new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 12

Neural Foundations of Mental Simulation: Future Prediction of Latent Representations on Dynamic Scenes

Humans and animals have a rich and flexible understanding of the physical world, which enables them to infer the underlying dynamical trajectories of objects and events, plausible future states, and use that to plan and anticipate the consequences of actions. However, the neural mechanisms underlying these computations are unclear. We combine a goal-driven modeling approach with dense neurophysiological data and high-throughput human behavioral readouts to directly impinge on this question. Specifically, we construct and evaluate several classes of sensory-cognitive networks to predict the future state of rich, ethologically-relevant environments, ranging from self-supervised end-to-end models with pixel-wise or object-centric objectives, to models that future predict in the latent space of purely static image-based or dynamic video-based pretrained foundation models. We find strong differentiation across these model classes in their ability to predict neural and behavioral data both within and across diverse environments. In particular, we find that neural responses are currently best predicted by models trained to predict the future state of their environment in the latent space of pretrained foundation models optimized for dynamic scenes in a self-supervised manner. Notably, models that future predict in the latent space of video foundation models that are optimized to support a diverse range of sensorimotor tasks, reasonably match both human behavioral error patterns and neural dynamics across all environmental scenarios that we were able to test. Overall, these findings suggest that the neural mechanisms and behaviors of primate mental simulation are thus far most consistent with being optimized to future predict on dynamic, reusable visual representations that are useful for embodied AI more generally.

  • 4 authors
·
May 19, 2023

Inverse Dynamics Pretraining Learns Good Representations for Multitask Imitation

In recent years, domains such as natural language processing and image recognition have popularized the paradigm of using large datasets to pretrain representations that can be effectively transferred to downstream tasks. In this work we evaluate how such a paradigm should be done in imitation learning, where both pretraining and finetuning data are trajectories collected by experts interacting with an unknown environment. Namely, we consider a setting where the pretraining corpus consists of multitask demonstrations and the task for each demonstration is set by an unobserved latent context variable. The goal is to use the pretraining corpus to learn a low dimensional representation of the high dimensional (e.g., visual) observation space which can be transferred to a novel context for finetuning on a limited dataset of demonstrations. Among a variety of possible pretraining objectives, we argue that inverse dynamics modeling -- i.e., predicting an action given the observations appearing before and after it in the demonstration -- is well-suited to this setting. We provide empirical evidence of this claim through evaluations on a variety of simulated visuomotor manipulation problems. While previous work has attempted various theoretical explanations regarding the benefit of inverse dynamics modeling, we find that these arguments are insufficient to explain the empirical advantages often observed in our settings, and so we derive a novel analysis using a simple but general environment model.

  • 3 authors
·
May 26, 2023

A Survey on Latent Reasoning

Large Language Models (LLMs) have demonstrated impressive reasoning capabilities, especially when guided by explicit chain-of-thought (CoT) reasoning that verbalizes intermediate steps. While CoT improves both interpretability and accuracy, its dependence on natural language reasoning limits the model's expressive bandwidth. Latent reasoning tackles this bottleneck by performing multi-step inference entirely in the model's continuous hidden state, eliminating token-level supervision. To advance latent reasoning research, this survey provides a comprehensive overview of the emerging field of latent reasoning. We begin by examining the foundational role of neural network layers as the computational substrate for reasoning, highlighting how hierarchical representations support complex transformations. Next, we explore diverse latent reasoning methodologies, including activation-based recurrence, hidden state propagation, and fine-tuning strategies that compress or internalize explicit reasoning traces. Finally, we discuss advanced paradigms such as infinite-depth latent reasoning via masked diffusion models, which enable globally consistent and reversible reasoning processes. By unifying these perspectives, we aim to clarify the conceptual landscape of latent reasoning and chart future directions for research at the frontier of LLM cognition. An associated GitHub repository collecting the latest papers and repos is available at: https://github.com/multimodal-art-projection/LatentCoT-Horizon/.

Soft Injection of Task Embeddings Outperforms Prompt-Based In-Context Learning

In-Context Learning (ICL) enables Large Language Models (LLMs) to perform tasks by conditioning on input-output examples in the prompt, without requiring any update in model parameters. While widely adopted, it remains unclear whether prompting with multiple examples is the most effective and efficient way to convey task information. In this work, we propose Soft Injection of task embeddings. The task embeddings are constructed only once using few-shot ICL prompts and repeatedly used during inference. Soft injection is performed by softly mixing task embeddings with attention head activations using pre-optimized mixing parameters, referred to as soft head-selection parameters. This method not only allows a desired task to be performed without in-prompt demonstrations but also significantly outperforms existing ICL approaches while reducing memory usage and compute cost at inference time. An extensive evaluation is performed across 57 tasks and 12 LLMs, spanning four model families of sizes from 4B to 70B. Averaged across 57 tasks, our method outperforms 10-shot ICL by 10.2%-14.3% across 12 LLMs. Additional analyses show that our method also serves as an insightful tool for analyzing task-relevant roles of attention heads, revealing that task-relevant head positions selected by our method transfer across similar tasks but not across dissimilar ones -- underscoring the task-specific nature of head functionality. Our soft injection method opens a new paradigm for reducing prompt length and improving task performance by shifting task conditioning from the prompt space to the activation space.

  • 2 authors
·
Jul 28

WHEN TO ACT, WHEN TO WAIT: Modeling Structural Trajectories for Intent Triggerability in Task-Oriented Dialogue

Task-oriented dialogue systems often face difficulties when user utterances seem semantically complete but lack necessary structural information for appropriate system action. This arises because users frequently do not fully understand their own needs, while systems require precise intent definitions. Current LLM-based agents cannot effectively distinguish between linguistically complete and contextually triggerable expressions, lacking frameworks for collaborative intent formation. We present STORM, a framework modeling asymmetric information dynamics through conversations between UserLLM (full internal access) and AgentLLM (observable behavior only). STORM produces annotated corpora capturing expression trajectories and latent cognitive transitions, enabling systematic analysis of collaborative understanding development. Our contributions include: (1) formalizing asymmetric information processing in dialogue systems; (2) modeling intent formation tracking collaborative understanding evolution; and (3) evaluation metrics measuring internal cognitive improvements alongside task performance. Experiments across four language models reveal that moderate uncertainty (40-60%) can outperform complete transparency in certain scenarios, with model-specific patterns suggesting reconsideration of optimal information completeness in human-AI collaboration. These findings contribute to understanding asymmetric reasoning dynamics and inform uncertainty-calibrated dialogue system design.

  • 8 authors
·
Jun 2 2

Personalizing Reinforcement Learning from Human Feedback with Variational Preference Learning

Reinforcement Learning from Human Feedback (RLHF) is a powerful paradigm for aligning foundation models to human values and preferences. However, current RLHF techniques cannot account for the naturally occurring differences in individual human preferences across a diverse population. When these differences arise, traditional RLHF frameworks simply average over them, leading to inaccurate rewards and poor performance for individual subgroups. To address the need for pluralistic alignment, we develop a class of multimodal RLHF methods. Our proposed techniques are based on a latent variable formulation - inferring a novel user-specific latent and learning reward models and policies conditioned on this latent without additional user-specific data. While conceptually simple, we show that in practice, this reward modeling requires careful algorithmic considerations around model architecture and reward scaling. To empirically validate our proposed technique, we first show that it can provide a way to combat underspecification in simulated control problems, inferring and optimizing user-specific reward functions. Next, we conduct experiments on pluralistic language datasets representing diverse user preferences and demonstrate improved reward function accuracy. We additionally show the benefits of this probabilistic framework in terms of measuring uncertainty, and actively learning user preferences. This work enables learning from diverse populations of users with divergent preferences, an important challenge that naturally occurs in problems from robot learning to foundation model alignment.

  • 5 authors
·
Aug 19, 2024

Circuit Component Reuse Across Tasks in Transformer Language Models

Recent work in mechanistic interpretability has shown that behaviors in language models can be successfully reverse-engineered through circuit analysis. A common criticism, however, is that each circuit is task-specific, and thus such analysis cannot contribute to understanding the models at a higher level. In this work, we present evidence that insights (both low-level findings about specific heads and higher-level findings about general algorithms) can indeed generalize across tasks. Specifically, we study the circuit discovered in Wang et al. (2022) for the Indirect Object Identification (IOI) task and 1.) show that it reproduces on a larger GPT2 model, and 2.) that it is mostly reused to solve a seemingly different task: Colored Objects (Ippolito & Callison-Burch, 2023). We provide evidence that the process underlying both tasks is functionally very similar, and contains about a 78% overlap in in-circuit attention heads. We further present a proof-of-concept intervention experiment, in which we adjust four attention heads in middle layers in order to 'repair' the Colored Objects circuit and make it behave like the IOI circuit. In doing so, we boost accuracy from 49.6% to 93.7% on the Colored Objects task and explain most sources of error. The intervention affects downstream attention heads in specific ways predicted by their interactions in the IOI circuit, indicating that this subcircuit behavior is invariant to the different task inputs. Overall, our results provide evidence that it may yet be possible to explain large language models' behavior in terms of a relatively small number of interpretable task-general algorithmic building blocks and computational components.

  • 3 authors
·
Oct 12, 2023

Understanding the differences in Foundation Models: Attention, State Space Models, and Recurrent Neural Networks

Softmax attention is the principle backbone of foundation models for various artificial intelligence applications, yet its quadratic complexity in sequence length can limit its inference throughput in long-context settings. To address this challenge, alternative architectures such as linear attention, State Space Models (SSMs), and Recurrent Neural Networks (RNNs) have been considered as more efficient alternatives. While connections between these approaches exist, such models are commonly developed in isolation and there is a lack of theoretical understanding of the shared principles underpinning these architectures and their subtle differences, greatly influencing performance and scalability. In this paper, we introduce the Dynamical Systems Framework (DSF), which allows a principled investigation of all these architectures in a common representation. Our framework facilitates rigorous comparisons, providing new insights on the distinctive characteristics of each model class. For instance, we compare linear attention and selective SSMs, detailing their differences and conditions under which both are equivalent. We also provide principled comparisons between softmax attention and other model classes, discussing the theoretical conditions under which softmax attention can be approximated. Additionally, we substantiate these new insights with empirical validations and mathematical arguments. This shows the DSF's potential to guide the systematic development of future more efficient and scalable foundation models.

  • 5 authors
·
May 24, 2024 2

RE-Searcher: Robust Agentic Search with Goal-oriented Planning and Self-reflection

Large language models (LLMs) excel at knowledge-intensive question answering and reasoning, yet their real-world deployment remains constrained by knowledge cutoff, hallucination, and limited interaction modalities. Augmenting LLMs with external search tools helps alleviate these issues, but it also exposes agents to a complex search environment in which small, plausible variations in query formulation can steer reasoning into unproductive trajectories and amplify errors. We present a systematic analysis that quantifies how environmental complexity induces fragile search behaviors and, in turn, degrades overall performance. To address this challenge, we propose a simple yet effective approach to instantiate a search agent, RE-Searcher. During search, RE-Searcher explicitly articulates a concrete search goal and subsequently reflects on whether the retrieved evidence satisfies that goal. This combination of goal-oriented planning and self-reflection enables RE-Searcher to resist spurious cues in complex search environments and perform robust search. Extensive experiments show that our method improves search accuracy and achieves state-of-the-art results. Perturbation studies further demonstrate substantial resilience to noisy or misleading external signals, mitigating the fragility of the search process. We believe these findings offer practical guidance for integrating LLM-powered agents into more complex interactive environments and enabling more autonomous decision-making.

  • 14 authors
·
Sep 30

Implicit Reasoning in Large Language Models: A Comprehensive Survey

Large Language Models (LLMs) have demonstrated strong generalization across a wide range of tasks. Reasoning with LLMs is central to solving multi-step problems and complex decision-making. To support efficient reasoning, recent studies have shifted attention from explicit chain-of-thought prompting toward implicit reasoning, where reasoning occurs silently via latent structures without emitting intermediate textual steps. Implicit reasoning brings advantages such as lower generation cost, faster inference, and better alignment with internal computation. Although prior surveys have discussed latent representations in the context of reasoning, a dedicated and mechanism-level examination of how reasoning unfolds internally within LLMs remains absent. This survey fills that gap by introducing a taxonomy centered on execution paradigms, shifting the focus from representational forms to computational strategies. We organize existing methods into three execution paradigms based on \textit{how and where internal computation unfolds}: latent optimization, signal-guided control, and layer-recurrent execution. We also review structural, behavioral and representation-based evidence that supports the presence of implicit reasoning in LLMs. We further provide a structured overview of the evaluation metrics and benchmarks used in existing works to assess the effectiveness and reliability of implicit reasoning. We maintain a continuously updated project at: https://github.com/digailab/awesome-llm-implicit-reasoning.

  • 9 authors
·
Sep 2

Seek in the Dark: Reasoning via Test-Time Instance-Level Policy Gradient in Latent Space

Reasoning ability, a core component of human intelligence, continues to pose a significant challenge for Large Language Models (LLMs) in the pursuit of AGI. Although model performance has improved under the training scaling law, significant challenges remain, particularly with respect to training algorithms, such as catastrophic forgetting, and the limited availability of novel training data. As an alternative, test-time scaling enhances reasoning performance by increasing test-time computation without parameter updating. Unlike prior methods in this paradigm focused on token space, we propose leveraging latent space for more effective reasoning and better adherence to the test-time scaling law. We introduce LatentSeek, a novel framework that enhances LLM reasoning through Test-Time Instance-level Adaptation (TTIA) within the model's latent space. Specifically, LatentSeek leverages policy gradient to iteratively update latent representations, guided by self-generated reward signals. LatentSeek is evaluated on a range of reasoning benchmarks, including GSM8K, MATH-500, and AIME2024, across multiple LLM architectures. Results show that LatentSeek consistently outperforms strong baselines, such as Chain-of-Thought prompting and fine-tuning-based methods. Furthermore, our analysis demonstrates that LatentSeek is highly efficient, typically converging within a few iterations for problems of average complexity, while also benefiting from additional iterations, thereby highlighting the potential of test-time scaling in the latent space. These findings position LatentSeek as a lightweight, scalable, and effective solution for enhancing the reasoning capabilities of LLMs.

  • 11 authors
·
May 19 4

Tracing the Traces: Latent Temporal Signals for Efficient and Accurate Reasoning

Reasoning models improve their problem-solving ability through inference-time scaling, allocating more compute via longer token budgets. Identifying which reasoning traces are likely to succeed remains a key opportunity: reliably predicting productive paths can substantially reduce wasted computation and improve overall efficiency. We introduce Latent-Trajectory signals that characterize the temporal evolution of a model's internal representations during the generation of intermediate reasoning tokens. By measuring the overall change in latent representations between the start and end of reasoning, the change accumulated across intermediate steps, and the extent to which these changes advance toward the final state, we show that these signals predict solution accuracy more reliably than both cross-layer metrics and output-based confidence measures. When used to guide answer selection across multiple sampled generations, Latent-Trajectory signals make test-time scaling more effective and efficient than majority voting, reducing token usage by up to 70% while preserving and even improving accuracy by 2.6% on average. Moreover, these predictive signals often emerge early in the reasoning trace, enabling early selection and allocation of compute to the most promising candidates. Our findings contribute not only practical strategies for inference-time efficiency, but also a deeper interpretability perspective on how reasoning processes are represented and differentiated in latent space.

Learning to Generate Research Idea with Dynamic Control

The rapid advancements in large language models (LLMs) have demonstrated their potential to accelerate scientific discovery, particularly in automating the process of research ideation. LLM-based systems have shown promise in generating hypotheses and research ideas. However, current approaches predominantly rely on prompting-based pre-trained models, limiting their ability to optimize generated content effectively. Moreover, they also lack the capability to deal with the complex interdependence and inherent restrictions among novelty, feasibility, and effectiveness, which remains challenging due to the inherent trade-offs among these dimensions, such as the innovation-feasibility conflict. To address these limitations, we for the first time propose fine-tuning LLMs to be better idea proposers and introduce a novel framework that employs a two-stage approach combining Supervised Fine-Tuning (SFT) and controllable Reinforcement Learning (RL). In the SFT stage, the model learns foundational patterns from pairs of research papers and follow-up ideas. In the RL stage, multi-dimensional reward modeling, guided by fine-grained feedback, evaluates and optimizes the generated ideas across key metrics. Dimensional controllers enable dynamic adjustment of generation, while a sentence-level decoder ensures context-aware emphasis during inference. Our framework provides a balanced approach to research ideation, achieving high-quality outcomes by dynamically navigating the trade-offs among novelty, feasibility, and effectiveness.

  • 5 authors
·
Dec 19, 2024

Exploring Concept Depth: How Large Language Models Acquire Knowledge at Different Layers?

Large language models (LLMs) have shown remarkable performances across a wide range of tasks. However, the mechanisms by which these models encode tasks of varying complexities remain poorly understood. In this paper, we explore the hypothesis that LLMs process concepts of varying complexities in different layers, introducing the idea of "Concept Depth" to suggest that more complex concepts are typically acquired in deeper layers. Specifically, we categorize concepts based on their level of abstraction, defining them in the order of increasing complexity within factual, emotional, and inferential tasks. We conduct extensive probing experiments using layer-wise representations across various LLM families (Gemma, LLaMA, QWen) on various datasets spanning the three domains of tasks. Our findings reveal that models could efficiently conduct probing for simpler tasks in shallow layers, and more complex tasks typically necessitate deeper layers for accurate understanding. Additionally, we examine how external factors, such as adding noise to the input and quantizing the model weights, might affect layer-wise representations. Our findings suggest that these factors can impede the development of a conceptual understanding of LLMs until deeper layers are explored. We hope that our proposed concept and experimental insights will enhance the understanding of the mechanisms underlying LLMs. Our codes are available at https://github.com/Luckfort/CD.

  • 13 authors
·
Apr 10, 2024

Emergence of Hidden Capabilities: Exploring Learning Dynamics in Concept Space

Modern generative models demonstrate impressive capabilities, likely stemming from an ability to identify and manipulate abstract concepts underlying their training data. However, fundamental questions remain: what determines the concepts a model learns, the order in which it learns them, and its ability to manipulate those concepts? To address these questions, we propose analyzing a model's learning dynamics via a framework we call the concept space, where each axis represents an independent concept underlying the data generating process. By characterizing learning dynamics in this space, we identify how the speed at which a concept is learned, and hence the order of concept learning, is controlled by properties of the data we term concept signal. Further, we observe moments of sudden turns in the direction of a model's learning dynamics in concept space. Surprisingly, these points precisely correspond to the emergence of hidden capabilities, i.e., where latent interventions show the model possesses the capability to manipulate a concept, but these capabilities cannot yet be elicited via naive input prompting. While our results focus on synthetically defined toy datasets, we hypothesize a general claim on emergence of hidden capabilities may hold: generative models possess latent capabilities that emerge suddenly and consistently during training, though a model might not exhibit these capabilities under naive input prompting.

  • 5 authors
·
Jun 27, 2024

A brain basis of dynamical intelligence for AI and computational neuroscience

The deep neural nets of modern artificial intelligence (AI) have not achieved defining features of biological intelligence, including abstraction, causal learning, and energy-efficiency. While scaling to larger models has delivered performance improvements for current applications, more brain-like capacities may demand new theories, models, and methods for designing artificial learning systems. Here, we argue that this opportunity to reassess insights from the brain should stimulate cooperation between AI research and theory-driven computational neuroscience (CN). To motivate a brain basis of neural computation, we present a dynamical view of intelligence from which we elaborate concepts of sparsity in network structure, temporal dynamics, and interactive learning. In particular, we suggest that temporal dynamics, as expressed through neural synchrony, nested oscillations, and flexible sequences, provide a rich computational layer for reading and updating hierarchical models distributed in long-term memory networks. Moreover, embracing agent-centered paradigms in AI and CN will accelerate our understanding of the complex dynamics and behaviors that build useful world models. A convergence of AI/CN theories and objectives will reveal dynamical principles of intelligence for brains and engineered learning systems. This article was inspired by our symposium on dynamical neuroscience and machine learning at the 6th Annual US/NIH BRAIN Initiative Investigators Meeting.

  • 3 authors
·
May 15, 2021

The Other Mind: How Language Models Exhibit Human Temporal Cognition

As Large Language Models (LLMs) continue to advance, they exhibit certain cognitive patterns similar to those of humans that are not directly specified in training data. This study investigates this phenomenon by focusing on temporal cognition in LLMs. Leveraging the similarity judgment task, we find that larger models spontaneously establish a subjective temporal reference point and adhere to the Weber-Fechner law, whereby the perceived distance logarithmically compresses as years recede from this reference point. To uncover the mechanisms behind this behavior, we conducted multiple analyses across neuronal, representational, and informational levels. We first identify a set of temporal-preferential neurons and find that this group exhibits minimal activation at the subjective reference point and implements a logarithmic coding scheme convergently found in biological systems. Probing representations of years reveals a hierarchical construction process, where years evolve from basic numerical values in shallow layers to abstract temporal orientation in deep layers. Finally, using pre-trained embedding models, we found that the training corpus itself possesses an inherent, non-linear temporal structure, which provides the raw material for the model's internal construction. In discussion, we propose an experientialist perspective for understanding these findings, where the LLMs' cognition is viewed as a subjective construction of the external world by its internal representational system. This nuanced perspective implies the potential emergence of alien cognitive frameworks that humans cannot intuitively predict, pointing toward a direction for AI alignment that focuses on guiding internal constructions. Our code is available at https://TheOtherMind.github.io.

  • 6 authors
·
Jul 21

Internal Consistency and Self-Feedback in Large Language Models: A Survey

Large language models (LLMs) are expected to respond accurately but often exhibit deficient reasoning or generate hallucinatory content. To address these, studies prefixed with ``Self-'' such as Self-Consistency, Self-Improve, and Self-Refine have been initiated. They share a commonality: involving LLMs evaluating and updating itself to mitigate the issues. Nonetheless, these efforts lack a unified perspective on summarization, as existing surveys predominantly focus on categorization without examining the motivations behind these works. In this paper, we summarize a theoretical framework, termed Internal Consistency, which offers unified explanations for phenomena such as the lack of reasoning and the presence of hallucinations. Internal Consistency assesses the coherence among LLMs' latent layer, decoding layer, and response layer based on sampling methodologies. Expanding upon the Internal Consistency framework, we introduce a streamlined yet effective theoretical framework capable of mining Internal Consistency, named Self-Feedback. The Self-Feedback framework consists of two modules: Self-Evaluation and Self-Update. This framework has been employed in numerous studies. We systematically classify these studies by tasks and lines of work; summarize relevant evaluation methods and benchmarks; and delve into the concern, ``Does Self-Feedback Really Work?'' We propose several critical viewpoints, including the ``Hourglass Evolution of Internal Consistency'', ``Consistency Is (Almost) Correctness'' hypothesis, and ``The Paradox of Latent and Explicit Reasoning''. Furthermore, we outline promising directions for future research. We have open-sourced the experimental code, reference list, and statistical data, available at https://github.com/IAAR-Shanghai/ICSFSurvey.

  • 9 authors
·
Jul 19, 2024 9

Evaluating Cognitive Maps and Planning in Large Language Models with CogEval

Recently an influx of studies claim emergent cognitive abilities in large language models (LLMs). Yet, most rely on anecdotes, overlook contamination of training sets, or lack systematic Evaluation involving multiple tasks, control conditions, multiple iterations, and statistical robustness tests. Here we make two major contributions. First, we propose CogEval, a cognitive science-inspired protocol for the systematic evaluation of cognitive capacities in Large Language Models. The CogEval protocol can be followed for the evaluation of various abilities. Second, here we follow CogEval to systematically evaluate cognitive maps and planning ability across eight LLMs (OpenAI GPT-4, GPT-3.5-turbo-175B, davinci-003-175B, Google Bard, Cohere-xlarge-52.4B, Anthropic Claude-1-52B, LLaMA-13B, and Alpaca-7B). We base our task prompts on human experiments, which offer both established construct validity for evaluating planning, and are absent from LLM training sets. We find that, while LLMs show apparent competence in a few planning tasks with simpler structures, systematic evaluation reveals striking failure modes in planning tasks, including hallucinations of invalid trajectories and getting trapped in loops. These findings do not support the idea of emergent out-of-the-box planning ability in LLMs. This could be because LLMs do not understand the latent relational structures underlying planning problems, known as cognitive maps, and fail at unrolling goal-directed trajectories based on the underlying structure. Implications for application and future directions are discussed.

  • 8 authors
·
Sep 24, 2023 1

Graph schemas as abstractions for transfer learning, inference, and planning

Transferring latent structure from one environment or problem to another is a mechanism by which humans and animals generalize with very little data. Inspired by cognitive and neurobiological insights, we propose graph schemas as a mechanism of abstraction for transfer learning. Graph schemas start with latent graph learning where perceptually aliased observations are disambiguated in the latent space using contextual information. Latent graph learning is also emerging as a new computational model of the hippocampus to explain map learning and transitive inference. Our insight is that a latent graph can be treated as a flexible template -- a schema -- that models concepts and behaviors, with slots that bind groups of latent nodes to the specific observations or groundings. By treating learned latent graphs (schemas) as prior knowledge, new environments can be quickly learned as compositions of schemas and their newly learned bindings. We evaluate graph schemas on two previously published challenging tasks: the memory & planning game and one-shot StreetLearn, which are designed to test rapid task solving in novel environments. Graph schemas can be learned in far fewer episodes than previous baselines, and can model and plan in a few steps in novel variations of these tasks. We also demonstrate learning, matching, and reusing graph schemas in more challenging 2D and 3D environments with extensive perceptual aliasing and size variations, and show how different schemas can be composed to model larger and more complex environments. To summarize, our main contribution is a unified system, inspired and grounded in cognitive science, that facilitates rapid transfer learning of new environments using schemas via map-induction and composition that handles perceptual aliasing.

  • 9 authors
·
Feb 14, 2023

Knowledge Composition using Task Vectors with Learned Anisotropic Scaling

Pre-trained models produce strong generic representations that can be adapted via fine-tuning. The learned weight difference relative to the pre-trained model, known as a task vector, characterises the direction and stride of fine-tuning. The significance of task vectors is such that simple arithmetic operations on them can be used to combine diverse representations from different domains. This paper builds on these properties of task vectors and aims to answer (1) whether components of task vectors, particularly parameter blocks, exhibit similar characteristics, and (2) how such blocks can be used to enhance knowledge composition and transfer. To this end, we introduce aTLAS, an algorithm that linearly combines parameter blocks with different learned coefficients, resulting in anisotropic scaling at the task vector level. We show that such linear combinations explicitly exploit the low intrinsic dimensionality of pre-trained models, with only a few coefficients being the learnable parameters. Furthermore, composition of parameter blocks leverages the already learned representations, thereby reducing the dependency on large amounts of data. We demonstrate the effectiveness of our method in task arithmetic, few-shot recognition and test-time adaptation, with supervised or unsupervised objectives. In particular, we show that (1) learned anisotropic scaling allows task vectors to be more disentangled, causing less interference in composition; (2) task vector composition excels with scarce or no labeled data and is less prone to domain shift, thus leading to better generalisability; (3) mixing the most informative parameter blocks across different task vectors prior to training can reduce the memory footprint and improve the flexibility of knowledge transfer. Moreover, we show the potential of aTLAS as a PEFT method, particularly with less data, and demonstrate that its scalibility.

  • 5 authors
·
Jul 3, 2024 3

Less is More: Local Intrinsic Dimensions of Contextual Language Models

Understanding the internal mechanisms of large language models (LLMs) remains a challenging and complex endeavor. Even fundamental questions, such as how fine-tuning affects model behavior, often require extensive empirical evaluation. In this paper, we introduce a novel perspective based on the geometric properties of contextual latent embeddings to study the effects of training and fine-tuning. To that end, we measure the local dimensions of a contextual language model's latent space and analyze their shifts during training and fine-tuning. We show that the local dimensions provide insights into the model's training dynamics and generalization ability. Specifically, the mean of the local dimensions predicts when the model's training capabilities are exhausted, as exemplified in a dialogue state tracking task, overfitting, as demonstrated in an emotion recognition task, and grokking, as illustrated with an arithmetic task. Furthermore, our experiments suggest a practical heuristic: reductions in the mean local dimension tend to accompany and predict subsequent performance gains. Through this exploration, we aim to provide practitioners with a deeper understanding of the implications of fine-tuning on embedding spaces, facilitating informed decisions when configuring models for specific applications. The results of this work contribute to the ongoing discourse on the interpretability, adaptability, and generalizability of LLMs by bridging the gap between intrinsic model mechanisms and geometric properties in the respective embeddings.

  • 11 authors
·
Jun 1

TD-JEPA: Latent-predictive Representations for Zero-Shot Reinforcement Learning

Latent prediction--where agents learn by predicting their own latents--has emerged as a powerful paradigm for training general representations in machine learning. In reinforcement learning (RL), this approach has been explored to define auxiliary losses for a variety of settings, including reward-based and unsupervised RL, behavior cloning, and world modeling. While existing methods are typically limited to single-task learning, one-step prediction, or on-policy trajectory data, we show that temporal difference (TD) learning enables learning representations predictive of long-term latent dynamics across multiple policies from offline, reward-free transitions. Building on this, we introduce TD-JEPA, which leverages TD-based latent-predictive representations into unsupervised RL. TD-JEPA trains explicit state and task encoders, a policy-conditioned multi-step predictor, and a set of parameterized policies directly in latent space. This enables zero-shot optimization of any reward function at test time. Theoretically, we show that an idealized variant of TD-JEPA avoids collapse with proper initialization, and learns encoders that capture a low-rank factorization of long-term policy dynamics, while the predictor recovers their successor features in latent space. Empirically, TD-JEPA matches or outperforms state-of-the-art baselines on locomotion, navigation, and manipulation tasks across 13 datasets in ExoRL and OGBench, especially in the challenging setting of zero-shot RL from pixels.

  • 5 authors
·
Oct 1

Latent Traversals in Generative Models as Potential Flows

Despite the significant recent progress in deep generative models, the underlying structure of their latent spaces is still poorly understood, thereby making the task of performing semantically meaningful latent traversals an open research challenge. Most prior work has aimed to solve this challenge by modeling latent structures linearly, and finding corresponding linear directions which result in `disentangled' generations. In this work, we instead propose to model latent structures with a learned dynamic potential landscape, thereby performing latent traversals as the flow of samples down the landscape's gradient. Inspired by physics, optimal transport, and neuroscience, these potential landscapes are learned as physically realistic partial differential equations, thereby allowing them to flexibly vary over both space and time. To achieve disentanglement, multiple potentials are learned simultaneously, and are constrained by a classifier to be distinct and semantically self-consistent. Experimentally, we demonstrate that our method achieves both more qualitatively and quantitatively disentangled trajectories than state-of-the-art baselines. Further, we demonstrate that our method can be integrated as a regularization term during training, thereby acting as an inductive bias towards the learning of structured representations, ultimately improving model likelihood on similarly structured data.

  • 4 authors
·
Apr 25, 2023

MOOSE-Chem2: Exploring LLM Limits in Fine-Grained Scientific Hypothesis Discovery via Hierarchical Search

Large language models (LLMs) have shown promise in automating scientific hypothesis generation, yet existing approaches primarily yield coarse-grained hypotheses lacking critical methodological and experimental details. We introduce and formally define the novel task of fine-grained scientific hypothesis discovery, which entails generating detailed, experimentally actionable hypotheses from coarse initial research directions. We frame this as a combinatorial optimization problem and investigate the upper limits of LLMs' capacity to solve it when maximally leveraged. Specifically, we explore four foundational questions: (1) how to best harness an LLM's internal heuristics to formulate the fine-grained hypothesis it itself would judge as the most promising among all the possible hypotheses it might generate, based on its own internal scoring-thus defining a latent reward landscape over the hypothesis space; (2) whether such LLM-judged better hypotheses exhibit stronger alignment with ground-truth hypotheses; (3) whether shaping the reward landscape using an ensemble of diverse LLMs of similar capacity yields better outcomes than defining it with repeated instances of the strongest LLM among them; and (4) whether an ensemble of identical LLMs provides a more reliable reward landscape than a single LLM. To address these questions, we propose a hierarchical search method that incrementally proposes and integrates details into the hypothesis, progressing from general concepts to specific experimental configurations. We show that this hierarchical process smooths the reward landscape and enables more effective optimization. Empirical evaluations on a new benchmark of expert-annotated fine-grained hypotheses from recent chemistry literature show that our method consistently outperforms strong baselines.

  • 10 authors
·
May 25 2

LaDiR: Latent Diffusion Enhances LLMs for Text Reasoning

Large Language Models (LLMs) demonstrate their reasoning ability through chain-of-thought (CoT) generation. However, LLM's autoregressive decoding may limit the ability to revisit and refine earlier tokens in a holistic manner, which can also lead to inefficient exploration for diverse solutions. In this paper, we propose LaDiR (Latent Diffusion Reasoner), a novel reasoning framework that unifies the expressiveness of continuous latent representation with the iterative refinement capabilities of latent diffusion models for an existing LLM. We first construct a structured latent reasoning space using a Variational Autoencoder (VAE) that encodes text reasoning steps into blocks of thought tokens, preserving semantic information and interpretability while offering compact but expressive representations. Subsequently, we utilize a latent diffusion model that learns to denoise a block of latent thought tokens with a blockwise bidirectional attention mask, enabling longer horizon and iterative refinement with adaptive test-time compute. This design allows efficient parallel generation of diverse reasoning trajectories, allowing the model to plan and revise the reasoning process holistically. We conduct evaluations on a suite of mathematical reasoning and planning benchmarks. Empirical results show that LaDiR consistently improves accuracy, diversity, and interpretability over existing autoregressive, diffusion-based, and latent reasoning methods, revealing a new paradigm for text reasoning with latent diffusion.

  • 7 authors
·
Oct 6

Denoising Task Difficulty-based Curriculum for Training Diffusion Models

Diffusion-based generative models have emerged as powerful tools in the realm of generative modeling. Despite extensive research on denoising across various timesteps and noise levels, a conflict persists regarding the relative difficulties of the denoising tasks. While various studies argue that lower timesteps present more challenging tasks, others contend that higher timesteps are more difficult. To address this conflict, our study undertakes a comprehensive examination of task difficulties, focusing on convergence behavior and changes in relative entropy between consecutive probability distributions across timesteps. Our observational study reveals that denoising at earlier timesteps poses challenges characterized by slower convergence and higher relative entropy, indicating increased task difficulty at these lower timesteps. Building on these observations, we introduce an easy-to-hard learning scheme, drawing from curriculum learning, to enhance the training process of diffusion models. By organizing timesteps or noise levels into clusters and training models with ascending orders of difficulty, we facilitate an order-aware training regime, progressing from easier to harder denoising tasks, thereby deviating from the conventional approach of training diffusion models simultaneously across all timesteps. Our approach leads to improved performance and faster convergence by leveraging benefits of curriculum learning, while maintaining orthogonality with existing improvements in diffusion training techniques. We validate these advantages through comprehensive experiments in image generation tasks, including unconditional, class-conditional, and text-to-image generation.

  • 4 authors
·
Mar 15, 2024

IDNP: Interest Dynamics Modeling using Generative Neural Processes for Sequential Recommendation

Recent sequential recommendation models rely increasingly on consecutive short-term user-item interaction sequences to model user interests. These approaches have, however, raised concerns about both short- and long-term interests. (1) {\it short-term}: interaction sequences may not result from a monolithic interest, but rather from several intertwined interests, even within a short period of time, resulting in their failures to model skip behaviors; (2) {\it long-term}: interaction sequences are primarily observed sparsely at discrete intervals, other than consecutively over the long run. This renders difficulty in inferring long-term interests, since only discrete interest representations can be derived, without taking into account interest dynamics across sequences. In this study, we address these concerns by learning (1) multi-scale representations of short-term interests; and (2) dynamics-aware representations of long-term interests. To this end, we present an Interest Dynamics modeling framework using generative Neural Processes, coined IDNP, to model user interests from a functional perspective. IDNP learns a global interest function family to define each user's long-term interest as a function instantiation, manifesting interest dynamics through function continuity. Specifically, IDNP first encodes each user's short-term interactions into multi-scale representations, which are then summarized as user context. By combining latent global interest with user context, IDNP then reconstructs long-term user interest functions and predicts interactions at upcoming query timestep. Moreover, IDNP can model such interest functions even when interaction sequences are limited and non-consecutive. Extensive experiments on four real-world datasets demonstrate that our model outperforms state-of-the-arts on various evaluation metrics.

  • 5 authors
·
Aug 9, 2022

Keyword-Guided Neural Conversational Model

We study the problem of imposing conversational goals/keywords on open-domain conversational agents, where the agent is required to lead the conversation to a target keyword smoothly and fast. Solving this problem enables the application of conversational agents in many real-world scenarios, e.g., recommendation and psychotherapy. The dominant paradigm for tackling this problem is to 1) train a next-turn keyword classifier, and 2) train a keyword-augmented response retrieval model. However, existing approaches in this paradigm have two limitations: 1) the training and evaluation datasets for next-turn keyword classification are directly extracted from conversations without human annotations, thus, they are noisy and have low correlation with human judgements, and 2) during keyword transition, the agents solely rely on the similarities between word embeddings to move closer to the target keyword, which may not reflect how humans converse. In this paper, we assume that human conversations are grounded on commonsense and propose a keyword-guided neural conversational model that can leverage external commonsense knowledge graphs (CKG) for both keyword transition and response retrieval. Automatic evaluations suggest that commonsense improves the performance of both next-turn keyword prediction and keyword-augmented response retrieval. In addition, both self-play and human evaluations show that our model produces responses with smoother keyword transition and reaches the target keyword faster than competitive baselines.

  • 4 authors
·
Dec 15, 2020

Hybrid Latent Reasoning via Reinforcement Learning

Recent advances in large language models (LLMs) have introduced latent reasoning as a promising alternative to autoregressive reasoning. By performing internal computation with hidden states from previous steps, latent reasoning benefit from more informative features rather than sampling a discrete chain-of-thought (CoT) path. Yet latent reasoning approaches are often incompatible with LLMs, as their continuous paradigm conflicts with the discrete nature of autoregressive generation. Moreover, these methods rely on CoT traces for training and thus fail to exploit the inherent reasoning patterns of LLMs. In this work, we explore latent reasoning by leveraging the intrinsic capabilities of LLMs via reinforcement learning (RL). To this end, we introduce hybrid reasoning policy optimization (HRPO), an RL-based hybrid latent reasoning approach that (1) integrates prior hidden states into sampled tokens with a learnable gating mechanism, and (2) initializes training with predominantly token embeddings while progressively incorporating more hidden features. This design maintains LLMs' generative capabilities and incentivizes hybrid reasoning using both discrete and continuous representations. In addition, the hybrid HRPO introduces stochasticity into latent reasoning via token sampling, thereby enabling RL-based optimization without requiring CoT trajectories. Extensive evaluations across diverse benchmarks show that HRPO outperforms prior methods in both knowledge- and reasoning-intensive tasks. Furthermore, HRPO-trained LLMs remain interpretable and exhibit intriguing behaviors like cross-lingual patterns and shorter completion lengths, highlighting the potential of our RL-based approach and offer insights for future work in latent reasoning.

  • 9 authors
·
May 23 2

InPO: Inversion Preference Optimization with Reparametrized DDIM for Efficient Diffusion Model Alignment

Without using explicit reward, direct preference optimization (DPO) employs paired human preference data to fine-tune generative models, a method that has garnered considerable attention in large language models (LLMs). However, exploration of aligning text-to-image (T2I) diffusion models with human preferences remains limited. In comparison to supervised fine-tuning, existing methods that align diffusion model suffer from low training efficiency and subpar generation quality due to the long Markov chain process and the intractability of the reverse process. To address these limitations, we introduce DDIM-InPO, an efficient method for direct preference alignment of diffusion models. Our approach conceptualizes diffusion model as a single-step generative model, allowing us to fine-tune the outputs of specific latent variables selectively. In order to accomplish this objective, we first assign implicit rewards to any latent variable directly via a reparameterization technique. Then we construct an Inversion technique to estimate appropriate latent variables for preference optimization. This modification process enables the diffusion model to only fine-tune the outputs of latent variables that have a strong correlation with the preference dataset. Experimental results indicate that our DDIM-InPO achieves state-of-the-art performance with just 400 steps of fine-tuning, surpassing all preference aligning baselines for T2I diffusion models in human preference evaluation tasks.

  • 6 authors
·
Mar 24

Language Models Trained to do Arithmetic Predict Human Risky and Intertemporal Choice

The observed similarities in the behavior of humans and Large Language Models (LLMs) have prompted researchers to consider the potential of using LLMs as models of human cognition. However, several significant challenges must be addressed before LLMs can be legitimately regarded as cognitive models. For instance, LLMs are trained on far more data than humans typically encounter, and may have been directly trained on human data in specific cognitive tasks or aligned with human preferences. Consequently, the origins of these behavioral similarities are not well understood. In this paper, we propose a novel way to enhance the utility of LLMs as cognitive models. This approach involves (i) leveraging computationally equivalent tasks that both an LLM and a rational agent need to master for solving a cognitive problem and (ii) examining the specific task distributions required for an LLM to exhibit human-like behaviors. We apply this approach to decision-making -- specifically risky and intertemporal choice -- where the key computationally equivalent task is the arithmetic of expected value calculations. We show that an LLM pretrained on an ecologically valid arithmetic dataset, which we call Arithmetic-GPT, predicts human behavior better than many traditional cognitive models. Pretraining LLMs on ecologically valid arithmetic datasets is sufficient to produce a strong correspondence between these models and human decision-making. Our results also suggest that LLMs used as cognitive models should be carefully investigated via ablation studies of the pretraining data.

  • 3 authors
·
May 29, 2024 2