = Column(DateTime, default=datetime.utcnow, onupdate=datetime.utcnow)
316
+
317
+ def set_password(self, password: str):
318
+ """Hash and set user password using argon2."""
319
+ self.hashed_password = pwd_context.hash(password)
320
+
321
+ def verify_password(self, password: str) -> bool:
322
+ """Verify password against stored hash."""
323
+ return pwd_context.verify(password, self.hashed_password)
324
+
325
+ def soft_delete(self):
326
+ """Mark user as deleted without removing from database."""
327
+ self.is_deleted = True
328
+ self.is_active = False
329
+ ```
330
+
331
+ ### Example 8: Database Migration
332
+
333
+ **Prompt:**
334
+ ```
335
+ Create an Alembic migration script to add user authentication table with proper indexes
336
+ ```
337
+
338
+ ---
339
+
340
+ ## Security Reviews
341
+
342
+ ### Example 9: Code Security Audit
343
+
344
+ **Prompt:**
345
+ ```
346
+ Review this authentication code for security vulnerabilities:
347
+
348
+ def login(username, password):
349
+ query = f"SELECT * FROM users WHERE username='{username}' AND password='{password}'"
350
+ result = db.execute(query)
351
+ if result:
352
+ return create_token(username)
353
+ return None
354
+ ```
355
+
356
+ **Expected Output:**
357
+ ```
358
+ SECURITY VULNERABILITIES FOUND:
359
+
360
+ 1. SQL INJECTION (CRITICAL)
361
+ - Line 2: Raw string concatenation in SQL query
362
+ - Attack vector: username = "admin' OR '1'='1"
363
+ - Fix: Use parameterized queries or ORM
364
+
365
+ 2. PLAINTEXT PASSWORDS (CRITICAL)
366
+ - Line 2: Password stored/compared in plaintext
367
+ - Fix: Use argon2 password hashing
368
+
369
+ 3. TIMING ATTACK (MEDIUM)
370
+ - Different execution paths for valid/invalid users
371
+ - Fix: Use constant-time comparison
372
+
373
+ SECURE IMPLEMENTATION:
374
+
375
+ from sqlalchemy.orm import Session
376
+ from passlib.context import CryptContext
377
+
378
+ pwd_context = CryptContext(schemes=["argon2"], deprecated="auto")
379
+
380
+ def login(username: str, password: str, db: Session):
381
+ """Secure login with parameterized query and password hashing."""
382
+ # Parameterized query (SQL injection prevention)
383
+ user = db.query(User).filter(User.username == username).first()
384
+
385
+ # Constant-time check to prevent timing attacks
386
+ if user is None:
387
+ # Perform dummy hash to maintain constant time
388
+ pwd_context.hash("dummy")
389
+ return None
390
+
391
+ # Verify password with argon2
392
+ if not pwd_context.verify(password, user.hashed_password):
393
+ return None
394
+
395
+ return create_token(user.id)
396
+ ```
397
+
398
+ ---
399
+
400
+ ## DevOps & Infrastructure
401
+
402
+ ### Example 10: Docker Compose with Security
403
+
404
+ **Prompt:**
405
+ ```
406
+ Create a secure docker-compose.yml for a FastAPI app with PostgreSQL including:
407
+ - Non-root users
408
+ - Environment variables from secrets
409
+ - Network isolation
410
+ - Health checks
411
+ - Resource limits
412
+ ```
413
+
414
+ ### Example 11: GitLab CI/CD Pipeline
415
+
416
+ **Prompt:**
417
+ ```
418
+ Create a GitLab CI pipeline for a Python FastAPI app with:
419
+ - Linting (flake8)
420
+ - Testing (pytest)
421
+ - Security scanning
422
+ - Docker build
423
+ - Deployment to production
424
+ ```
425
+
426
+ ---
427
+
428
+ ## Advanced Patterns
429
+
430
+ ### Example 12: Rate Limiting Middleware
431
+
432
+ **Prompt:**
433
+ ```
434
+ Create FastAPI rate limiting middleware using Redis with:
435
+ - IP-based limiting
436
+ - Token bucket algorithm
437
+ - Configurable limits
438
+ - Custom error responses
439
+ ```
440
+
441
+ ### Example 13: API Key Management
442
+
443
+ **Prompt:**
444
+ ```
445
+ Create an API key management system with:
446
+ - Key generation with secure random
447
+ - Key hashing for storage
448
+ - Rate limiting per key
449
+ - Key expiration
450
+ - Usage tracking
451
+ ```
452
+
453
+ ### Example 14: Multi-factor Authentication
454
+
455
+ **Prompt:**
456
+ ```
457
+ Implement TOTP-based 2FA for FastAPI with:
458
+ - QR code generation
459
+ - Token verification
460
+ - Backup codes
461
+ - Account recovery
462
+ ```
463
+
464
+ ---
465
+
466
+ ## Integration Examples
467
+
468
+ ### Example 15: Using with LangChain
469
+
470
+ ```python
471
+ from langchain.llms import HuggingFacePipeline
472
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
473
+
474
+ model_name = "pki/securitygpt-14b"
475
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
476
+ model = AutoModelForCausalLM.from_pretrained(
477
+ model_name,
478
+ device_map="auto",
479
+ trust_remote_code=True
480
+ )
481
+
482
+ pipe = pipeline(
483
+ "text-generation",
484
+ model=model,
485
+ tokenizer=tokenizer,
486
+ max_new_tokens=1024,
487
+ temperature=0.7
488
+ )
489
+
490
+ llm = HuggingFacePipeline(pipeline=pipe)
491
+
492
+ # Use with LangChain
493
+ from langchain.chains import LLMChain
494
+ from langchain.prompts import PromptTemplate
495
+
496
+ template = """Create a secure {feature} for a {framework} application.
497
+ Include proper error handling and security best practices.
498
+
499
+ Feature: {feature}
500
+ Framework: {framework}
501
+ """
502
+
503
+ prompt = PromptTemplate(template=template, input_variables=["feature", "framework"])
504
+ chain = LLMChain(llm=llm, prompt=prompt)
505
+
506
+ result = chain.run(feature="user authentication", framework="FastAPI")
507
+ print(result)
508
+ ```
509
+
510
+ ### Example 16: Batch Processing
511
+
512
+ ```python
513
+ # Process multiple code generation tasks
514
+ prompts = [
515
+ "Create a FastAPI endpoint for user registration",
516
+ "Create a React form component for login",
517
+ "Create a PostgreSQL schema for user management"
518
+ ]
519
+
520
+ for prompt in prompts:
521
+ messages = [
522
+ {"role": "system", "content": "You are a secure coding assistant."},
523
+ {"role": "user", "content": prompt}
524
+ ]
525
+
526
+ text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
527
+ inputs = tokenizer([text], return_tensors="pt").to(model.device)
528
+
529
+ outputs = model.generate(**inputs, max_new_tokens=512)
530
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
531
+
532
+ print(f"\n{'='*60}\nPrompt: {prompt}\n{'='*60}")
533
+ print(response)
534
+ ```
535
+
536
+ ---
537
+
538
+ ## Tips for Best Results
539
+
540
+ ### 1. Be Specific in Prompts
541
+
542
+ ❌ Bad: "Create an API endpoint"
543
+ ✅ Good: "Create a FastAPI POST endpoint at /api/v1/users for user registration with email validation and argon2 password hashing"
544
+
545
+ ### 2. Specify Technology Stack
546
+
547
+ Include framework versions and specific libraries when relevant:
548
+ ```
549
+ Create a React 18 component using TypeScript and Tailwind CSS for...
550
+ ```
551
+
552
+ ### 3. Request Security Features
553
+
554
+ Explicitly ask for security features:
555
+ ```
556
+ Create a login endpoint with argon2 password hashing, rate limiting, and CSRF protection
557
+ ```
558
+
559
+ ### 4. Use System Prompts
560
+
561
+ Customize the system prompt for your use case:
562
+ ```python
563
+ messages = [
564
+ {"role": "system", "content": "You are a senior security engineer reviewing code for vulnerabilities."},
565
+ {"role": "user", "content": "Review this authentication code..."}
566
+ ]
567
+ ```
568
+
569
+ ### 5. Adjust Temperature
570
+
571
+ - **Low (0.1-0.3):** Deterministic, consistent code generation
572
+ - **Medium (0.5-0.7):** Balanced creativity and consistency
573
+ - **High (0.8-1.0):** More creative solutions, less predictable
574
+
575
+ ### 6. Iterate and Refine
576
+
577
+ Use follow-up prompts to refine output:
578
+ ```
579
+ 1st prompt: "Create a user authentication endpoint"
580
+ 2nd prompt: "Add rate limiting to prevent brute force attacks"
581
+ 3rd prompt: "Add logging for security audit trail"
582
+ ```
583
+
584
+ ---
585
+
586
+ ## Common Patterns
587
+
588
+ ### Pattern 1: Full-Stack Feature
589
+
590
+ ```
591
+ Create a complete user profile feature including:
592
+ - Backend: FastAPI endpoint with SQLAlchemy model
593
+ - Frontend: React component with TypeScript
594
+ - Database: PostgreSQL migration script
595
+ - Tests: pytest for backend, Jest for frontend
596
+ ```
597
+
598
+ ### Pattern 2: Security Hardening
599
+
600
+ ```
601
+ Review and harden this [component] for production:
602
+ - Add input validation
603
+ - Implement rate limiting
604
+ - Add security headers
605
+ - Add audit logging
606
+ - Fix any SQL injection or XSS vulnerabilities
607
+ ```
608
+
609
+ ### Pattern 3: Migration/Upgrade
610
+
611
+ ```
612
+ Migrate this Flask endpoint to FastAPI:
613
+ - Use Pydantic for validation
614
+ - Add async/await
615
+ - Update to /api/v1 versioning
616
+ - Add OpenAPI documentation
617
+ [paste code]
618
+ ```
619
+
620
+ ---
621
+
622
+ ## Troubleshooting
623
+
624
+ ### Issue: Model generating outdated patterns
625
+
626
+ **Solution:** Explicitly specify modern versions in prompt
627
+ ```
628
+ Create a FastAPI endpoint using FastAPI 0.110+ with Pydantic v2
629
+ ```
630
+
631
+ ### Issue: Output too verbose
632
+
633
+ **Solution:** Lower temperature and add conciseness requirement
634
+ ```python
635
+ outputs = model.generate(..., temperature=0.3)
636
+ # Add to prompt: "Provide concise implementation without extensive comments"
637
+ ```
638
+
639
+ ### Issue: Missing security features
640
+
641
+ **Solution:** Explicitly list required security features in prompt
642
+ ```
643
+ Include: input validation, SQL injection prevention, XSS protection, rate limiting
644
+ ```
645
+
646
+ ---
647
+
648
+ ## Additional Resources
649
+
650
+ - [Model Card](./MODEL_CARD.md) - Full model documentation
651
+ - [Training Details](./TRAINING.md) - Training methodology
652
+ - [Deployment Guide](./DEPLOYMENT.md) - Production deployment
653
+ - [Hugging Face Model Hub](https://huggingface.co/pki/securitygpt-14b)
654
+
655
+ ---
656
+
657
+ **Need help?** Open an issue on the model repository or use the Hugging Face discussions tab.
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
chat_template.jinja ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0]['role'] == 'system' %}
4
+ {{- messages[0]['content'] }}
5
+ {%- else %}
6
+ {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}
7
+ {%- endif %}
8
+ {{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
9
+ {%- for tool in tools %}
10
+ {{- "\n" }}
11
+ {{- tool | tojson }}
12
+ {%- endfor %}
13
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
14
+ {%- else %}
15
+ {%- if messages[0]['role'] == 'system' %}
16
+ {{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
17
+ {%- else %}
18
+ {{- '<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n' }}
19
+ {%- endif %}
20
+ {%- endif %}
21
+ {%- for message in messages %}
22
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
23
+ {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
24
+ {%- elif message.role == "assistant" %}
25
+ {{- '<|im_start|>' + message.role }}
26
+ {%- if message.content %}
27
+ {{- '\n' + message.content }}
28
+ {%- endif %}
29
+ {%- for tool_call in message.tool_calls %}
30
+ {%- if tool_call.function is defined %}
31
+ {%- set tool_call = tool_call.function %}
32
+ {%- endif %}
33
+ {{- '\n<tool_call>\n{"name": "' }}
34
+ {{- tool_call.name }}
35
+ {{- '", "arguments": ' }}
36
+ {{- tool_call.arguments | tojson }}
37
+ {{- '}\n</tool_call>' }}
38
+ {%- endfor %}
39
+ {{- '<|im_end|>\n' }}
40
+ {%- elif message.role == "tool" %}
41
+ {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
42
+ {{- '<|im_start|>user' }}
43
+ {%- endif %}
44
+ {{- '\n<tool_response>\n' }}
45
+ {{- message.content }}
46
+ {{- '\n</tool_response>' }}
47
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
48
+ {{- '<|im_end|>\n' }}
49
+ {%- endif %}
50
+ {%- endif %}
51
+ {%- endfor %}
52
+ {%- if add_generation_prompt %}
53
+ {{- '<|im_start|>assistant\n' }}
54
+ {%- endif %}
config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2ForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "torch_dtype": "bfloat16",
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 5120,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 13824,
12
+ "layer_types": [
13
+ "full_attention",
14
+ "full_attention",
15
+ "full_attention",
16
+ "full_attention",
17
+ "full_attention",
18
+ "full_attention",
19
+ "full_attention",
20
+ "full_attention",
21
+ "full_attention",
22
+ "full_attention",
23
+ "full_attention",
24
+ "full_attention",
25
+ "full_attention",
26
+ "full_attention",
27
+ "full_attention",
28
+ "full_attention",
29
+ "full_attention",
30
+ "full_attention",
31
+ "full_attention",
32
+ "full_attention",
33
+ "full_attention",
34
+ "full_attention",
35
+ "full_attention",
36
+ "full_attention",
37
+ "full_attention",
38
+ "full_attention",
39
+ "full_attention",
40
+ "full_attention",
41
+ "full_attention",
42
+ "full_attention",
43
+ "full_attention",
44
+ "full_attention",
45
+ "full_attention",
46
+ "full_attention",
47
+ "full_attention",
48
+ "full_attention",
49
+ "full_attention",
50
+ "full_attention",
51
+ "full_attention",
52
+ "full_attention",
53
+ "full_attention",
54
+ "full_attention",
55
+ "full_attention",
56
+ "full_attention",
57
+ "full_attention",
58
+ "full_attention",
59
+ "full_attention",
60
+ "full_attention"
61
+ ],
62
+ "max_position_embeddings": 32768,
63
+ "max_window_layers": 70,
64
+ "model_type": "qwen2",
65
+ "num_attention_heads": 40,
66
+ "num_hidden_layers": 48,
67
+ "num_key_value_heads": 8,
68
+ "pad_token_id": 151654,
69
+ "rms_norm_eps": 1e-06,
70
+ "rope_scaling": null,
71
+ "rope_theta": 1000000.0,
72
+ "sliding_window": null,
73
+ "tie_word_embeddings": false,
74
+ "transformers_version": "4.57.3",
75
+ "unsloth_fixed": true,
76
+ "unsloth_version": "2025.12.4",
77
+ "use_cache": true,
78
+ "use_sliding_window": false,
79
+ "vocab_size": 152064
80
+ }
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": null,
3
+ "do_sample": true,
4
+ "eos_token_id": 151645,
5
+ "pad_token_id": 151654,
6
+ "top_p": 0.9,
7
+ "top_k": 50,
8
+ "temperature": 0.7,
9
+ "repetition_penalty": 1.0,
10
+ "max_length": 32768,
11
+ "transformers_version": "4.57.3"
12
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7772c48c028ace57d9e3b5982f8dc29fdb808c12d0f52609a51d31f096a573b3
3
+ size 4986211280
model-00002-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b62e7a6aa87569bba41d5938524e2487d44741ac10073f4e56cad0470d9d844
3
+ size 4954847344
model-00003-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00533bbf80a0647f91c42b783269c79b2dd2706f75d8e9b6210ede471d716b42
3
+ size 3013472256
model.safetensors.index.json ADDED
@@ -0,0 +1,586 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 29540067328
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00006-of-00006.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00006.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00006.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00006.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00006.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00006.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00006.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00006.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00004-of-00006.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00006.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00004-of-00006.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00006.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00004-of-00006.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00005-of-00006.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
368
+ "model.layers.36.input_layernorm.weight": "model-00005-of-00006.safetensors",
369
+ "model.layers.36.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
370
+ "model.layers.36.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
371
+ "model.layers.36.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
372
+ "model.layers.36.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
373
+ "model.layers.36.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
374
+ "model.layers.36.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
375
+ "model.layers.36.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
376
+ "model.layers.36.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
377
+ "model.layers.36.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
378
+ "model.layers.36.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
379
+ "model.layers.36.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
380
+ "model.layers.37.input_layernorm.weight": "model-00005-of-00006.safetensors",
381
+ "model.layers.37.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
382
+ "model.layers.37.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
383
+ "model.layers.37.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
384
+ "model.layers.37.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
385
+ "model.layers.37.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
386
+ "model.layers.37.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
387
+ "model.layers.37.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
388
+ "model.layers.37.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
389
+ "model.layers.37.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
390
+ "model.layers.37.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
391
+ "model.layers.37.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
392
+ "model.layers.38.input_layernorm.weight": "model-00005-of-00006.safetensors",
393
+ "model.layers.38.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
394
+ "model.layers.38.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
395
+ "model.layers.38.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
396
+ "model.layers.38.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
397
+ "model.layers.38.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
398
+ "model.layers.38.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
399
+ "model.layers.38.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
400
+ "model.layers.38.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
401
+ "model.layers.38.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
402
+ "model.layers.38.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
403
+ "model.layers.38.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
404
+ "model.layers.39.input_layernorm.weight": "model-00005-of-00006.safetensors",
405
+ "model.layers.39.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
406
+ "model.layers.39.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
407
+ "model.layers.39.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
408
+ "model.layers.39.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
409
+ "model.layers.39.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
410
+ "model.layers.39.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
411
+ "model.layers.39.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
412
+ "model.layers.39.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
413
+ "model.layers.39.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
414
+ "model.layers.39.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
415
+ "model.layers.39.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
416
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
417
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
418
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
419
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
420
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
421
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
422
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
423
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
424
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
425
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
426
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
427
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
428
+ "model.layers.40.input_layernorm.weight": "model-00005-of-00006.safetensors",
429
+ "model.layers.40.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
430
+ "model.layers.40.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
431
+ "model.layers.40.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
432
+ "model.layers.40.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
433
+ "model.layers.40.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
434
+ "model.layers.40.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
435
+ "model.layers.40.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
436
+ "model.layers.40.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
437
+ "model.layers.40.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
438
+ "model.layers.40.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
439
+ "model.layers.40.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
440
+ "model.layers.41.input_layernorm.weight": "model-00005-of-00006.safetensors",
441
+ "model.layers.41.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
442
+ "model.layers.41.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
443
+ "model.layers.41.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
444
+ "model.layers.41.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
445
+ "model.layers.41.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
446
+ "model.layers.41.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
447
+ "model.layers.41.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
448
+ "model.layers.41.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
449
+ "model.layers.41.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
450
+ "model.layers.41.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
451
+ "model.layers.41.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
452
+ "model.layers.42.input_layernorm.weight": "model-00006-of-00006.safetensors",
453
+ "model.layers.42.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
454
+ "model.layers.42.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
455
+ "model.layers.42.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
456
+ "model.layers.42.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
457
+ "model.layers.42.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
458
+ "model.layers.42.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
459
+ "model.layers.42.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
460
+ "model.layers.42.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
461
+ "model.layers.42.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
462
+ "model.layers.42.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
463
+ "model.layers.42.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
464
+ "model.layers.43.input_layernorm.weight": "model-00006-of-00006.safetensors",
465
+ "model.layers.43.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
466
+ "model.layers.43.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
467
+ "model.layers.43.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
468
+ "model.layers.43.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
469
+ "model.layers.43.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
470
+ "model.layers.43.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
471
+ "model.layers.43.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
472
+ "model.layers.43.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
473
+ "model.layers.43.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
474
+ "model.layers.43.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
475
+ "model.layers.43.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
476
+ "model.layers.44.input_layernorm.weight": "model-00006-of-00006.safetensors",
477
+ "model.layers.44.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
478
+ "model.layers.44.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
479
+ "model.layers.44.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
480
+ "model.layers.44.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
481
+ "model.layers.44.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
482
+ "model.layers.44.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
483
+ "model.layers.44.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
484
+ "model.layers.44.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
485
+ "model.layers.44.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
486
+ "model.layers.44.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
487
+ "model.layers.44.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
488
+ "model.layers.45.input_layernorm.weight": "model-00006-of-00006.safetensors",
489
+ "model.layers.45.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
490
+ "model.layers.45.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
491
+ "model.layers.45.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
492
+ "model.layers.45.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
493
+ "model.layers.45.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
494
+ "model.layers.45.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
495
+ "model.layers.45.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
496
+ "model.layers.45.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
497
+ "model.layers.45.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
498
+ "model.layers.45.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
499
+ "model.layers.45.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
500
+ "model.layers.46.input_layernorm.weight": "model-00006-of-00006.safetensors",
501
+ "model.layers.46.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
502
+ "model.layers.46.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
503
+ "model.layers.46.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
504
+ "model.layers.46.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
505
+ "model.layers.46.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
506
+ "model.layers.46.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
507
+ "model.layers.46.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
508
+ "model.layers.46.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
509
+ "model.layers.46.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
510
+ "model.layers.46.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
511
+ "model.layers.46.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
512
+ "model.layers.47.input_layernorm.weight": "model-00006-of-00006.safetensors",
513
+ "model.layers.47.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
514
+ "model.layers.47.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
515
+ "model.layers.47.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
516
+ "model.layers.47.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
517
+ "model.layers.47.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
518
+ "model.layers.47.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
519
+ "model.layers.47.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
520
+ "model.layers.47.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
521
+ "model.layers.47.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
522
+ "model.layers.47.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
523
+ "model.layers.47.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
524
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00006.safetensors",
525
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
526
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
527
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
528
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
529
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
530
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
531
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
532
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
533
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
534
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
535
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
536
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00006.safetensors",
537
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
538
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
539
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
540
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
541
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
542
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
543
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
544
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
545
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
546
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
547
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
548
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
549
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
550
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
551
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
552
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
553
+ "model.layers.7.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
554
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
555
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
556
+ "model.layers.7.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
557
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
558
+ "model.layers.7.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
559
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
560
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
561
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
562
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
563
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
564
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
565
+ "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
566
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
567
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
568
+ "model.layers.8.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
569
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
570
+ "model.layers.8.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
571
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
572
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
573
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
574
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
575
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
576
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
577
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
578
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
579
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
580
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
581
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
582
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
583
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
584
+ "model.norm.weight": "model-00006-of-00006.safetensors"
585
+ }
586
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|vision_pad|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "clean_up_tokenization_spaces": false,
199
+ "eos_token": "<|im_end|>",
200
+ "errors": "replace",
201
+ "extra_special_tokens": {},
202
+ "model_max_length": 32768,
203
+ "pad_token": "<|vision_pad|>",
204
+ "padding_side": "right",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null,
208
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n"
209
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff