new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 8

Antisemitic Messages? A Guide to High-Quality Annotation and a Labeled Dataset of Tweets

One of the major challenges in automatic hate speech detection is the lack of datasets that cover a wide range of biased and unbiased messages and that are consistently labeled. We propose a labeling procedure that addresses some of the common weaknesses of labeled datasets. We focus on antisemitic speech on Twitter and create a labeled dataset of 6,941 tweets that cover a wide range of topics common in conversations about Jews, Israel, and antisemitism between January 2019 and December 2021 by drawing from representative samples with relevant keywords. Our annotation process aims to strictly apply a commonly used definition of antisemitism by forcing annotators to specify which part of the definition applies, and by giving them the option to personally disagree with the definition on a case-by-case basis. Labeling tweets that call out antisemitism, report antisemitism, or are otherwise related to antisemitism (such as the Holocaust) but are not actually antisemitic can help reduce false positives in automated detection. The dataset includes 1,250 tweets (18%) that are antisemitic according to the International Holocaust Remembrance Alliance (IHRA) definition of antisemitism. It is important to note, however, that the dataset is not comprehensive. Many topics are still not covered, and it only includes tweets collected from Twitter between January 2019 and December 2021. Additionally, the dataset only includes tweets that were written in English. Despite these limitations, we hope that this is a meaningful contribution to improving the automated detection of antisemitic speech.

  • 4 authors
·
Apr 27, 2023

TACAM: Topic And Context Aware Argument Mining

In this work we address the problem of argument search. The purpose of argument search is the distillation of pro and contra arguments for requested topics from large text corpora. In previous works, the usual approach is to use a standard search engine to extract text parts which are relevant to the given topic and subsequently use an argument recognition algorithm to select arguments from them. The main challenge in the argument recognition task, which is also known as argument mining, is that often sentences containing arguments are structurally similar to purely informative sentences without any stance about the topic. In fact, they only differ semantically. Most approaches use topic or search term information only for the first search step and therefore assume that arguments can be classified independently of a topic. We argue that topic information is crucial for argument mining, since the topic defines the semantic context of an argument. Precisely, we propose different models for the classification of arguments, which take information about a topic of an argument into account. Moreover, to enrich the context of a topic and to let models understand the context of the potential argument better, we integrate information from different external sources such as Knowledge Graphs or pre-trained NLP models. Our evaluation shows that considering topic information, especially in connection with external information, provides a significant performance boost for the argument mining task.

  • 3 authors
·
May 26, 2019

RIGHT: Retrieval-augmented Generation for Mainstream Hashtag Recommendation

Automatic mainstream hashtag recommendation aims to accurately provide users with concise and popular topical hashtags before publication. Generally, mainstream hashtag recommendation faces challenges in the comprehensive difficulty of newly posted tweets in response to new topics, and the accurate identification of mainstream hashtags beyond semantic correctness. However, previous retrieval-based methods based on a fixed predefined mainstream hashtag list excel in producing mainstream hashtags, but fail to understand the constant flow of up-to-date information. Conversely, generation-based methods demonstrate a superior ability to comprehend newly posted tweets, but their capacity is constrained to identifying mainstream hashtags without additional features. Inspired by the recent success of the retrieval-augmented technique, in this work, we attempt to adopt this framework to combine the advantages of both approaches. Meantime, with the help of the generator component, we could rethink how to further improve the quality of the retriever component at a low cost. Therefore, we propose RetrIeval-augmented Generative Mainstream HashTag Recommender (RIGHT), which consists of three components: 1) a retriever seeks relevant hashtags from the entire tweet-hashtags set; 2) a selector enhances mainstream identification by introducing global signals; and 3) a generator incorporates input tweets and selected hashtags to directly generate the desired hashtags. The experimental results show that our method achieves significant improvements over state-of-the-art baselines. Moreover, RIGHT can be easily integrated into large language models, improving the performance of ChatGPT by more than 10%.

  • 6 authors
·
Dec 16, 2023

ADSumm: Annotated Ground-truth Summary Datasets for Disaster Tweet Summarization

Online social media platforms, such as Twitter, provide valuable information during disaster events. Existing tweet disaster summarization approaches provide a summary of these events to aid government agencies, humanitarian organizations, etc., to ensure effective disaster response. In the literature, there are two types of approaches for disaster summarization, namely, supervised and unsupervised approaches. Although supervised approaches are typically more effective, they necessitate a sizable number of disaster event summaries for testing and training. However, there is a lack of good number of disaster summary datasets for training and evaluation. This motivates us to add more datasets to make supervised learning approaches more efficient. In this paper, we present ADSumm, which adds annotated ground-truth summaries for eight disaster events which consist of both natural and man-made disaster events belonging to seven different countries. Our experimental analysis shows that the newly added datasets improve the performance of the supervised summarization approaches by 8-28% in terms of ROUGE-N F1-score. Moreover, in newly annotated dataset, we have added a category label for each input tweet which helps to ensure good coverage from different categories in summary. Additionally, we have added two other features relevance label and key-phrase, which provide information about the quality of a tweet and explanation about the inclusion of the tweet into summary, respectively. For ground-truth summary creation, we provide the annotation procedure adapted in detail, which has not been described in existing literature. Experimental analysis shows the quality of ground-truth summary is very good with Coverage, Relevance and Diversity.

  • 3 authors
·
May 10, 2024

BERTuit: Understanding Spanish language in Twitter through a native transformer

The appearance of complex attention-based language models such as BERT, Roberta or GPT-3 has allowed to address highly complex tasks in a plethora of scenarios. However, when applied to specific domains, these models encounter considerable difficulties. This is the case of Social Networks such as Twitter, an ever-changing stream of information written with informal and complex language, where each message requires careful evaluation to be understood even by humans given the important role that context plays. Addressing tasks in this domain through Natural Language Processing involves severe challenges. When powerful state-of-the-art multilingual language models are applied to this scenario, language specific nuances use to get lost in translation. To face these challenges we present BERTuit, the larger transformer proposed so far for Spanish language, pre-trained on a massive dataset of 230M Spanish tweets using RoBERTa optimization. Our motivation is to provide a powerful resource to better understand Spanish Twitter and to be used on applications focused on this social network, with special emphasis on solutions devoted to tackle the spreading of misinformation in this platform. BERTuit is evaluated on several tasks and compared against M-BERT, XLM-RoBERTa and XLM-T, very competitive multilingual transformers. The utility of our approach is shown with applications, in this case: a zero-shot methodology to visualize groups of hoaxes and profiling authors spreading disinformation. Misinformation spreads wildly on platforms such as Twitter in languages other than English, meaning performance of transformers may suffer when transferred outside English speaking communities.

  • 3 authors
·
Apr 7, 2022

EcoVerse: An Annotated Twitter Dataset for Eco-Relevance Classification, Environmental Impact Analysis, and Stance Detection

Anthropogenic ecological crisis constitutes a significant challenge that all within the academy must urgently face, including the Natural Language Processing (NLP) community. While recent years have seen increasing work revolving around climate-centric discourse, crucial environmental and ecological topics outside of climate change remain largely unaddressed, despite their prominent importance. Mainstream NLP tasks, such as sentiment analysis, dominate the scene, but there remains an untouched space in the literature involving the analysis of environmental impacts of certain events and practices. To address this gap, this paper presents EcoVerse, an annotated English Twitter dataset of 3,023 tweets spanning a wide spectrum of environmental topics. We propose a three-level annotation scheme designed for Eco-Relevance Classification, Stance Detection, and introducing an original approach for Environmental Impact Analysis. We detail the data collection, filtering, and labeling process that led to the creation of the dataset. Remarkable Inter-Annotator Agreement indicates that the annotation scheme produces consistent annotations of high quality. Subsequent classification experiments using BERT-based models, including ClimateBERT, are presented. These yield encouraging results, while also indicating room for a model specifically tailored for environmental texts. The dataset is made freely available to stimulate further research.

  • 4 authors
·
Apr 7, 2024

COVID-19-related Nepali Tweets Classification in a Low Resource Setting

Billions of people across the globe have been using social media platforms in their local languages to voice their opinions about the various topics related to the COVID-19 pandemic. Several organizations, including the World Health Organization, have developed automated social media analysis tools that classify COVID-19-related tweets into various topics. However, these tools that help combat the pandemic are limited to very few languages, making several countries unable to take their benefit. While multi-lingual or low-resource language-specific tools are being developed, they still need to expand their coverage, such as for the Nepali language. In this paper, we identify the eight most common COVID-19 discussion topics among the Twitter community using the Nepali language, set up an online platform to automatically gather Nepali tweets containing the COVID-19-related keywords, classify the tweets into the eight topics, and visualize the results across the period in a web-based dashboard. We compare the performance of two state-of-the-art multi-lingual language models for Nepali tweet classification, one generic (mBERT) and the other Nepali language family-specific model (MuRIL). Our results show that the models' relative performance depends on the data size, with MuRIL doing better for a larger dataset. The annotated data, models, and the web-based dashboard are open-sourced at https://github.com/naamiinepal/covid-tweet-classification.

  • 6 authors
·
Oct 11, 2022

Towards Deep Semantic Analysis Of Hashtags

Hashtags are semantico-syntactic constructs used across various social networking and microblogging platforms to enable users to start a topic specific discussion or classify a post into a desired category. Segmenting and linking the entities present within the hashtags could therefore help in better understanding and extraction of information shared across the social media. However, due to lack of space delimiters in the hashtags (e.g #nsavssnowden), the segmentation of hashtags into constituent entities ("NSA" and "Edward Snowden" in this case) is not a trivial task. Most of the current state-of-the-art social media analytics systems like Sentiment Analysis and Entity Linking tend to either ignore hashtags, or treat them as a single word. In this paper, we present a context aware approach to segment and link entities in the hashtags to a knowledge base (KB) entry, based on the context within the tweet. Our approach segments and links the entities in hashtags such that the coherence between hashtag semantics and the tweet is maximized. To the best of our knowledge, no existing study addresses the issue of linking entities in hashtags for extracting semantic information. We evaluate our method on two different datasets, and demonstrate the effectiveness of our technique in improving the overall entity linking in tweets via additional semantic information provided by segmenting and linking entities in a hashtag.

  • 3 authors
·
Jan 13, 2015

Classification Benchmarks for Under-resourced Bengali Language based on Multichannel Convolutional-LSTM Network

Exponential growths of social media and micro-blogging sites not only provide platforms for empowering freedom of expressions and individual voices but also enables people to express anti-social behaviour like online harassment, cyberbullying, and hate speech. Numerous works have been proposed to utilize these data for social and anti-social behaviours analysis, document characterization, and sentiment analysis by predicting the contexts mostly for highly resourced languages such as English. However, there are languages that are under-resources, e.g., South Asian languages like Bengali, Tamil, Assamese, Telugu that lack of computational resources for the NLP tasks. In this paper, we provide several classification benchmarks for Bengali, an under-resourced language. We prepared three datasets of expressing hate, commonly used topics, and opinions for hate speech detection, document classification, and sentiment analysis, respectively. We built the largest Bengali word embedding models to date based on 250 million articles, which we call BengFastText. We perform three different experiments, covering document classification, sentiment analysis, and hate speech detection. We incorporate word embeddings into a Multichannel Convolutional-LSTM (MConv-LSTM) network for predicting different types of hate speech, document classification, and sentiment analysis. Experiments demonstrate that BengFastText can capture the semantics of words from respective contexts correctly. Evaluations against several baseline embedding models, e.g., Word2Vec and GloVe yield up to 92.30%, 82.25%, and 90.45% F1-scores in case of document classification, sentiment analysis, and hate speech detection, respectively during 5-fold cross-validation tests.

  • 4 authors
·
Apr 11, 2020

Towards Better Inclusivity: A Diverse Tweet Corpus of English Varieties

The prevalence of social media presents a growing opportunity to collect and analyse examples of English varieties. Whilst usage of these varieties was - and, in many cases, still is - used only in spoken contexts or hard-to-access private messages, social media sites like Twitter provide a platform for users to communicate informally in a scrapeable format. Notably, Indian English (Hinglish), Singaporean English (Singlish), and African-American English (AAE) can be commonly found online. These varieties pose a challenge to existing natural language processing (NLP) tools as they often differ orthographically and syntactically from standard English for which the majority of these tools are built. NLP models trained on standard English texts produced biased outcomes for users of underrepresented varieties. Some research has aimed to overcome the inherent biases caused by unrepresentative data through techniques like data augmentation or adjusting training models. We aim to address the issue of bias at its root - the data itself. We curate a dataset of tweets from countries with high proportions of underserved English variety speakers, and propose an annotation framework of six categorical classifications along a pseudo-spectrum that measures the degree of standard English and that thereby indirectly aims to surface the manifestations of English varieties in these tweets. Following best annotation practices, our growing corpus features 170,800 tweets taken from 7 countries, labeled by annotators who are from those countries and can communicate in regionally-dominant varieties of English. Our corpus highlights the accuracy discrepancies in pre-trained language identifiers between western English and non-western (i.e., less standard) English varieties. We hope to contribute to the growing literature identifying and reducing the implicit demographic discrepancies in NLP.

  • 3 authors
·
Jan 21, 2024

Topic Segmentation Model Focusing on Local Context

Topic segmentation is important in understanding scientific documents since it can not only provide better readability but also facilitate downstream tasks such as information retrieval and question answering by creating appropriate sections or paragraphs. In the topic segmentation task, topic coherence is critical in predicting segmentation boundaries. Most of the existing models have tried to exploit as many contexts as possible to extract useful topic-related information. However, additional context does not always bring promising results, because the local context between sentences becomes incoherent despite more sentences being supplemented. To alleviate this issue, we propose siamese sentence embedding layers which process two input sentences independently to get appropriate amount of information without being hampered by excessive information. Also, we adopt multi-task learning techniques including Same Topic Prediction (STP), Topic Classification (TC) and Next Sentence Prediction (NSP). When these three classification layers are combined in a multi-task manner, they can make up for each other's limitations, improving performance in all three tasks. We experiment different combinations of the three layers and report how each layer affects other layers in the same combination as well as the overall segmentation performance. The model we proposed achieves the state-of-the-art result in the WikiSection dataset.

  • 4 authors
·
Jan 5, 2023

Structural Text Segmentation of Legal Documents

The growing complexity of legal cases has lead to an increasing interest in legal information retrieval systems that can effectively satisfy user-specific information needs. However, such downstream systems typically require documents to be properly formatted and segmented, which is often done with relatively simple pre-processing steps, disregarding topical coherence of segments. Systems generally rely on representations of individual sentences or paragraphs, which may lack crucial context, or document-level representations, which are too long for meaningful search results. To address this issue, we propose a segmentation system that can predict topical coherence of sequential text segments spanning several paragraphs, effectively segmenting a document and providing a more balanced representation for downstream applications. We build our model on top of popular transformer networks and formulate structural text segmentation as topical change detection, by performing a series of independent classifications that allow for efficient fine-tuning on task-specific data. We crawl a novel dataset consisting of roughly 74,000 online Terms-of-Service documents, including hierarchical topic annotations, which we use for training. Results show that our proposed system significantly outperforms baselines, and adapts well to structural peculiarities of legal documents. We release both data and trained models to the research community for future work.https://github.com/dennlinger/TopicalChange

  • 4 authors
·
Dec 7, 2020

textTOvec: Deep Contextualized Neural Autoregressive Topic Models of Language with Distributed Compositional Prior

We address two challenges of probabilistic topic modelling in order to better estimate the probability of a word in a given context, i.e., P(word|context): (1) No Language Structure in Context: Probabilistic topic models ignore word order by summarizing a given context as a "bag-of-word" and consequently the semantics of words in the context is lost. The LSTM-LM learns a vector-space representation of each word by accounting for word order in local collocation patterns and models complex characteristics of language (e.g., syntax and semantics), while the TM simultaneously learns a latent representation from the entire document and discovers the underlying thematic structure. We unite two complementary paradigms of learning the meaning of word occurrences by combining a TM (e.g., DocNADE) and a LM in a unified probabilistic framework, named as ctx-DocNADE. (2) Limited Context and/or Smaller training corpus of documents: In settings with a small number of word occurrences (i.e., lack of context) in short text or data sparsity in a corpus of few documents, the application of TMs is challenging. We address this challenge by incorporating external knowledge into neural autoregressive topic models via a language modelling approach: we use word embeddings as input of a LSTM-LM with the aim to improve the word-topic mapping on a smaller and/or short-text corpus. The proposed DocNADE extension is named as ctx-DocNADEe. We present novel neural autoregressive topic model variants coupled with neural LMs and embeddings priors that consistently outperform state-of-the-art generative TMs in terms of generalization (perplexity), interpretability (topic coherence) and applicability (retrieval and classification) over 6 long-text and 8 short-text datasets from diverse domains.

  • 4 authors
·
Oct 9, 2018

A Text Classification Framework for Simple and Effective Early Depression Detection Over Social Media Streams

With the rise of the Internet, there is a growing need to build intelligent systems that are capable of efficiently dealing with early risk detection (ERD) problems on social media, such as early depression detection, early rumor detection or identification of sexual predators. These systems, nowadays mostly based on machine learning techniques, must be able to deal with data streams since users provide their data over time. In addition, these systems must be able to decide when the processed data is sufficient to actually classify users. Moreover, since ERD tasks involve risky decisions by which people's lives could be affected, such systems must also be able to justify their decisions. However, most standard and state-of-the-art supervised machine learning models are not well suited to deal with this scenario. This is due to the fact that they either act as black boxes or do not support incremental classification/learning. In this paper we introduce SS3, a novel supervised learning model for text classification that naturally supports these aspects. SS3 was designed to be used as a general framework to deal with ERD problems. We evaluated our model on the CLEF's eRisk2017 pilot task on early depression detection. Most of the 30 contributions submitted to this competition used state-of-the-art methods. Experimental results show that our classifier was able to outperform these models and standard classifiers, despite being less computationally expensive and having the ability to explain its rationale.

  • 3 authors
·
May 18, 2019

Annotating the Tweebank Corpus on Named Entity Recognition and Building NLP Models for Social Media Analysis

Social media data such as Twitter messages ("tweets") pose a particular challenge to NLP systems because of their short, noisy, and colloquial nature. Tasks such as Named Entity Recognition (NER) and syntactic parsing require highly domain-matched training data for good performance. To date, there is no complete training corpus for both NER and syntactic analysis (e.g., part of speech tagging, dependency parsing) of tweets. While there are some publicly available annotated NLP datasets of tweets, they are only designed for individual tasks. In this study, we aim to create Tweebank-NER, an English NER corpus based on Tweebank V2 (TB2), train state-of-the-art (SOTA) Tweet NLP models on TB2, and release an NLP pipeline called Twitter-Stanza. We annotate named entities in TB2 using Amazon Mechanical Turk and measure the quality of our annotations. We train the Stanza pipeline on TB2 and compare with alternative NLP frameworks (e.g., FLAIR, spaCy) and transformer-based models. The Stanza tokenizer and lemmatizer achieve SOTA performance on TB2, while the Stanza NER tagger, part-of-speech (POS) tagger, and dependency parser achieve competitive performance against non-transformer models. The transformer-based models establish a strong baseline in Tweebank-NER and achieve the new SOTA performance in POS tagging and dependency parsing on TB2. We release the dataset and make both the Stanza pipeline and BERTweet-based models available "off-the-shelf" for use in future Tweet NLP research. Our source code, data, and pre-trained models are available at: https://github.com/social-machines/TweebankNLP.

  • 4 authors
·
Jan 18, 2022

LLM Teacher-Student Framework for Text Classification With No Manually Annotated Data: A Case Study in IPTC News Topic Classification

With the ever-increasing number of news stories available online, classifying them by topic, regardless of the language they are written in, has become crucial for enhancing readers' access to relevant content. To address this challenge, we propose a teacher-student framework based on large language models (LLMs) for developing multilingual news classification models of reasonable size with no need for manual data annotation. The framework employs a Generative Pretrained Transformer (GPT) model as the teacher model to develop an IPTC Media Topic training dataset through automatic annotation of news articles in Slovenian, Croatian, Greek, and Catalan. The teacher model exhibits a high zero-shot performance on all four languages. Its agreement with human annotators is comparable to that between the human annotators themselves. To mitigate the computational limitations associated with the requirement of processing millions of texts daily, smaller BERT-like student models are fine-tuned on the GPT-annotated dataset. These student models achieve high performance comparable to the teacher model. Furthermore, we explore the impact of the training data size on the performance of the student models and investigate their monolingual, multilingual and zero-shot cross-lingual capabilities. The findings indicate that student models can achieve high performance with a relatively small number of training instances, and demonstrate strong zero-shot cross-lingual abilities. Finally, we publish the best-performing news topic classifier, enabling multilingual classification with the top-level categories of the IPTC Media Topic schema.

  • 2 authors
·
Nov 29, 2024 2

kNN-Embed: Locally Smoothed Embedding Mixtures For Multi-interest Candidate Retrieval

Candidate generation is the first stage in recommendation systems, where a light-weight system is used to retrieve potentially relevant items for an input user. These candidate items are then ranked and pruned in later stages of recommender systems using a more complex ranking model. Since candidate generation is the top of the recommendation funnel, it is important to retrieve a high-recall candidate set to feed into downstream ranking models. A common approach for candidate generation is to leverage approximate nearest neighbor (ANN) search from a single dense query embedding; however, this approach this can yield a low-diversity result set with many near duplicates. As users often have multiple interests, candidate retrieval should ideally return a diverse set of candidates reflective of the user's multiple interests. To this end, we introduce kNN-Embed, a general approach to improving diversity in dense ANN-based retrieval. kNN-Embed represents each user as a smoothed mixture over learned item clusters that represent distinct `interests' of the user. By querying each of a user's mixture component in proportion to their mixture weights, we retrieve a high-diversity set of candidates reflecting elements from each of a user's interests. We experimentally compare kNN-Embed to standard ANN candidate retrieval, and show significant improvements in overall recall and improved diversity across three datasets. Accompanying this work, we open source a large Twitter follow-graph dataset, to spur further research in graph-mining and representation learning for recommender systems.

  • 6 authors
·
May 12, 2022

TurkishBERTweet: Fast and Reliable Large Language Model for Social Media Analysis

Turkish is one of the most popular languages in the world. Wide us of this language on social media platforms such as Twitter, Instagram, or Tiktok and strategic position of the country in the world politics makes it appealing for the social network researchers and industry. To address this need, we introduce TurkishBERTweet, the first large scale pre-trained language model for Turkish social media built using almost 900 million tweets. The model shares the same architecture as base BERT model with smaller input length, making TurkishBERTweet lighter than BERTurk and can have significantly lower inference time. We trained our model using the same approach for RoBERTa model and evaluated on two text classification tasks: Sentiment Classification and Hate Speech Detection. We demonstrate that TurkishBERTweet outperforms the other available alternatives on generalizability and its lower inference time gives significant advantage to process large-scale datasets. We also compared our models with the commercial OpenAI solutions in terms of cost and performance to demonstrate TurkishBERTweet is scalable and cost-effective solution. As part of our research, we released TurkishBERTweet and fine-tuned LoRA adapters for the mentioned tasks under the MIT License to facilitate future research and applications on Turkish social media. Our TurkishBERTweet model is available at: https://github.com/ViralLab/TurkishBERTweet

  • 2 authors
·
Nov 29, 2023

Improving Long Document Topic Segmentation Models With Enhanced Coherence Modeling

Topic segmentation is critical for obtaining structured documents and improving downstream tasks such as information retrieval. Due to its ability of automatically exploring clues of topic shift from abundant labeled data, recent supervised neural models have greatly promoted the development of long document topic segmentation, but leaving the deeper relationship between coherence and topic segmentation underexplored. Therefore, this paper enhances the ability of supervised models to capture coherence from both logical structure and semantic similarity perspectives to further improve the topic segmentation performance, proposing Topic-aware Sentence Structure Prediction (TSSP) and Contrastive Semantic Similarity Learning (CSSL). Specifically, the TSSP task is proposed to force the model to comprehend structural information by learning the original relations between adjacent sentences in a disarrayed document, which is constructed by jointly disrupting the original document at topic and sentence levels. Moreover, we utilize inter- and intra-topic information to construct contrastive samples and design the CSSL objective to ensure that the sentences representations in the same topic have higher similarity, while those in different topics are less similar. Extensive experiments show that the Longformer with our approach significantly outperforms old state-of-the-art (SOTA) methods. Our approach improve F_1 of old SOTA by 3.42 (73.74 -> 77.16) and reduces P_k by 1.11 points (15.0 -> 13.89) on WIKI-727K and achieves an average relative reduction of 4.3% on P_k on WikiSection. The average relative P_k drop of 8.38% on two out-of-domain datasets also demonstrates the robustness of our approach.

  • 6 authors
·
Oct 18, 2023

"Actionable Help" in Crises: A Novel Dataset and Resource-Efficient Models for Identifying Request and Offer Social Media Posts

During crises, social media serves as a crucial coordination tool, but the vast influx of posts--from "actionable" requests and offers to generic content like emotional support, behavioural guidance, or outdated information--complicates effective classification. Although generative LLMs (Large Language Models) can address this issue with few-shot classification, their high computational demands limit real-time crisis response. While fine-tuning encoder-only models (e.g., BERT) is a popular choice, these models still exhibit higher inference times in resource-constrained environments. Moreover, although distilled variants (e.g., DistilBERT) exist, they are not tailored for the crisis domain. To address these challenges, we make two key contributions. First, we present CrisisHelpOffer, a novel dataset of 101k tweets collaboratively labelled by generative LLMs and validated by humans, specifically designed to distinguish actionable content from noise. Second, we introduce the first crisis-specific mini models optimized for deployment in resource-constrained settings. Across 13 crisis classification tasks, our mini models surpass BERT (also outperform or match the performance of RoBERTa, MPNet, and BERTweet), offering higher accuracy with significantly smaller sizes and faster speeds. The Medium model is 47% smaller with 3.8% higher accuracy at 3.5x speed, the Small model is 68% smaller with a 1.8% accuracy gain at 7.7x speed, and the Tiny model, 83% smaller, matches BERT's accuracy at 18.6x speed. All models outperform existing distilled variants, setting new benchmarks. Finally, as a case study, we analyze social media posts from a global crisis to explore help-seeking and assistance-offering behaviours in selected developing and developed countries.

  • 4 authors
·
Feb 23

TeClass: A Human-Annotated Relevance-based Headline Classification and Generation Dataset for Telugu

News headline generation is a crucial task in increasing productivity for both the readers and producers of news. This task can easily be aided by automated News headline-generation models. However, the presence of irrelevant headlines in scraped news articles results in sub-optimal performance of generation models. We propose that relevance-based headline classification can greatly aid the task of generating relevant headlines. Relevance-based headline classification involves categorizing news headlines based on their relevance to the corresponding news articles. While this task is well-established in English, it remains under-explored in low-resource languages like Telugu due to a lack of annotated data. To address this gap, we present TeClass, the first-ever human-annotated Telugu news headline classification dataset, containing 78,534 annotations across 26,178 article-headline pairs. We experiment with various baseline models and provide a comprehensive analysis of their results. We further demonstrate the impact of this work by fine-tuning various headline generation models using TeClass dataset. The headlines generated by the models fine-tuned on highly relevant article-headline pairs, showed about a 5 point increment in the ROUGE-L scores. To encourage future research, the annotated dataset as well as the annotation guidelines will be made publicly available.

  • 4 authors
·
Apr 17, 2024

Understanding Political Polarization via Jointly Modeling Users, Connections and Multimodal Contents on Heterogeneous Graphs

Understanding political polarization on social platforms is important as public opinions may become increasingly extreme when they are circulated in homogeneous communities, thus potentially causing damage in the real world. Automatically detecting the political ideology of social media users can help better understand political polarization. However, it is challenging due to the scarcity of ideology labels, complexity of multimodal contents, and cost of time-consuming data collection process. In this study, we adopt a heterogeneous graph neural network to jointly model user characteristics, multimodal post contents as well as user-item relations in a bipartite graph to learn a comprehensive and effective user embedding without requiring ideology labels. We apply our framework to online discussions about economy and public health topics. The learned embeddings are then used to detect political ideology and understand political polarization. Our framework outperforms the unimodal, early/late fusion baselines, and homogeneous GNN frameworks by a margin of at least 9% absolute gain in the area under the receiver operating characteristic on two social media datasets. More importantly, our work does not require a time-consuming data collection process, which allows faster detection and in turn allows the policy makers to conduct analysis and design policies in time to respond to crises. We also show that our framework learns meaningful user embeddings and can help better understand political polarization. Notable differences in user descriptions, topics, images, and levels of retweet/quote activities are observed. Our framework for decoding user-content interaction shows wide applicability in understanding political polarization. Furthermore, it can be extended to user-item bipartite information networks for other applications such as content and product recommendation.

  • 2 authors
·
Jan 15, 2022

KoMultiText: Large-Scale Korean Text Dataset for Classifying Biased Speech in Real-World Online Services

With the growth of online services, the need for advanced text classification algorithms, such as sentiment analysis and biased text detection, has become increasingly evident. The anonymous nature of online services often leads to the presence of biased and harmful language, posing challenges to maintaining the health of online communities. This phenomenon is especially relevant in South Korea, where large-scale hate speech detection algorithms have not yet been broadly explored. In this paper, we introduce "KoMultiText", a new comprehensive, large-scale dataset collected from a well-known South Korean SNS platform. Our proposed dataset provides annotations including (1) Preferences, (2) Profanities, and (3) Nine types of Bias for the text samples, enabling multi-task learning for simultaneous classification of user-generated texts. Leveraging state-of-the-art BERT-based language models, our approach surpasses human-level accuracy across diverse classification tasks, as measured by various metrics. Beyond academic contributions, our work can provide practical solutions for real-world hate speech and bias mitigation, contributing directly to the improvement of online community health. Our work provides a robust foundation for future research aiming to improve the quality of online discourse and foster societal well-being. All source codes and datasets are publicly accessible at https://github.com/Dasol-Choi/KoMultiText.

  • 6 authors
·
Oct 6, 2023

MuMiN: A Large-Scale Multilingual Multimodal Fact-Checked Misinformation Social Network Dataset

Misinformation is becoming increasingly prevalent on social media and in news articles. It has become so widespread that we require algorithmic assistance utilising machine learning to detect such content. Training these machine learning models require datasets of sufficient scale, diversity and quality. However, datasets in the field of automatic misinformation detection are predominantly monolingual, include a limited amount of modalities and are not of sufficient scale and quality. Addressing this, we develop a data collection and linking system (MuMiN-trawl), to build a public misinformation graph dataset (MuMiN), containing rich social media data (tweets, replies, users, images, articles, hashtags) spanning 21 million tweets belonging to 26 thousand Twitter threads, each of which have been semantically linked to 13 thousand fact-checked claims across dozens of topics, events and domains, in 41 different languages, spanning more than a decade. The dataset is made available as a heterogeneous graph via a Python package (mumin). We provide baseline results for two node classification tasks related to the veracity of a claim involving social media, and demonstrate that these are challenging tasks, with the highest macro-average F1-score being 62.55% and 61.45% for the two tasks, respectively. The MuMiN ecosystem is available at https://mumin-dataset.github.io/, including the data, documentation, tutorials and leaderboards.

  • 2 authors
·
Feb 23, 2022