new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

Adapting Vision-Language Models for Evaluating World Models

World models -- generative models that simulate environment dynamics conditioned on past observations and actions -- are gaining prominence in planning, simulation, and embodied AI. However, evaluating their rollouts remains a fundamental challenge, requiring fine-grained, temporally grounded assessment of action alignment and semantic consistency -- capabilities not captured by existing metrics. Vision-Language Models (VLMs) have shown promise as automatic evaluators of generative content due to their strong multimodal reasoning abilities. Yet, their use in fine-grained, temporally sensitive evaluation tasks remains limited and requires targeted adaptation. We introduce a evaluation protocol targeting two recognition tasks -- action recognition and character recognition -- each assessed across binary, multiple-choice, and open-ended formats. To support this, we present UNIVERSE (UNIfied Vision-language Evaluator for Rollouts in Simulated Environments), a method for adapting VLMs to rollout evaluation under data and compute constraints. We conduct a large-scale study comparing full, partial, and parameter-efficient finetuning across task formats, context lengths, sampling strategies, and data compositions. The resulting unified evaluator matches the performance of task-specific baselines using a single checkpoint. Human studies confirm strong alignment with human judgments, establishing UNIVERSE as a scalable, semantics-aware evaluator for world models.

  • 8 authors
·
Jun 22, 2025

Finding Blind Spots in Evaluator LLMs with Interpretable Checklists

Large Language Models (LLMs) are increasingly relied upon to evaluate text outputs of other LLMs, thereby influencing leaderboards and development decisions. However, concerns persist over the accuracy of these assessments and the potential for misleading conclusions. In this work, we investigate the effectiveness of LLMs as evaluators for text generation tasks. We propose FBI, a novel framework designed to examine the proficiency of Evaluator LLMs in assessing four critical abilities in other LLMs: factual accuracy, instruction following, coherence in long-form writing, and reasoning proficiency. By introducing targeted perturbations in answers generated by LLMs, that clearly impact one of these key capabilities, we test whether an Evaluator LLM can detect these quality drops. By creating a total of 2400 perturbed answers covering 22 perturbation categories, we conduct a comprehensive study using different evaluation strategies on five prominent LLMs commonly used as evaluators in the literature. Our findings reveal significant shortcomings in current Evaluator LLMs, which failed to identify quality drops in over 50\% of cases on average. Single-answer and pairwise evaluations demonstrated notable limitations, whereas reference-based evaluations showed comparatively better performance. These results underscore the unreliable nature of current Evaluator LLMs and advocate for cautious implementation in practical applications. Code and data are available at https://github.com/AI4Bharat/FBI.

  • 4 authors
·
Jun 19, 2024

PLSEMANTICSBENCH: Large Language Models As Programming Language Interpreters

As large language models (LLMs) excel at code reasoning, a natural question arises: can an LLM execute programs (i.e., act as an interpreter) purely based on a programming language's formal semantics? If so, it will enable rapid prototyping of new programming languages and language features. We study this question using the imperative language IMP (a subset of C), formalized via small-step operational semantics (SOS) and rewriting-based operational semantics (K-semantics). We introduce three evaluation sets-Human-Written, LLM-Translated, and Fuzzer- Generated-whose difficulty is controlled by code-complexity metrics spanning the size, control-flow, and data-flow axes. Given a program and its semantics formalized with SOS/K-semantics, models are evaluated on three tasks ranging from coarse to fine: (1) final-state prediction, (2) semantic rule prediction, and (3) execution trace prediction. To distinguish pretraining memorization from semantic competence, we define two nonstandard semantics obtained through systematic mutations of the standard rules. Across strong code/reasoning LLMs, performance drops under nonstandard semantics despite high performance under the standard one. We further find that (i) there are patterns to different model failures, (ii) most reasoning models perform exceptionally well on coarse grained tasks involving reasoning about highly complex programs often containing nested loop depths beyond five, and surprisingly, (iii) providing formal semantics helps on simple programs but often hurts on more complex ones. Overall, the results show a promise that LLMs could serve as programming language interpreters, but points to the lack of their robust semantics understanding. We release the benchmark and the supporting code at https://github.com/EngineeringSoftware/PLSemanticsBench.

  • 5 authors
·
Oct 3, 2025

TICKing All the Boxes: Generated Checklists Improve LLM Evaluation and Generation

Given the widespread adoption and usage of Large Language Models (LLMs), it is crucial to have flexible and interpretable evaluations of their instruction-following ability. Preference judgments between model outputs have become the de facto evaluation standard, despite distilling complex, multi-faceted preferences into a single ranking. Furthermore, as human annotation is slow and costly, LLMs are increasingly used to make these judgments, at the expense of reliability and interpretability. In this work, we propose TICK (Targeted Instruct-evaluation with ChecKlists), a fully automated, interpretable evaluation protocol that structures evaluations with LLM-generated, instruction-specific checklists. We first show that, given an instruction, LLMs can reliably produce high-quality, tailored evaluation checklists that decompose the instruction into a series of YES/NO questions. Each question asks whether a candidate response meets a specific requirement of the instruction. We demonstrate that using TICK leads to a significant increase (46.4% to 52.2%) in the frequency of exact agreements between LLM judgements and human preferences, as compared to having an LLM directly score an output. We then show that STICK (Self-TICK) can be used to improve generation quality across multiple benchmarks via self-refinement and Best-of-N selection. STICK self-refinement on LiveBench reasoning tasks leads to an absolute gain of +7.8%, whilst Best-of-N selection with STICK attains +6.3% absolute improvement on the real-world instruction dataset, WildBench. In light of this, structured, multi-faceted self-improvement is shown to be a promising way to further advance LLM capabilities. Finally, by providing LLM-generated checklists to human evaluators tasked with directly scoring LLM responses to WildBench instructions, we notably increase inter-annotator agreement (0.194 to 0.256).

  • 5 authors
·
Oct 4, 2024

Who Validates the Validators? Aligning LLM-Assisted Evaluation of LLM Outputs with Human Preferences

Due to the cumbersome nature of human evaluation and limitations of code-based evaluation, Large Language Models (LLMs) are increasingly being used to assist humans in evaluating LLM outputs. Yet LLM-generated evaluators simply inherit all the problems of the LLMs they evaluate, requiring further human validation. We present a mixed-initiative approach to ``validate the validators'' -- aligning LLM-generated evaluation functions (be it prompts or code) with human requirements. Our interface, EvalGen, provides automated assistance to users in generating evaluation criteria and implementing assertions. While generating candidate implementations (Python functions, LLM grader prompts), EvalGen asks humans to grade a subset of LLM outputs; this feedback is used to select implementations that better align with user grades. A qualitative study finds overall support for EvalGen but underscores the subjectivity and iterative process of alignment. In particular, we identify a phenomenon we dub criteria drift: users need criteria to grade outputs, but grading outputs helps users define criteria. What is more, some criteria appears dependent on the specific LLM outputs observed (rather than independent criteria that can be defined a priori), raising serious questions for approaches that assume the independence of evaluation from observation of model outputs. We present our interface and implementation details, a comparison of our algorithm with a baseline approach, and implications for the design of future LLM evaluation assistants.

  • 5 authors
·
Apr 18, 2024

FreeEval: A Modular Framework for Trustworthy and Efficient Evaluation of Large Language Models

The rapid development of large language model (LLM) evaluation methodologies and datasets has led to a profound challenge: integrating state-of-the-art evaluation techniques cost-effectively while ensuring reliability, reproducibility, and efficiency. Currently, there is a notable absence of a unified and adaptable framework that seamlessly integrates various evaluation approaches. Moreover, the reliability of evaluation findings is often questionable due to potential data contamination, with the evaluation efficiency commonly overlooked when facing the substantial costs associated with LLM inference. In response to these challenges, we introduce FreeEval, a modular and scalable framework crafted to enable trustworthy and efficient automatic evaluations of LLMs. Firstly, FreeEval's unified abstractions simplify the integration and improve the transparency of diverse evaluation methodologies, encompassing dynamic evaluation that demand sophisticated LLM interactions. Secondly, the framework integrates meta-evaluation techniques like human evaluation and data contamination detection, which, along with dynamic evaluation modules in the platform, enhance the fairness of the evaluation outcomes. Lastly, FreeEval is designed with a high-performance infrastructure, including distributed computation and caching strategies, enabling extensive evaluations across multi-node, multi-GPU clusters for open-source and proprietary LLMs.

  • 9 authors
·
Apr 9, 2024

Semantic Operators: A Declarative Model for Rich, AI-based Data Processing

The semantic capabilities of large language models (LLMs) have the potential to enable rich analytics and reasoning over vast knowledge corpora. Unfortunately, existing systems either empirically optimize expensive LLM-powered operations with no performance guarantees, or serve a limited set of row-wise LLM operations, providing limited robustness, expressiveness and usability. We introduce semantic operators, the first formalism for declarative and general-purpose AI-based transformations based on natural language specifications (e.g., filtering, sorting, joining or aggregating records using natural language criteria). Each operator opens a rich space for execution plans, similar to relational operators. Our model specifies the expected behavior of each operator with a high-quality gold algorithm, and we develop an optimization framework that reduces cost, while providing accuracy guarantees with respect to a gold algorithm. Using this approach, we propose several novel optimizations to accelerate semantic filtering, joining, group-by and top-k operations by up to 1,000times. We implement semantic operators in the LOTUS system and demonstrate LOTUS' effectiveness on real, bulk-semantic processing applications, including fact-checking, biomedical multi-label classification, search, and topic analysis. We show that the semantic operator model is expressive, capturing state-of-the-art AI pipelines in a few operator calls, and making it easy to express new pipelines that match or exceed quality of recent LLM-based analytic systems by up to 170%, while offering accuracy guarantees. Overall, LOTUS programs match or exceed the accuracy of state-of-the-art AI pipelines for each task while running up to 3.6times faster than the highest-quality baselines. LOTUS is publicly available at https://github.com/lotus-data/lotus.

  • 7 authors
·
Jul 16, 2024

RocketEval: Efficient Automated LLM Evaluation via Grading Checklist

Evaluating large language models (LLMs) in diverse and challenging scenarios is essential to align them with human preferences. To mitigate the prohibitive costs associated with human evaluations, utilizing a powerful LLM as a judge has emerged as a favored approach. Nevertheless, this methodology encounters several challenges, including substantial expenses, concerns regarding privacy and security, and reproducibility. In this paper, we propose a straightforward, replicable, and accurate automated evaluation method by leveraging a lightweight LLM as the judge, named RocketEval. Initially, we identify that the performance disparity between lightweight and powerful LLMs in evaluation tasks primarily stems from their ability to conduct comprehensive analyses, which is not easily enhanced through techniques such as chain-of-thought reasoning. By reframing the evaluation task as a multi-faceted Q&A using an instance-specific checklist, we demonstrate that the limited judgment accuracy of lightweight LLMs is largely attributes to high uncertainty and positional bias. To address these challenges, we introduce an automated evaluation process grounded in checklist grading, which is designed to accommodate a variety of scenarios and questions. This process encompasses the creation of checklists, the grading of these checklists by lightweight LLMs, and the reweighting of checklist items to align with the supervised annotations. Our experiments carried out on the automated evaluation benchmarks, MT-Bench and WildBench datasets, reveal that RocketEval, when using Gemma-2-2B as the judge, achieves a high correlation (0.965) with human preferences, which is comparable to GPT-4o. Moreover, RocketEval provides a cost reduction exceeding 50-fold for large-scale evaluation and comparison scenarios. Our code is available at https://github.com/Joinn99/RocketEval-ICLR .

  • 5 authors
·
Mar 6, 2025

RevisEval: Improving LLM-as-a-Judge via Response-Adapted References

With significant efforts in recent studies, LLM-as-a-Judge has become a cost-effective alternative to human evaluation for assessing the text generation quality in a wide range of tasks. However, there still remains a reliability gap between LLM-as-a-Judge and human evaluation. One important reason is the lack of guided oracles in the evaluation process. Motivated by the role of reference pervasively used in classic text evaluation, we introduce RevisEval, a novel text generation evaluation paradigm via the response-adapted references. RevisEval is driven by the key observation that an ideal reference should maintain the necessary relevance to the response to be evaluated. Specifically, RevisEval leverages the text revision capabilities of large language models (LLMs) to adaptively revise the response, then treat the revised text as the reference (response-adapted reference) for the subsequent evaluation. Extensive experiments demonstrate that RevisEval outperforms traditional reference-free and reference-based evaluation paradigms that use LLM-as-a-Judge across NLG tasks and open-ended instruction-following tasks. More importantly, our response-adapted references can further boost the classical text metrics, e.g., BLEU and BERTScore, compared to traditional references and even rival the LLM-as-a-Judge. A detailed analysis is also conducted to confirm RevisEval's effectiveness in bias reduction, the impact of inference cost, and reference relevance.

  • 12 authors
·
Oct 7, 2024 3

MCP-Universe: Benchmarking Large Language Models with Real-World Model Context Protocol Servers

The Model Context Protocol has emerged as a transformative standard for connecting large language models to external data sources and tools, rapidly gaining adoption across major AI providers and development platforms. However, existing benchmarks are overly simplistic and fail to capture real application challenges such as long-horizon reasoning and large, unfamiliar tool spaces. To address this critical gap, we introduce MCP-Universe, the first comprehensive benchmark specifically designed to evaluate LLMs in realistic and hard tasks through interaction with real-world MCP servers. Our benchmark encompasses 6 core domains spanning 11 different MCP servers: Location Navigation, Repository Management, Financial Analysis, 3D Design, Browser Automation, and Web Searching. To ensure rigorous evaluation, we implement execution-based evaluators, including format evaluators for agent format compliance, static evaluators for time-invariant content matching, and dynamic evaluators that automatically retrieve real-time ground truth for temporally sensitive tasks. Through extensive evaluation of leading LLMs, we find that even SOTA models such as GPT-5 (43.72%), Grok-4 (33.33%) and Claude-4.0-Sonnet (29.44%) exhibit significant performance limitations. In addition, our benchmark poses a significant long-context challenge for LLM agents, as the number of input tokens increases rapidly with the number of interaction steps. Moreover, it introduces an unknown-tools challenge, as LLM agents often lack familiarity with the precise usage of the MCP servers. Notably, enterprise-level agents like Cursor cannot achieve better performance than standard ReAct frameworks. Beyond evaluation, we open-source our extensible evaluation framework with UI support, enabling researchers and practitioners to seamlessly integrate new agents and MCP servers while fostering innovation in the rapidly evolving MCP ecosystem.

Salesforce Salesforce
·
Aug 20, 2025 10

ToolLLM: Facilitating Large Language Models to Master 16000+ Real-world APIs

Despite the advancements of open-source large language models (LLMs) and their variants, e.g., LLaMA and Vicuna, they remain significantly limited in performing higher-level tasks, such as following human instructions to use external tools (APIs). This is because current instruction tuning largely focuses on basic language tasks instead of the tool-use domain. This is in contrast to state-of-the-art (SOTA) LLMs, e.g., ChatGPT, which have demonstrated excellent tool-use capabilities but are unfortunately closed source. To facilitate tool-use capabilities within open-source LLMs, we introduce ToolLLM, a general tool-use framework of data construction, model training and evaluation. We first present ToolBench, an instruction-tuning dataset for tool use, which is created automatically using ChatGPT. Specifically, we collect 16,464 real-world RESTful APIs spanning 49 categories from RapidAPI Hub, then prompt ChatGPT to generate diverse human instructions involving these APIs, covering both single-tool and multi-tool scenarios. Finally, we use ChatGPT to search for a valid solution path (chain of API calls) for each instruction. To make the searching process more efficient, we develop a novel depth-first search-based decision tree (DFSDT), enabling LLMs to evaluate multiple reasoning traces and expand the search space. We show that DFSDT significantly enhances the planning and reasoning capabilities of LLMs. For efficient tool-use assessment, we develop an automatic evaluator: ToolEval. We fine-tune LLaMA on ToolBench and obtain ToolLLaMA. Our ToolEval reveals that ToolLLaMA demonstrates a remarkable ability to execute complex instructions and generalize to unseen APIs, and exhibits comparable performance to ChatGPT. To make the pipeline more practical, we devise a neural API retriever to recommend appropriate APIs for each instruction, negating the need for manual API selection.

  • 18 authors
·
Jul 31, 2023 5

Improving Consistency in Retrieval-Augmented Systems with Group Similarity Rewards

RAG systems are increasingly deployed in high-stakes domains where users expect outputs to be consistent across semantically equivalent queries. However, existing systems often exhibit significant inconsistencies due to variability in both the retriever and generator (LLM), undermining trust and reliability. In this work, we focus on information consistency, i.e., the requirement that outputs convey the same core content across semantically equivalent inputs. We introduce a principled evaluation framework that decomposes RAG consistency into retriever-level, generator-level, and end-to-end components, helping identify inconsistency sources. To improve consistency, we propose Paraphrased Set Group Relative Policy Optimization (PS-GRPO), an RL approach that leverages multiple rollouts across paraphrased set to assign group similarity rewards. We leverage PS-GRPO to achieve Information Consistent RAG (Con-RAG), training the generator to produce consistent outputs across paraphrased queries and remain robust to retrieval-induced variability. Because exact reward computation over paraphrase sets is computationally expensive, we also introduce a scalable approximation method that retains effectiveness while enabling efficient, large-scale training. Empirical evaluations across short-form, multi-hop, and long-form QA benchmarks demonstrate that Con-RAG significantly improves both consistency and accuracy over strong baselines, even in the absence of explicit ground-truth supervision. Our work provides practical solutions for evaluating and building reliable RAG systems for safety-critical deployments.

  • 7 authors
·
Oct 5, 2025

RAGalyst: Automated Human-Aligned Agentic Evaluation for Domain-Specific RAG

Retrieval-Augmented Generation (RAG) is a critical technique for grounding Large Language Models (LLMs) in factual evidence, yet evaluating RAG systems in specialized, safety-critical domains remains a significant challenge. Existing evaluation frameworks often rely on heuristic-based metrics that fail to capture domain-specific nuances and other works utilize LLM-as-a-Judge approaches that lack validated alignment with human judgment. This paper introduces RAGalyst, an automated, human-aligned agentic framework designed for the rigorous evaluation of domain-specific RAG systems. RAGalyst features an agentic pipeline that generates high-quality, synthetic question-answering (QA) datasets from source documents, incorporating an agentic filtering step to ensure data fidelity. The framework refines two key LLM-as-a-Judge metrics-Answer Correctness and Answerability-using prompt optimization to achieve a strong correlation with human annotations. Applying this framework to evaluate various RAG components across three distinct domains (military operations, cybersecurity, and bridge engineering), we find that performance is highly context-dependent. No single embedding model, LLM, or hyperparameter configuration proves universally optimal. Additionally, we provide an analysis on the most common low Answer Correctness reasons in RAG. These findings highlight the necessity of a systematic evaluation framework like RAGalyst, which empowers practitioners to uncover domain-specific trade-offs and make informed design choices for building reliable and effective RAG systems. RAGalyst is available on our Github.

  • 5 authors
·
Nov 6, 2025

Towards Real-Time Fake News Detection under Evidence Scarcity

Fake news detection becomes particularly challenging in real-time scenarios, where emerging events often lack sufficient supporting evidence. Existing approaches often rely heavily on external evidence and therefore struggle to generalize under evidence scarcity. To address this issue, we propose Evaluation-Aware Selection of Experts (EASE), a novel framework for real-time fake news detection that dynamically adapts its decision-making process according to the assessed sufficiency of available evidence. EASE introduces a sequential evaluation mechanism comprising three independent perspectives: (1) Evidence-based evaluation, which assesses evidence and incorporates it into decision-making only when the evidence is sufficiently supportive; (2) Reasoning-based evaluation, which leverages the world knowledge of large language models (LLMs) and applies them only when their reliability is adequately established; and (3) Sentiment-based fallback, which integrates sentiment cues when neither evidence nor reasoning is reliable. To enhance the accuracy of evaluation processes, EASE employs instruction tuning with pseudo labels to guide each evaluator in justifying its perspective-specific knowledge through interpretable reasoning. Furthermore, the expert modules integrate the evaluators' justified assessments with the news content to enable evaluation-aware decision-making, thereby enhancing overall detection accuracy. Moreover, we introduce RealTimeNews-25, a new benchmark comprising recent news for evaluating model generalization on emerging news with limited evidence. Extensive experiments demonstrate that EASE not only achieves state-of-the-art performance across multiple benchmarks, but also significantly improves generalization to real-time news. The code and dataset are available: https://github.com/wgyhhhh/EASE.

  • 7 authors
·
Oct 13, 2025

SemParser: A Semantic Parser for Log Analysis

Logs, being run-time information automatically generated by software, record system events and activities with their timestamps. Before obtaining more insights into the run-time status of the software, a fundamental step of log analysis, called log parsing, is employed to extract structured templates and parameters from the semi-structured raw log messages. However, current log parsers are all syntax-based and regard each message as a character string, ignoring the semantic information included in parameters and templates. Thus, we propose the semantic-based parser SemParser to unlock the critical bottleneck of mining semantics from log messages. It contains two steps, an end-to-end semantic miner and a joint parser. Specifically, the first step aims to identify explicit semantics inside a single log, and the second step is responsible for jointly inferring implicit semantics and computing structural outputs based on the contextual knowledge base. To analyze the effectiveness of our semantic parser, we first demonstrate that it can derive rich semantics from log messages collected from six widely-applied systems with an average F1 score of 0.985. Then, we conduct two representative downstream tasks, showing that current downstream models improve their performance with appropriately extracted semantics by 1.2%-11.7% and 8.65% on two anomaly detection datasets and a failure identification dataset, respectively. We believe these findings provide insights into semantically understanding log messages for the log analysis community.

  • 4 authors
·
Dec 23, 2021

Foundational Automatic Evaluators: Scaling Multi-Task Generative Evaluator Training for Reasoning-Centric Domains

Finetuning specialized generative evaluators has emerged as a popular paradigm to meet the increasing demand for scalable evaluation during both training and test-time. However, recent work has largely focused on applying new methodology, such as reinforcement learning (RL), to training evaluators, shying away from large-scale, data-driven development. In this work, we focus on data scaling, curating a set of 2.5M samples spanning five unique evaluation tasks (pairwise, step-level, reference-free and reference-based verification, and single rating) and multiple domains focused on reasoning evaluation. With our data, we train Foundational Automatic Reasoning Evaluators (FARE), a family of 8B and 20B (with 3.6B active) parameter evaluators, with a simple iterative rejection-sampling supervised finetuning (SFT) approach. FARE-8B challenges larger specialized RL-trained evaluators and FARE-20B sets the new standard for open-source evaluators, surpassing specialized 70B+ evaluators. Beyond static benchmarks, we evaluate FARE in real-world tasks: As inference-time rerankers, FARE-20B achieves near-oracle performance on MATH. As verifiers in RL training, FARE improves the downstream RL-trained model performance by up to 14.1% vs. string-matching verifiers. When initialized from FARE, a continually-finetuned FARE-Code outperforms gpt-oss-20B by 65% on evaluating test-case quality.

Salesforce Salesforce
·
Oct 20, 2025 2

FELM: Benchmarking Factuality Evaluation of Large Language Models

Assessing factuality of text generated by large language models (LLMs) is an emerging yet crucial research area, aimed at alerting users to potential errors and guiding the development of more reliable LLMs. Nonetheless, the evaluators assessing factuality necessitate suitable evaluation themselves to gauge progress and foster advancements. This direction remains under-explored, resulting in substantial impediments to the progress of factuality evaluators. To mitigate this issue, we introduce a benchmark for Factuality Evaluation of large Language Models, referred to as felm. In this benchmark, we collect responses generated from LLMs and annotate factuality labels in a fine-grained manner. Contrary to previous studies that primarily concentrate on the factuality of world knowledge (e.g.~information from Wikipedia), felm focuses on factuality across diverse domains, spanning from world knowledge to math and reasoning. Our annotation is based on text segments, which can help pinpoint specific factual errors. The factuality annotations are further supplemented by predefined error types and reference links that either support or contradict the statement. In our experiments, we investigate the performance of several LLM-based factuality evaluators on felm, including both vanilla LLMs and those augmented with retrieval mechanisms and chain-of-thought processes. Our findings reveal that while retrieval aids factuality evaluation, current LLMs are far from satisfactory to faithfully detect factual errors.

  • 7 authors
·
Oct 1, 2023

CodeFuse-CR-Bench: A Comprehensiveness-aware Benchmark for End-to-End Code Review Evaluation in Python Projects

Automated code review (CR) is a key application for Large Language Models (LLMs), but progress is hampered by a "reality gap": existing benchmarks evaluate models on isolated sub-tasks using simplified, context-poor data. This fails to reflect the holistic context-rich nature of real-world CR. To bridge this gap, we introduce CodeFuse-CR-Bench, the first comprehensiveness-aware benchmark for repository-level CR evaluation. CodeFuse-CR-Bench comprises 601 high-quality instances from 70 Python projects covering nine Pull-Request (PR) problem domains, where each instance provides rich, multi-faceted context including the associated issue, PR details, and repository state, enabling end-to-end evaluation. Beyond superficial metrics, we also propose a novel evaluation framework that combines rule-based checks for location and syntax with model-based judgments of review quality. We present the first large-scale assessment of state-of-the-art LLMs on this comprehensive CR task. Our results establish crucial baselines and reveal that (1) no single LLM dominates all aspects of CR; (2) Gemini 2.5 Pro achieves the highest comprehensive performance; and (3) different LLMs exhibit varying robustness to redundant context. These findings highlight the necessity of holistic, multi-dimensional evaluation and provide actionable insights for advancing truly intelligent yet practical CR assistants.

  • 7 authors
·
Sep 18, 2025 2

LV-Eval: A Balanced Long-Context Benchmark with 5 Length Levels Up to 256K

State-of-the-art large language models (LLMs) are now claiming remarkable supported context lengths of 256k or even more. In contrast, the average context lengths of mainstream benchmarks are insufficient (5k-21k), and they suffer from potential knowledge leakage and inaccurate metrics, resulting in biased evaluation. This paper introduces LV-Eval, a challenging long-context benchmark with five length levels (16k, 32k, 64k, 128k, and 256k) reaching up to 256k words. LV-Eval features two main tasks, single-hop QA and multi-hop QA, comprising 11 bilingual datasets. The design of LV-Eval has incorporated three key techniques, namely confusing facts insertion, keyword and phrase replacement, and keyword-recall-based metric design. The advantages of LV-Eval include controllable evaluation across different context lengths, challenging test instances with confusing facts, mitigated knowledge leakage, and more objective evaluations. We evaluate 10 LLMs on LV-Eval and conduct ablation studies on the techniques used in LV-Eval construction. The results reveal that: (i) Commercial LLMs generally outperform open-source LLMs when evaluated within length levels shorter than their claimed context length. However, their overall performance is surpassed by open-source LLMs with longer context lengths. (ii) Extremely long-context LLMs, such as Yi-6B-200k, exhibit a relatively gentle degradation of performance, but their absolute performances may not necessarily be higher than those of LLMs with shorter context lengths. (iii) LLMs' performances can significantly degrade in the presence of confusing information, especially in the pressure test of "needle in a haystack". (iv) Issues related to knowledge leakage and inaccurate metrics introduce bias in evaluation, and these concerns are alleviated in LV-Eval. All datasets and evaluation codes are released at: https://github.com/infinigence/LVEval.

  • 13 authors
·
Feb 6, 2024

Benchmarking Large Language Models on Controllable Generation under Diversified Instructions

While large language models (LLMs) have exhibited impressive instruction-following capabilities, it is still unclear whether and to what extent they can respond to explicit constraints that might be entailed in various instructions. As a significant aspect of LLM alignment, it is thus important to formulate such a specialized set of instructions as well as investigate the resulting behavior of LLMs. To address this vacancy, we propose a new benchmark CoDI-Eval to systematically and comprehensively evaluate LLMs' responses to instructions with various constraints. We construct a large collection of constraints-attributed instructions as a test suite focused on both generalization and coverage. Specifically, we advocate an instruction diversification process to synthesize diverse forms of constraint expression and also deliberate the candidate task taxonomy with even finer-grained sub-categories. Finally, we automate the entire evaluation process to facilitate further developments. Different from existing studies on controllable text generation, CoDI-Eval extends the scope to the prevalent instruction-following paradigm for the first time. We provide extensive evaluations of representative LLMs (e.g., ChatGPT, Vicuna) on CoDI-Eval, revealing their limitations in following instructions with specific constraints and there is still a significant gap between open-source and commercial closed-source LLMs. We believe this benchmark will facilitate research into improving the controllability of LLMs' responses to instructions. Our data and code are available at https://github.com/Xt-cyh/CoDI-Eval.

  • 5 authors
·
Jan 1, 2024 2

Semantic Probabilistic Control of Language Models

Semantic control entails steering LM generations towards satisfying subtle non-lexical constraints, e.g., toxicity, sentiment, or politeness, attributes that can be captured by a sequence-level verifier. It can thus be viewed as sampling from the LM distribution conditioned on the target attribute, a computationally intractable problem due to the non-decomposable nature of the verifier. Existing approaches to LM control either only deal with syntactic constraints which cannot capture the aforementioned attributes, or rely on sampling to explore the conditional LM distribution, an ineffective estimator for low-probability events. In this work, we leverage a verifier's gradient information to efficiently reason over all generations that satisfy the target attribute, enabling precise steering of LM generations by reweighing the next-token distribution. Starting from an initial sample, we create a local LM distribution favoring semantically similar sentences. This approximation enables the tractable computation of an expected sentence embedding. We use this expected embedding, informed by the verifier's evaluation at the initial sample, to estimate the probability of satisfying the constraint, which directly informs the update to the next-token distribution. We evaluated the effectiveness of our approach in controlling the toxicity, sentiment, and topic-adherence of LMs yielding generations satisfying the constraint with high probability (>95%) without degrading their quality.

  • 4 authors
·
May 3, 2025

HREF: Human Response-Guided Evaluation of Instruction Following in Language Models

Evaluating the capability of Large Language Models (LLMs) in following instructions has heavily relied on a powerful LLM as the judge, introducing unresolved biases that deviate the judgments from human judges. In this work, we reevaluate various choices for automatic evaluation on a wide range of instruction-following tasks. We experiment with methods that leverage human-written responses and observe that they enhance the reliability of automatic evaluations across a wide range of tasks, resulting in up to a 3.2% improvement in agreement with human judges. We also discovered that human-written responses offer an orthogonal perspective to model-generated responses in following instructions and should be used as an additional context when comparing model responses. Based on these observations, we develop a new evaluation benchmark, Human Response-Guided Evaluation of Instruction Following (HREF), comprising 4,258 samples across 11 task categories with a composite evaluation setup, employing a composite evaluation setup that selects the most reliable method for each category. In addition to providing reliable evaluation, HREF emphasizes individual task performance and is free from contamination. Finally, we study the impact of key design choices in HREF, including the size of the evaluation set, the judge model, the baseline model, and the prompt template. We host a live leaderboard that evaluates LLMs on the private evaluation set of HREF.

  • 4 authors
·
Dec 19, 2024

EvalAgent: Discovering Implicit Evaluation Criteria from the Web

Evaluation of language model outputs on structured writing tasks is typically conducted with a number of desirable criteria presented to human evaluators or large language models (LLMs). For instance, on a prompt like "Help me draft an academic talk on coffee intake vs research productivity", a model response may be evaluated for criteria like accuracy and coherence. However, high-quality responses should do more than just satisfy basic task requirements. An effective response to this query should include quintessential features of an academic talk, such as a compelling opening, clear research questions, and a takeaway. To help identify these implicit criteria, we introduce EvalAgent, a novel framework designed to automatically uncover nuanced and task-specific criteria. EvalAgent first mines expert-authored online guidance. It then uses this evidence to propose diverse, long-tail evaluation criteria that are grounded in reliable external sources. Our experiments demonstrate that the grounded criteria produced by EvalAgent are often implicit (not directly stated in the user's prompt), yet specific (high degree of lexical precision). Further, EvalAgent criteria are often not satisfied by initial responses but they are actionable, such that responses can be refined to satisfy them. Finally, we show that combining LLM-generated and EvalAgent criteria uncovers more human-valued criteria than using LLMs alone.

  • 6 authors
·
Apr 21, 2025

Vi(E)va LLM! A Conceptual Stack for Evaluating and Interpreting Generative AI-based Visualizations

The automatic generation of visualizations is an old task that, through the years, has shown more and more interest from the research and practitioner communities. Recently, large language models (LLM) have become an interesting option for supporting generative tasks related to visualization, demonstrating initial promising results. At the same time, several pitfalls, like the multiple ways of instructing an LLM to generate the desired result, the different perspectives leading the generation (code-based, image-based, grammar-based), and the presence of hallucinations even for the visualization generation task, make their usage less affordable than expected. Following similar initiatives for benchmarking LLMs, this paper copes with the problem of modeling the evaluation of a generated visualization through an LLM. We propose a theoretical evaluation stack, EvaLLM, that decomposes the evaluation effort in its atomic components, characterizes their nature, and provides an overview of how to implement and interpret them. We also designed and implemented an evaluation platform that provides a benchmarking resource for the visualization generation task. The platform supports automatic and manual scoring conducted by multiple assessors to support a fine-grained and semantic evaluation based on the EvaLLM stack. Two case studies on GPT3.5-turbo with Code Interpreter and Llama2-70-b models show the benefits of EvaLLM and illustrate interesting results on the current state-of-the-art LLM-generated visualizations.

  • 3 authors
·
Feb 3, 2024

How Efficient is LLM-Generated Code? A Rigorous & High-Standard Benchmark

The emergence of large language models (LLMs) has significantly pushed the frontiers of program synthesis. Advancement of LLM-based program synthesis calls for a thorough evaluation of LLM-generated code. Most evaluation frameworks focus on the (functional) correctness of generated code; efficiency, as an important measure of code quality, has been overlooked in existing evaluations. In this work, we develop ENAMEL (EfficeNcy AutoMatic EvaLuator), a rigorous and high-standard benchmark for evaluating the capability of LLMs in generating efficient code. Firstly, we propose a new efficiency metric called eff@k, which generalizes the pass@k metric from correctness to efficiency and appropriately handles right-censored execution time. Furthermore, we derive an unbiased and variance-reduced estimator of eff@k via Rao--Blackwellization; we also provide a numerically stable implementation for the new estimator. Secondly, to set a high-standard for efficiency evaluation, we employ a human expert to design best algorithms and implementations as our reference solutions of efficiency, many of which are much more efficient than existing canonical solutions in HumanEval and HumanEval+. Moreover, to ensure a rigorous evaluation, we employ a human expert to curate strong test case generators to filter out wrong code and differentiate suboptimal algorithms. An extensive study across 30 popular LLMs using our benchmark ENAMEL shows that LLMs still fall short of generating expert-level efficient code. Using two subsets of our problem set, we demonstrate that such deficiency is because current LLMs struggle in designing advanced algorithms and are barely aware of implementation optimization. Our benchmark is publicly available at https://github.com/q-rz/enamel .

  • 5 authors
·
Jun 10, 2024

LaajMeter: A Framework for LaaJ Evaluation

Large Language Models (LLMs) are increasingly used as evaluators in natural language processing tasks, a paradigm known as LLM-as-a-Judge (LaaJ). While effective in general domains, LaaJs pose significant challenges in domain-specific contexts, where annotated data is scarce and expert evaluation is costly. In such cases, meta-evaluation is often performed using metrics that have not been validated for the specific domain in which they are applied. As a result, it becomes difficult to determine which metrics effectively identify LaaJ quality, and further, what threshold indicates sufficient evaluator performance. In this work, we introduce LaaJMeter, a simulation-based framework for controlled meta-evaluation of LaaJs. LaaJMeter enables engineers to generate synthetic data representing virtual models and judges, allowing systematic analysis of evaluation metrics under realistic conditions. This helps practitioners validate and refine LaaJs for specific evaluation tasks: they can test whether their metrics correctly distinguish between better and worse (virtual) LaaJs, and estimate appropriate thresholds for evaluator adequacy. We demonstrate the utility of LaaJMeter in a code translation task involving a legacy programming language, showing how different metrics vary in sensitivity to evaluator quality. Our results highlight the limitations of common metrics and the importance of principled metric selection. LaaJMeter provides a scalable and extensible solution for assessing LaaJs in low-resource settings, contributing to the broader effort to ensure trustworthy and reproducible evaluation in NLP.

  • 5 authors
·
Aug 13, 2025

Assessing the Sensitivity and Alignment of FOL Closeness Metrics

The recent successful paradigm of solving logical reasoning problems with tool-augmented large language models (LLMs) leverages translation of natural language (NL) statements into First-Order Logic~(FOL) and external theorem provers. However, the correctness of FOL statements, comprising operators and text, often go unverified due to the lack of a reliable evaluation metric for comparing generated and ground-truth FOLs. In this paper, we conduct a comprehensive study on the sensitivity of existing NL-, FOL-, and graph-based metrics to capture differences between a sampled FOL and its corresponding ground-truth. We then measure the alignment between a metric-based ranking of FOL outputs and a strong LLM as-a-judge. To do this, we first apply operator and text-based perturbations to ground-truth FOL statements to assess metric sensitivity. We then evaluate metric robustness by comparing the metrics against LLMs judgment. Our empirical findings highlight a clear oversensitivity in the n-gram metric BLEU for text perturbations. The operator perturbation affects the semantic graph metric Smatch++ for structural changes, and the FOL metric for specific operator changes. We observe a closer alignment between BertScore and LLM judgement, proving the importance of semantic evaluation. Additionally, we show that combining metrics enhances both robustness and sensitivity compared to using individual metrics.

  • 3 authors
·
Jan 15, 2025

TrustJudge: Inconsistencies of LLM-as-a-Judge and How to Alleviate Them

The adoption of Large Language Models (LLMs) as automated evaluators (LLM-as-a-judge) has revealed critical inconsistencies in current evaluation frameworks. We identify two fundamental types of inconsistencies: (1) Score-Comparison Inconsistency, where lower-rated responses outperform higher-scored ones in pairwise comparisons, and (2) Pairwise Transitivity Inconsistency, manifested through circular preference chains (A>B>C>A) and equivalence contradictions (A=B=C\neq A). We argue that these issues come from information loss in discrete rating systems and ambiguous tie judgments during pairwise evaluation. We propose TrustJudge, a probabilistic framework that addresses these limitations through two key innovations: 1) distribution-sensitive scoring that computes continuous expectations from discrete rating probabilities, preserving information entropy for more precise scoring, and 2) likelihood-aware aggregation that resolves transitivity violations using bidirectional preference probabilities or perplexity. We also formalize the theoretical limitations of current LLM-as-a-judge frameworks and demonstrate how TrustJudge's components overcome them. When evaluated with Llama-3.1-70B-Instruct as judge using our dataset, TrustJudge reduces Score-Comparison inconsistency by 8.43% (from 23.32% to 14.89%) and Pairwise Transitivity inconsistency by 10.82% (from 15.22% to 4.40%), while maintaining higher evaluation accuracy. Our work provides the first systematic analysis of evaluation framework inconsistencies in LLM-as-a-judge paradigms, offering both theoretical insights and practical solutions for reliable automated assessment. The framework demonstrates consistent improvements across various model architectures and scales, enabling more trustworthy LLM evaluation without requiring additional training or human annotations. The codes can be found at https://github.com/TrustJudge/TrustJudge.

  • 14 authors
·
Sep 25, 2025 2

Advancing Retrieval-Augmented Generation for Structured Enterprise and Internal Data

Organizations increasingly rely on proprietary enterprise data, including HR records, structured reports, and tabular documents, for critical decision-making. While Large Language Models (LLMs) have strong generative capabilities, they are limited by static pretraining, short context windows, and challenges in processing heterogeneous data formats. Conventional Retrieval-Augmented Generation (RAG) frameworks address some of these gaps but often struggle with structured and semi-structured data. This work proposes an advanced RAG framework that combines hybrid retrieval strategies using dense embeddings (all-mpnet-base-v2) and BM25, enhanced by metadata-aware filtering with SpaCy NER and cross-encoder reranking. The framework applies semantic chunking to maintain textual coherence and retains tabular data structures to preserve row-column integrity. Quantized indexing optimizes retrieval efficiency, while human-in-the-loop feedback and conversation memory improve adaptability. Experiments on enterprise datasets show notable improvements: Precision@5 increased by 15 percent (90 versus 75), Recall@5 by 13 percent (87 versus 74), and Mean Reciprocal Rank by 16 percent (0.85 versus 0.69). Qualitative evaluations show higher scores in Faithfulness (4.6 versus 3.0), Completeness (4.2 versus 2.5), and Relevance (4.5 versus 3.2) on a 5-point Likert scale. These results demonstrate the framework's effectiveness in delivering accurate, comprehensive, and contextually relevant responses for enterprise tasks. Future work includes extending to multimodal data and integrating agent-based retrieval. The source code will be released at https://github.com/CheerlaChandana/Enterprise-Chatbot

  • 1 authors
·
Jul 16, 2025

Key-Augmented Neural Triggers for Knowledge Sharing

Repository-level code comprehension and knowledge sharing remain core challenges in software engineering. Large language models (LLMs) have shown promise by generating explanations of program structure and logic. However, these approaches still face limitations: First, relevant knowledge is distributed across multiple files within a repository, aka semantic fragmentation. Second, retrieval inefficiency and attention saturation degrade performance in RAG pipelines, where long, unaligned contexts overwhelm attention. Third, repository specific training data is scarce and often outdated. Finally, proprietary LLMs hinder industrial adoption due to privacy and deployment constraints. To address these issues, we propose Key-Augmented Neural Triggers (KANT), a novel approach that embeds knowledge anchors into both training and inference. Unlike prior methods, KANT enables internal access to repository specific knowledge, reducing fragmentation and grounding inference in localized context. Moreover, we synthesize specialized data directly from code. At inference, knowledge anchors replace verbose context, reducing token overhead and latency while supporting efficient, on premise deployment. We evaluate KANT via: a qualitative human evaluation of the synthesized dataset's intent coverage and quality across five dimensions; compare against SOTA baselines across five qualitative dimensions and inference speed; and replication across different LLMs to assess generalizability. Results show that the synthetic training data aligned with information-seeking needs. KANT achieved over 60% preference from human annotators and a LocalStack expert (preferring 79% of cases). Also, KANT reduced inference latency by up to 85% across all models. Overall, it is well-suited for scalable, low-latency, on-premise deployments, providing a strong foundation for code comprehension.

  • 4 authors
·
Aug 5, 2025

Are Large Language Models Good at Utility Judgments?

Retrieval-augmented generation (RAG) is considered to be a promising approach to alleviate the hallucination issue of large language models (LLMs), and it has received widespread attention from researchers recently. Due to the limitation in the semantic understanding of retrieval models, the success of RAG heavily lies on the ability of LLMs to identify passages with utility. Recent efforts have explored the ability of LLMs to assess the relevance of passages in retrieval, but there has been limited work on evaluating the utility of passages in supporting question answering. In this work, we conduct a comprehensive study about the capabilities of LLMs in utility evaluation for open-domain QA. Specifically, we introduce a benchmarking procedure and collection of candidate passages with different characteristics, facilitating a series of experiments with five representative LLMs. Our experiments reveal that: (i) well-instructed LLMs can distinguish between relevance and utility, and that LLMs are highly receptive to newly generated counterfactual passages. Moreover, (ii) we scrutinize key factors that affect utility judgments in the instruction design. And finally, (iii) to verify the efficacy of utility judgments in practical retrieval augmentation applications, we delve into LLMs' QA capabilities using the evidence judged with utility and direct dense retrieval results. (iv) We propose a k-sampling, listwise approach to reduce the dependency of LLMs on the sequence of input passages, thereby facilitating subsequent answer generation. We believe that the way we formalize and study the problem along with our findings contributes to a critical assessment of retrieval-augmented LLMs. Our code and benchmark can be found at https://github.com/ict-bigdatalab/utility_judgments.

  • 6 authors
·
Mar 28, 2024

From Rankings to Insights: Evaluation Should Shift Focus from Leaderboard to Feedback

Automatic evaluation benchmarks such as MT-Bench, Arena-Hard, and Auto-Arena are seeing growing adoption for the evaluation of Large Language Models (LLMs). Existing research has primarily focused on approximating human-based model rankings using limited data and LLM-as-a-Judge. However, the fundamental premise of these studies, which attempts to replicate human rankings, is flawed. Specifically, these benchmarks typically offer only overall scores, limiting their utility to leaderboard rankings, rather than providing feedback that can guide model optimization and support model profiling. Therefore, we advocate for an evaluation paradigm shift from approximating human-based model rankings to providing feedback with analytical value. To this end, we introduce Feedbacker, an evaluation framework that provides comprehensive and fine-grained results, thereby enabling thorough identification of a model's specific strengths and weaknesses. Such feedback not only supports the targeted optimization of the model but also enhances the understanding of its behavior. Feedbacker comprises three key components: an extensible tree-based query taxonomy builder, an automated query synthesis scheme, and a suite of visualization and analysis tools. Furthermore, we propose a novel LLM-as-a-Judge method: PC2 (Pre-Comparison-derived Criteria) pointwise evaluation. This method derives evaluation criteria by pre-comparing the differences between several auxiliary responses, achieving the accuracy of pairwise evaluation while maintaining the time complexity of pointwise evaluation. Finally, leveraging the evaluation results of 17 mainstream LLMs, we demonstrate the usage of Feedbacker and highlight its effectiveness and potential. Our homepage project is available at https://liudan193.github.io/Feedbacker.

  • 6 authors
·
May 10, 2025

DCR-Consistency: Divide-Conquer-Reasoning for Consistency Evaluation and Improvement of Large Language Models

Evaluating the quality and variability of text generated by Large Language Models (LLMs) poses a significant, yet unresolved research challenge. Traditional evaluation methods, such as ROUGE and BERTScore, which measure token similarity, often fail to capture the holistic semantic equivalence. This results in a low correlation with human judgments and intuition, which is especially problematic in high-stakes applications like healthcare and finance where reliability, safety, and robust decision-making are highly critical. This work proposes DCR, an automated framework for evaluating and improving the consistency of LLM-generated texts using a divide-conquer-reasoning approach. Unlike existing LLM-based evaluators that operate at the paragraph level, our method employs a divide-and-conquer evaluator (DCE) that breaks down the paragraph-to-paragraph comparison between two generated responses into individual sentence-to-paragraph comparisons, each evaluated based on predefined criteria. To facilitate this approach, we introduce an automatic metric converter (AMC) that translates the output from DCE into an interpretable numeric score. Beyond the consistency evaluation, we further present a reason-assisted improver (RAI) that leverages the analytical reasons with explanations identified by DCE to generate new responses aimed at reducing these inconsistencies. Through comprehensive and systematic empirical analysis, we show that our approach outperforms state-of-the-art methods by a large margin (e.g., +19.3% and +24.3% on the SummEval dataset) in evaluating the consistency of LLM generation across multiple benchmarks in semantic, factual, and summarization consistency tasks. Our approach also substantially reduces nearly 90% of output inconsistencies, showing promise for effective hallucination mitigation.

  • 7 authors
·
Jan 4, 2024 2

Does Context Matter? ContextualJudgeBench for Evaluating LLM-based Judges in Contextual Settings

The large language model (LLM)-as-judge paradigm has been used to meet the demand for a cheap, reliable, and fast evaluation of model outputs during AI system development and post-deployment monitoring. While judge models -- LLMs finetuned to specialize in assessing and critiquing model outputs -- have been touted as general purpose evaluators, they are typically evaluated only on non-contextual scenarios, such as instruction following. The omission of contextual settings -- those where external information is used as context to generate an output -- is surprising given the increasing prevalence of retrieval-augmented generation (RAG) and summarization use cases. Contextual assessment is uniquely challenging, as evaluation often depends on practitioner priorities, leading to conditional evaluation criteria (e.g., comparing responses based on factuality and then considering completeness if they are equally factual). To address the gap, we propose ContextualJudgeBench, a judge benchmark with 2,000 challenging response pairs across eight splits inspired by real-world contextual evaluation scenarios. We build our benchmark with a multi-pronged data construction pipeline that leverages both existing human annotations and model-based perturbations. Our comprehensive study across 11 judge models and 9 general purpose models, reveals that the contextual information and its assessment criteria present a significant challenge to even state-of-the-art models. For example, OpenAI's o1, the best-performing model, barely reaches 55% consistent accuracy.

  • 5 authors
·
Mar 19, 2025

CORE: Benchmarking LLMs Code Reasoning Capabilities through Static Analysis Tasks

Large language models (LLMs) have been widely adopted across diverse software engineering domains, such as code generation, program repair, and vulnerability detection. These applications require understanding beyond surface-level code patterns: value propagation, control flow, and interdependence between program elements. However, existing benchmarks primarily evaluate end-to-end outcomes, such as whether code is correctly repaired or generated, leaving the models ability for program semantic reasoning underexplored. This work presents CoRe, a high-quality, human-verified benchmark designed to evaluate LLMs on fundamental static analysis tasks. CoRe includes 12,553 task instances spanning data dependency, control dependency, and information flow across programs written in C/C++, Java, and Python. To ensure semantic diversity and reasoning complexity, we propose a semantics-aware diverse sampling strategy that selects targets and task instances based on structural coverage and dependency depth. We evaluate 10 mainstream LLMs and show that, while they perform well at identifying dependencies, models still struggle with tasks that require deeper semantic understanding and multi-step reasoning. We further conduct qualitative analyses to uncover key challenges, such as complex control structures and backward dependency patterns, offering insights into improving LLMs code reasoning capabilities.

  • 7 authors
·
Jul 2, 2025 1

From Words to Code: Harnessing Data for Program Synthesis from Natural Language

Creating programs to correctly manipulate data is a difficult task, as the underlying programming languages and APIs can be challenging to learn for many users who are not skilled programmers. Large language models (LLMs) demonstrate remarkable potential for generating code from natural language, but in the data manipulation domain, apart from the natural language (NL) description of the intended task, we also have the dataset on which the task is to be performed, or the "data context". Existing approaches have utilized data context in a limited way by simply adding relevant information from the input data into the prompts sent to the LLM. In this work, we utilize the available input data to execute the candidate programs generated by the LLMs and gather their outputs. We introduce semantic reranking, a technique to rerank the programs generated by LLMs based on three signals coming the program outputs: (a) semantic filtering and well-formedness based score tuning: do programs even generate well-formed outputs, (b) semantic interleaving: how do the outputs from different candidates compare to each other, and (c) output-based score tuning: how do the outputs compare to outputs predicted for the same task. We provide theoretical justification for semantic interleaving. We also introduce temperature mixing, where we combine samples generated by LLMs using both high and low temperatures. We extensively evaluate our approach in three domains, namely databases (SQL), data science (Pandas) and business intelligence (Excel's Power Query M) on a variety of new and existing benchmarks. We observe substantial gains across domains, with improvements of up to 45% in top-1 accuracy and 34% in top-3 accuracy.

  • 12 authors
·
May 2, 2023

KoBLEX: Open Legal Question Answering with Multi-hop Reasoning

Large Language Models (LLM) have achieved remarkable performances in general domains and are now extending into the expert domain of law. Several benchmarks have been proposed to evaluate LLMs' legal capabilities. However, these benchmarks fail to evaluate open-ended and provision-grounded Question Answering (QA). To address this, we introduce a Korean Benchmark for Legal EXplainable QA (KoBLEX), designed to evaluate provision-grounded, multi-hop legal reasoning. KoBLEX includes 226 scenario-based QA instances and their supporting provisions, created using a hybrid LLM-human expert pipeline. We also propose a method called Parametric provision-guided Selection Retrieval (ParSeR), which uses LLM-generated parametric provisions to guide legally grounded and reliable answers. ParSeR facilitates multi-hop reasoning on complex legal questions by generating parametric provisions and employing a three-stage sequential retrieval process. Furthermore, to better evaluate the legal fidelity of the generated answers, we propose Legal Fidelity Evaluation (LF-Eval). LF-Eval is an automatic metric that jointly considers the question, answer, and supporting provisions and shows a high correlation with human judgments. Experimental results show that ParSeR consistently outperforms strong baselines, achieving the best results across multiple LLMs. Notably, compared to standard retrieval with GPT-4o, ParSeR achieves +37.91 higher F1 and +30.81 higher LF-Eval. Further analyses reveal that ParSeR efficiently delivers consistent performance across reasoning depths, with ablations confirming the effectiveness of ParSeR.

  • 5 authors
·
Sep 1, 2025

Trustworthiness in Retrieval-Augmented Generation Systems: A Survey

Retrieval-Augmented Generation (RAG) has quickly grown into a pivotal paradigm in the development of Large Language Models (LLMs). While much of the current research in this field focuses on performance optimization, particularly in terms of accuracy and efficiency, the trustworthiness of RAG systems remains an area still under exploration. From a positive perspective, RAG systems are promising to enhance LLMs by providing them with useful and up-to-date knowledge from vast external databases, thereby mitigating the long-standing problem of hallucination. While from a negative perspective, RAG systems are at the risk of generating undesirable contents if the retrieved information is either inappropriate or poorly utilized. To address these concerns, we propose a unified framework that assesses the trustworthiness of RAG systems across six key dimensions: factuality, robustness, fairness, transparency, accountability, and privacy. Within this framework, we thoroughly review the existing literature on each dimension. Additionally, we create the evaluation benchmark regarding the six dimensions and conduct comprehensive evaluations for a variety of proprietary and open-source models. Finally, we identify the potential challenges for future research based on our investigation results. Through this work, we aim to lay a structured foundation for future investigations and provide practical insights for enhancing the trustworthiness of RAG systems in real-world applications.

  • 10 authors
·
Sep 16, 2024

Large Language Models are not Fair Evaluators

In this paper, we uncover a systematic bias in the evaluation paradigm of adopting large language models~(LLMs), e.g., GPT-4, as a referee to score and compare the quality of responses generated by candidate models. We find that the quality ranking of candidate responses can be easily hacked by simply altering their order of appearance in the context. This manipulation allows us to skew the evaluation result, making one model appear considerably superior to the other, e.g., Vicuna-13B could beat ChatGPT on 66 over 80 tested queries with ChatGPT as an evaluator. To address this issue, we propose a calibration framework with three simple yet effective strategies: 1) Multiple Evidence Calibration, which requires the evaluator model to generate multiple evaluation evidence before assigning ratings; 2) Balanced Position Calibration, which aggregates results across various orders to determine the final score; 3) Human-in-the-Loop Calibration, which introduces a balanced position diversity entropy to measure the difficulty of each example and seeks human assistance when needed. We also manually annotate the "win/tie/lose" outcomes of responses from ChatGPT and Vicuna-13B in the Vicuna Benchmark's question prompt, and extensive experiments demonstrate that our approach successfully mitigates evaluation bias, resulting in closer alignment with human judgments. We release our code and human annotation at https://github.com/i-Eval/FairEval to facilitate future research.

  • 10 authors
·
May 29, 2023

Diverse And Private Synthetic Datasets Generation for RAG evaluation: A multi-agent framework

Retrieval-augmented generation (RAG) systems improve large language model outputs by incorporating external knowledge, enabling more informed and context-aware responses. However, the effectiveness and trustworthiness of these systems critically depends on how they are evaluated, particularly on whether the evaluation process captures real-world constraints like protecting sensitive information. While current evaluation efforts for RAG systems have primarily focused on the development of performance metrics, far less attention has been given to the design and quality of the underlying evaluation datasets, despite their pivotal role in enabling meaningful, reliable assessments. In this work, we introduce a novel multi-agent framework for generating synthetic QA datasets for RAG evaluation that prioritize semantic diversity and privacy preservation. Our approach involves: (1) a Diversity agent leveraging clustering techniques to maximize topical coverage and semantic variability, (2) a Privacy Agent that detects and mask sensitive information across multiple domains and (3) a QA curation agent that synthesizes private and diverse QA pairs suitable as ground truth for RAG evaluation. Extensive experiments demonstrate that our evaluation sets outperform baseline methods in diversity and achieve robust privacy masking on domain-specific datasets. This work offers a practical and ethically aligned pathway toward safer, more comprehensive RAG system evaluation, laying the foundation for future enhancements aligned with evolving AI regulations and compliance standards.

  • 3 authors
·
Aug 26, 2025

SFR-RAG: Towards Contextually Faithful LLMs

Retrieval Augmented Generation (RAG), a paradigm that integrates external contextual information with large language models (LLMs) to enhance factual accuracy and relevance, has emerged as a pivotal area in generative AI. The LLMs used in RAG applications are required to faithfully and completely comprehend the provided context and users' questions, avoid hallucination, handle unanswerable, counterfactual or otherwise low-quality and irrelevant contexts, perform complex multi-hop reasoning and produce reliable citations. In this paper, we introduce SFR-RAG, a small LLM that is instruction-tuned with an emphasis on context-grounded generation and hallucination minimization. We also present ContextualBench, a new evaluation framework compiling multiple popular and diverse RAG benchmarks, such as HotpotQA and TriviaQA, with consistent RAG settings to ensure reproducibility and consistency in model assessments. Experimental results demonstrate that our SFR-RAG-9B model outperforms leading baselines such as Command-R+ (104B) and GPT-4o, achieving state-of-the-art results in 3 out of 7 benchmarks in ContextualBench with significantly fewer parameters. The model is also shown to be resilient to alteration in the contextual information and behave appropriately when relevant context is removed. Additionally, the SFR-RAG model maintains competitive performance in general instruction-following tasks and function-calling capabilities.

  • 10 authors
·
Sep 15, 2024

Reliable Fine-Grained Evaluation of Natural Language Math Proofs

Recent advances in large language models (LLMs) for mathematical reasoning have largely focused on tasks with easily verifiable final answers; however, generating and verifying natural language math proofs remains an open challenge. We identify the absence of a reliable, fine-grained evaluator for LLM-generated math proofs as a critical gap. To address this, we propose a systematic methodology for developing and validating evaluators that assign fine-grained scores on a 0-7 scale to model-generated math proofs. To enable this study, we introduce ProofBench, the first expert-annotated dataset of fine-grained proof ratings, spanning 145 problems from six major math competitions (USAMO, IMO, Putnam, etc) and 435 LLM-generated solutions from Gemini-2.5-pro, o3, and DeepSeek-R1. %with expert gradings. Using ProofBench as a testbed, we systematically explore the evaluator design space across key axes: the backbone model, input context, instructions and evaluation workflow. Our analysis delivers ProofGrader, an evaluator that combines a strong reasoning backbone LM, rich context from reference solutions and marking schemes, and a simple ensembling method; it achieves a low Mean Absolute Error (MAE) of 0.926 against expert scores, significantly outperforming naive baselines. Finally, we demonstrate its practical utility in a best-of-n selection task: at n=16, ProofGrader achieves an average score of 4.14 (out of 7), closing 78% of the gap between a naive binary evaluator (2.48) and the human oracle (4.62), highlighting its potential to advance downstream proof generation.

  • 9 authors
·
Oct 13, 2025

SemAgent: A Semantics Aware Program Repair Agent

Large Language Models (LLMs) have shown impressive capabilities in downstream software engineering tasks such as Automated Program Repair (APR). In particular, there has been a lot of research on repository-level issue-resolution benchmarks such as SWE-Bench. Although there has been significant progress on this topic, we notice that in the process of solving such issues, existing agentic systems tend to hyper-localize on immediately suspicious lines of code and fix them in isolation, without a deeper understanding of the issue semantics, code semantics, or execution semantics. Consequently, many existing systems generate patches that overfit to the user issue, even when a more general fix is preferable. To address this limitation, we introduce SemAgent, a novel workflow-based procedure that leverages issue, code, and execution semantics to generate patches that are complete - identifying and fixing all lines relevant to the issue. We achieve this through a novel pipeline that (a) leverages execution semantics to retrieve relevant context, (b) comprehends issue-semantics via generalized abstraction, (c) isolates code-semantics within the context of this abstraction, and (d) leverages this understanding in a two-stage architecture: a repair stage that proposes fine-grained fixes, followed by a reviewer stage that filters relevant fixes based on the inferred issue-semantics. Our evaluations show that our methodology achieves a solve rate of 44.66% on the SWEBench-Lite benchmark beating all other workflow-based approaches, and an absolute improvement of 7.66% compared to our baseline, which lacks such deep semantic understanding. We note that our approach performs particularly well on issues requiring multi-line reasoning (and editing) and edge-case handling, suggesting that incorporating issue and code semantics into APR pipelines can lead to robust and semantically consistent repairs.

  • 4 authors
·
Jun 19, 2025

Evaluating the Ability of LLMs to Solve Semantics-Aware Process Mining Tasks

The process mining community has recently recognized the potential of large language models (LLMs) for tackling various process mining tasks. Initial studies report the capability of LLMs to support process analysis and even, to some extent, that they are able to reason about how processes work. This latter property suggests that LLMs could also be used to tackle process mining tasks that benefit from an understanding of process behavior. Examples of such tasks include (semantic) anomaly detection and next activity prediction, which both involve considerations of the meaning of activities and their inter-relations. In this paper, we investigate the capabilities of LLMs to tackle such semantics-aware process mining tasks. Furthermore, whereas most works on the intersection of LLMs and process mining only focus on testing these models out of the box, we provide a more principled investigation of the utility of LLMs for process mining, including their ability to obtain process mining knowledge post-hoc by means of in-context learning and supervised fine-tuning. Concretely, we define three process mining tasks that benefit from an understanding of process semantics and provide extensive benchmarking datasets for each of them. Our evaluation experiments reveal that (1) LLMs fail to solve challenging process mining tasks out of the box and when provided only a handful of in-context examples, (2) but they yield strong performance when fine-tuned for these tasks, consistently surpassing smaller, encoder-based language models.

  • 4 authors
·
Jul 2, 2024

Unveiling the Merits and Defects of LLMs in Automatic Review Generation for Scientific Papers

The surge in scientific submissions has placed increasing strain on the traditional peer-review process, prompting the exploration of large language models (LLMs) for automated review generation. While LLMs demonstrate competence in producing structured and coherent feedback, their capacity for critical reasoning, contextual grounding, and quality sensitivity remains limited. To systematically evaluate these aspects, we propose a comprehensive evaluation framework that integrates semantic similarity analysis and structured knowledge graph metrics to assess LLM-generated reviews against human-written counterparts. We construct a large-scale benchmark of 1,683 papers and 6,495 expert reviews from ICLR and NeurIPS in multiple years, and generate reviews using five LLMs. Our findings show that LLMs perform well in descriptive and affirmational content, capturing the main contributions and methodologies of the original work, with GPT-4o highlighted as an illustrative example, generating 15.74% more entities than human reviewers in the strengths section of good papers in ICLR 2025. However, they consistently underperform in identifying weaknesses, raising substantive questions, and adjusting feedback based on paper quality. GPT-4o produces 59.42% fewer entities than real reviewers in the weaknesses and increases node count by only 5.7% from good to weak papers, compared to 50% in human reviews. Similar trends are observed across all conferences, years, and models, providing empirical foundations for understanding the merits and defects of LLM-generated reviews and informing the development of future LLM-assisted reviewing tools. Data, code, and more detailed results are publicly available at https://github.com/RichardLRC/Peer-Review.

  • 6 authors
·
Sep 13, 2025

A Meta-Evaluation of Style and Attribute Transfer Metrics

LLMs make it easy to rewrite text in any style, be it more polite, persuasive, or more positive. We present a large-scale study of evaluation metrics for style and attribute transfer with a focus on content preservation; meaning content not attributed to the style shift is preserved. The de facto evaluation approach uses lexical or semantic similarity metrics often between source sentences and rewrites. While these metrics are not designed to distinguish between style or content differences, empirical meta-evaluation shows a reasonable correlation to human judgment. In fact, recent works find that LLMs prompted as evaluators are only comparable to semantic similarity metrics, even though intuitively, the LLM approach should better fit the task. To investigate this discrepancy, we benchmark 8 metrics for evaluating content preservation on existing datasets and additionally construct a new test set that better aligns with the meta-evaluation aim. Indeed, we then find that the empirical conclusion aligns with the intuition: content preservation metrics for style/attribute transfer must be conditional on the style shift. To support this, we propose a new efficient zero-shot evaluation method using the likelihood of the next token. We hope our meta-evaluation can foster more research on evaluating content preservation metrics, and also to ensure fair evaluation of methods for conducting style transfer.

  • 3 authors
·
Feb 20, 2025

Fact, Fetch, and Reason: A Unified Evaluation of Retrieval-Augmented Generation

Large Language Models (LLMs) have demonstrated significant performance improvements across various cognitive tasks. An emerging application is using LLMs to enhance retrieval-augmented generation (RAG) capabilities. These systems require LLMs to understand user queries, retrieve relevant information, and synthesize coherent and accurate responses. Given the increasing real-world deployment of such systems, comprehensive evaluation becomes crucial. To this end, we propose FRAMES (Factuality, Retrieval, And reasoning MEasurement Set), a high-quality evaluation dataset designed to test LLMs' ability to provide factual responses, assess retrieval capabilities, and evaluate the reasoning required to generate final answers. While previous work has provided datasets and benchmarks to evaluate these abilities in isolation, FRAMES offers a unified framework that provides a clearer picture of LLM performance in end-to-end RAG scenarios. Our dataset comprises challenging multi-hop questions that require the integration of information from multiple sources. We present baseline results demonstrating that even state-of-the-art LLMs struggle with this task, achieving 0.40 accuracy with no retrieval. The accuracy is significantly improved with our proposed multi-step retrieval pipeline, achieving an accuracy of 0.66 (>50% improvement). We hope our work will help bridge evaluation gaps and assist in developing more robust and capable RAG systems.

  • 7 authors
·
Sep 19, 2024 5

ReForm: Reflective Autoformalization with Prospective Bounded Sequence Optimization

Autoformalization, which translates natural language mathematics into machine-verifiable formal statements, is critical for using formal mathematical reasoning to solve math problems stated in natural language. While Large Language Models can generate syntactically correct formal statements, they often fail to preserve the original problem's semantic intent. This limitation arises from the LLM approaches' treating autoformalization as a simplistic translation task which lacks mechanisms for self-reflection and iterative refinement that human experts naturally employ. To address these issues, we propose ReForm, a Reflective Autoformalization method that tightly integrates semantic consistency evaluation into the autoformalization process. This enables the model to iteratively generate formal statements, assess its semantic fidelity, and self-correct identified errors through progressive refinement. To effectively train this reflective model, we introduce Prospective Bounded Sequence Optimization (PBSO), which employs different rewards at different sequence positions to ensure that the model develops both accurate autoformalization and correct semantic validations, preventing superficial critiques that would undermine the purpose of reflection. Extensive experiments across four autoformalization benchmarks demonstrate that ReForm achieves an average improvement of 17.2 percentage points over the strongest baselines. To further ensure evaluation reliability, we introduce ConsistencyCheck, a benchmark of 859 expert-annotated items that not only validates LLMs as judges but also reveals that autoformalization is inherently difficult: even human experts produce semantic errors in up to 38.5% of cases.

  • 9 authors
·
Oct 28, 2025 2

Evaluating Correctness and Faithfulness of Instruction-Following Models for Question Answering

Retriever-augmented instruction-following models are attractive alternatives to fine-tuned approaches for information-seeking tasks such as question answering (QA). By simply prepending retrieved documents in its input along with an instruction, these models can be adapted to various information domains and tasks without additional fine-tuning. While the model responses tend to be natural and fluent, the additional verbosity makes traditional QA evaluation metrics such as exact match (EM) and F1 unreliable for accurately quantifying model performance. In this work, we investigate the performance of instruction-following models across three information-seeking QA tasks. We use both automatic and human evaluation to evaluate these models along two dimensions: 1) how well they satisfy the user's information need (correctness), and 2) whether they produce a response based on the provided knowledge (faithfulness). Guided by human evaluation and analysis, we highlight the shortcomings of traditional metrics for both correctness and faithfulness. We then propose simple token-overlap based and model-based metrics that reflect the true performance of these models. Our analysis reveals that instruction-following models are competitive, and sometimes even outperform fine-tuned models for correctness. However, these models struggle to stick to the provided knowledge and often hallucinate in their responses. We hope our work encourages a more holistic evaluation of instruction-following models for QA. Our code and data is available at https://github.com/McGill-NLP/instruct-qa

  • 5 authors
·
Jul 31, 2023

Towards a Unified Multi-Dimensional Evaluator for Text Generation

Multi-dimensional evaluation is the dominant paradigm for human evaluation in Natural Language Generation (NLG), i.e., evaluating the generated text from multiple explainable dimensions, such as coherence and fluency. However, automatic evaluation in NLG is still dominated by similarity-based metrics, and we lack a reliable framework for a more comprehensive evaluation of advanced models. In this paper, we propose a unified multi-dimensional evaluator UniEval for NLG. We re-frame NLG evaluation as a Boolean Question Answering (QA) task, and by guiding the model with different questions, we can use one evaluator to evaluate from multiple dimensions. Furthermore, thanks to the unified Boolean QA format, we are able to introduce an intermediate learning phase that enables UniEval to incorporate external knowledge from multiple related tasks and gain further improvement. Experiments on three typical NLG tasks show that UniEval correlates substantially better with human judgments than existing metrics. Specifically, compared to the top-performing unified evaluators, UniEval achieves a 23% higher correlation on text summarization, and over 43% on dialogue response generation. Also, UniEval demonstrates a strong zero-shot learning ability for unseen evaluation dimensions and tasks. Source code, data and all pre-trained evaluators are available on our GitHub repository (https://github.com/maszhongming/UniEval).

  • 9 authors
·
Oct 13, 2022

Multi-Agent LLM Judge: automatic personalized LLM judge design for evaluating natural language generation applications

Large Language Models (LLMs) have demonstrated impressive performance across diverse domains, yet they still encounter challenges such as insufficient domain-specific knowledge, biases, and hallucinations. This underscores the need for robust evaluation methodologies to accurately assess LLM-based applications. Traditional evaluation methods, which rely on word overlap or text embeddings, are inadequate for capturing the nuanced semantic information necessary to evaluate dynamic, open-ended text generation. Recent research has explored leveraging LLMs to mimic human reasoning and decision-making processes for evaluation purposes known as LLM-as-a-judge framework. However, these existing frameworks have two significant limitations. First, they lack the flexibility to adapt to different text styles, including various answer and ground truth styles, thereby reducing their generalization performance. Second, the evaluation scores produced by these frameworks are often skewed and hard to interpret, showing a low correlation with human judgment. To address these challenges, we propose a novel dynamic multi-agent system that automatically designs personalized LLM judges for various natural language generation applications. This system iteratively refines evaluation prompts and balances the trade-off between the adaptive requirements of downstream tasks and the alignment with human perception. Our experimental results show that the proposed multi-agent LLM Judge framework not only enhances evaluation accuracy compared to existing methods but also produces evaluation scores that better align with human perception.

  • 4 authors
·
Apr 1, 2025