new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

Video Background Music Generation: Dataset, Method and Evaluation

Music is essential when editing videos, but selecting music manually is difficult and time-consuming. Thus, we seek to automatically generate background music tracks given video input. This is a challenging task since it requires music-video datasets, efficient architectures for video-to-music generation, and reasonable metrics, none of which currently exist. To close this gap, we introduce a complete recipe including dataset, benchmark model, and evaluation metric for video background music generation. We present SymMV, a video and symbolic music dataset with various musical annotations. To the best of our knowledge, it is the first video-music dataset with rich musical annotations. We also propose a benchmark video background music generation framework named V-MusProd, which utilizes music priors of chords, melody, and accompaniment along with video-music relations of semantic, color, and motion features. To address the lack of objective metrics for video-music correspondence, we design a retrieval-based metric VMCP built upon a powerful video-music representation learning model. Experiments show that with our dataset, V-MusProd outperforms the state-of-the-art method in both music quality and correspondence with videos. We believe our dataset, benchmark model, and evaluation metric will boost the development of video background music generation. Our dataset and code are available at https://github.com/zhuole1025/SymMV.

  • 10 authors
·
Nov 21, 2022

MIRAGE-Bench: Automatic Multilingual Benchmark Arena for Retrieval-Augmented Generation Systems

Traditional Retrieval-Augmented Generation (RAG) benchmarks rely on different heuristic-based metrics for evaluation, but these require human preferences as ground truth for reference. In contrast, arena-based benchmarks, where two models compete each other, require an expensive Large Language Model (LLM) as a judge for a reliable evaluation. We present an easy and efficient technique to get the best of both worlds. The idea is to train a learning to rank model as a "surrogate" judge using RAG-based evaluation heuristics as input, to produce a synthetic arena-based leaderboard. Using this idea, We develop MIRAGE-Bench, a standardized arena-based multilingual RAG benchmark for 18 diverse languages on Wikipedia. The benchmark is constructed using MIRACL, a retrieval dataset, and extended for multilingual generation evaluation. MIRAGE-Bench evaluates RAG extensively coupling both heuristic features and LLM as a judge evaluator. In our work, we benchmark 19 diverse multilingual-focused LLMs, and achieve a high correlation (Kendall Tau (tau) = 0.909) using our surrogate judge learned using heuristic features with pairwise evaluations and between GPT-4o as a teacher on the MIRAGE-Bench leaderboard using the Bradley-Terry framework. We observe proprietary and large open-source LLMs currently dominate in multilingual RAG. MIRAGE-Bench is available at: https://github.com/vectara/mirage-bench.

  • 5 authors
·
Oct 17, 2024

ReviewGraph: A Knowledge Graph Embedding Based Framework for Review Rating Prediction with Sentiment Features

In the hospitality industry, understanding the factors that drive customer review ratings is critical for improving guest satisfaction and business performance. This work proposes ReviewGraph for Review Rating Prediction (RRP), a novel framework that transforms textual customer reviews into knowledge graphs by extracting (subject, predicate, object) triples and associating sentiment scores. Using graph embeddings (Node2Vec) and sentiment features, the framework predicts review rating scores through machine learning classifiers. We compare ReviewGraph performance with traditional NLP baselines (such as Bag of Words, TF-IDF, and Word2Vec) and large language models (LLMs), evaluating them in the HotelRec dataset. In comparison to the state of the art literature, our proposed model performs similar to their best performing model but with lower computational cost (without ensemble). While ReviewGraph achieves comparable predictive performance to LLMs and outperforms baselines on agreement-based metrics such as Cohen's Kappa, it offers additional advantages in interpretability, visual exploration, and potential integration into Retrieval-Augmented Generation (RAG) systems. This work highlights the potential of graph-based representations for enhancing review analytics and lays the groundwork for future research integrating advanced graph neural networks and fine-tuned LLM-based extraction methods. We will share ReviewGraph output and platform open-sourced on our GitHub page https://github.com/aaronlifenghan/ReviewGraph

  • 3 authors
·
Aug 19

MRAMG-Bench: A BeyondText Benchmark for Multimodal Retrieval-Augmented Multimodal Generation

Recent advancements in Retrieval-Augmented Generation (RAG) have shown remarkable performance in enhancing response accuracy and relevance by integrating external knowledge into generative models. However, existing RAG methods primarily focus on providing text-only answers, even in multimodal retrieval-augmented generation scenarios. In this work, we introduce the Multimodal Retrieval-Augmented Multimodal Generation (MRAMG) task, which aims to generate answers that combine both text and images, fully leveraging the multimodal data within a corpus. Despite the importance of this task, there is a notable absence of a comprehensive benchmark to effectively evaluate MRAMG performance. To bridge this gap, we introduce the MRAMG-Bench, a carefully curated, human-annotated dataset comprising 4,346 documents, 14,190 images, and 4,800 QA pairs, sourced from three categories: Web Data, Academic Papers, and Lifestyle. The dataset incorporates diverse difficulty levels and complex multi-image scenarios, providing a robust foundation for evaluating multimodal generation tasks. To facilitate rigorous evaluation, our MRAMG-Bench incorporates a comprehensive suite of both statistical and LLM-based metrics, enabling a thorough analysis of the performance of popular generative models in the MRAMG task. Besides, we propose an efficient multimodal answer generation framework that leverages both LLMs and MLLMs to generate multimodal responses. Our datasets are available at: https://huggingface.co/MRAMG.

  • 6 authors
·
Feb 6

Visual Dialog

We introduce the task of Visual Dialog, which requires an AI agent to hold a meaningful dialog with humans in natural, conversational language about visual content. Specifically, given an image, a dialog history, and a question about the image, the agent has to ground the question in image, infer context from history, and answer the question accurately. Visual Dialog is disentangled enough from a specific downstream task so as to serve as a general test of machine intelligence, while being grounded in vision enough to allow objective evaluation of individual responses and benchmark progress. We develop a novel two-person chat data-collection protocol to curate a large-scale Visual Dialog dataset (VisDial). VisDial v0.9 has been released and contains 1 dialog with 10 question-answer pairs on ~120k images from COCO, with a total of ~1.2M dialog question-answer pairs. We introduce a family of neural encoder-decoder models for Visual Dialog with 3 encoders -- Late Fusion, Hierarchical Recurrent Encoder and Memory Network -- and 2 decoders (generative and discriminative), which outperform a number of sophisticated baselines. We propose a retrieval-based evaluation protocol for Visual Dialog where the AI agent is asked to sort a set of candidate answers and evaluated on metrics such as mean-reciprocal-rank of human response. We quantify gap between machine and human performance on the Visual Dialog task via human studies. Putting it all together, we demonstrate the first 'visual chatbot'! Our dataset, code, trained models and visual chatbot are available on https://visualdialog.org

  • 8 authors
·
Nov 26, 2016

Dark Side Augmentation: Generating Diverse Night Examples for Metric Learning

Image retrieval methods based on CNN descriptors rely on metric learning from a large number of diverse examples of positive and negative image pairs. Domains, such as night-time images, with limited availability and variability of training data suffer from poor retrieval performance even with methods performing well on standard benchmarks. We propose to train a GAN-based synthetic-image generator, translating available day-time image examples into night images. Such a generator is used in metric learning as a form of augmentation, supplying training data to the scarce domain. Various types of generators are evaluated and analyzed. We contribute with a novel light-weight GAN architecture that enforces the consistency between the original and translated image through edge consistency. The proposed architecture also allows a simultaneous training of an edge detector that operates on both night and day images. To further increase the variability in the training examples and to maximize the generalization of the trained model, we propose a novel method of diverse anchor mining. The proposed method improves over the state-of-the-art results on a standard Tokyo 24/7 day-night retrieval benchmark while preserving the performance on Oxford and Paris datasets. This is achieved without the need of training image pairs of matching day and night images. The source code is available at https://github.com/mohwald/gandtr .

  • 3 authors
·
Sep 28, 2023

Vendi-RAG: Adaptively Trading-Off Diversity And Quality Significantly Improves Retrieval Augmented Generation With LLMs

Retrieval-augmented generation (RAG) enhances large language models (LLMs) for domain-specific question-answering (QA) tasks by leveraging external knowledge sources. However, traditional RAG systems primarily focus on relevance-based retrieval and often struggle with redundancy, especially when reasoning requires connecting information from multiple sources. This paper introduces Vendi-RAG, a framework based on an iterative process that jointly optimizes retrieval diversity and answer quality. This joint optimization leads to significantly higher accuracy for multi-hop QA tasks. Vendi-RAG leverages the Vendi Score (VS), a flexible similarity-based diversity metric, to promote semantic diversity in document retrieval. It then uses an LLM judge that evaluates candidate answers, generated after a reasoning step, and outputs a score that the retriever uses to balance relevance and diversity among the retrieved documents during each iteration. Experiments on three challenging datasets -- HotpotQA, MuSiQue, and 2WikiMultiHopQA -- demonstrate Vendi-RAG's effectiveness in multi-hop reasoning tasks. The framework achieves significant accuracy improvements over traditional single-step and multi-step RAG approaches, with accuracy increases reaching up to +4.2% on HotpotQA, +4.1% on 2WikiMultiHopQA, and +1.3% on MuSiQue compared to Adaptive-RAG, the current best baseline. The benefits of Vendi-RAG are even more pronounced as the number of retrieved documents increases. Finally, we evaluated Vendi-RAG across different LLM backbones, including GPT-3.5, GPT-4, and GPT-4o-mini, and observed consistent improvements, demonstrating that the framework's advantages are model-agnostic.

  • 2 authors
·
Feb 16

AutoCast++: Enhancing World Event Prediction with Zero-shot Ranking-based Context Retrieval

Machine-based prediction of real-world events is garnering attention due to its potential for informed decision-making. Whereas traditional forecasting predominantly hinges on structured data like time-series, recent breakthroughs in language models enable predictions using unstructured text. In particular, (Zou et al., 2022) unveils AutoCast, a new benchmark that employs news articles for answering forecasting queries. Nevertheless, existing methods still trail behind human performance. The cornerstone of accurate forecasting, we argue, lies in identifying a concise, yet rich subset of news snippets from a vast corpus. With this motivation, we introduce AutoCast++, a zero-shot ranking-based context retrieval system, tailored to sift through expansive news document collections for event forecasting. Our approach first re-ranks articles based on zero-shot question-passage relevance, honing in on semantically pertinent news. Following this, the chosen articles are subjected to zero-shot summarization to attain succinct context. Leveraging a pre-trained language model, we conduct both the relevance evaluation and article summarization without needing domain-specific training. Notably, recent articles can sometimes be at odds with preceding ones due to new facts or unanticipated incidents, leading to fluctuating temporal dynamics. To tackle this, our re-ranking mechanism gives preference to more recent articles, and we further regularize the multi-passage representation learning to align with human forecaster responses made on different dates. Empirical results underscore marked improvements across multiple metrics, improving the performance for multiple-choice questions (MCQ) by 48% and true/false (TF) questions by up to 8%.

  • 5 authors
·
Oct 3, 2023

UFineBench: Towards Text-based Person Retrieval with Ultra-fine Granularity

Existing text-based person retrieval datasets often have relatively coarse-grained text annotations. This hinders the model to comprehend the fine-grained semantics of query texts in real scenarios. To address this problem, we contribute a new benchmark named UFineBench for text-based person retrieval with ultra-fine granularity. Firstly, we construct a new dataset named UFine6926. We collect a large number of person images and manually annotate each image with two detailed textual descriptions, averaging 80.8 words each. The average word count is three to four times that of the previous datasets. In addition of standard in-domain evaluation, we also propose a special evaluation paradigm more representative of real scenarios. It contains a new evaluation set with cross domains, cross textual granularity and cross textual styles, named UFine3C, and a new evaluation metric for accurately measuring retrieval ability, named mean Similarity Distribution (mSD). Moreover, we propose CFAM, a more efficient algorithm especially designed for text-based person retrieval with ultra fine-grained texts. It achieves fine granularity mining by adopting a shared cross-modal granularity decoder and hard negative match mechanism. With standard in-domain evaluation, CFAM establishes competitive performance across various datasets, especially on our ultra fine-grained UFine6926. Furthermore, by evaluating on UFine3C, we demonstrate that training on our UFine6926 significantly improves generalization to real scenarios compared with other coarse-grained datasets. The dataset and code will be made publicly available at https://github.com/Zplusdragon/UFineBench.

  • 8 authors
·
Dec 6, 2023

Retrieval Helps or Hurts? A Deeper Dive into the Efficacy of Retrieval Augmentation to Language Models

While large language models (LMs) demonstrate remarkable performance, they encounter challenges in providing accurate responses when queried for information beyond their pre-trained memorization. Although augmenting them with relevant external information can mitigate these issues, failure to consider the necessity of retrieval may adversely affect overall performance. Previous research has primarily focused on examining how entities influence retrieval models and knowledge recall in LMs, leaving other aspects relatively unexplored. In this work, our goal is to offer a more detailed, fact-centric analysis by exploring the effects of combinations of entities and relations. To facilitate this, we construct a new question answering (QA) dataset called WiTQA (Wikipedia Triple Question Answers). This dataset includes questions about entities and relations of various popularity levels, each accompanied by a supporting passage. Our extensive experiments with diverse LMs and retrievers reveal when retrieval does not consistently enhance LMs from the viewpoints of fact-centric popularity.Confirming earlier findings, we observe that larger LMs excel in recalling popular facts. However, they notably encounter difficulty with infrequent entity-relation pairs compared to retrievers. Interestingly, they can effectively retain popular relations of less common entities. We demonstrate the efficacy of our finer-grained metric and insights through an adaptive retrieval system that selectively employs retrieval and recall based on the frequencies of entities and relations in the question.

  • 4 authors
·
Feb 20, 2024

Data-Efficient Massive Tool Retrieval: A Reinforcement Learning Approach for Query-Tool Alignment with Language Models

Recent advancements in large language models (LLMs) integrated with external tools and APIs have successfully addressed complex tasks by using in-context learning or fine-tuning. Despite this progress, the vast scale of tool retrieval remains challenging due to stringent input length constraints. In response, we propose a pre-retrieval strategy from an extensive repository, effectively framing the problem as the massive tool retrieval (MTR) task. We introduce the MTRB (massive tool retrieval benchmark) to evaluate real-world tool-augmented LLM scenarios with a large number of tools. This benchmark is designed for low-resource scenarios and includes a diverse collection of tools with descriptions refined for consistency and clarity. It consists of three subsets, each containing 90 test samples and 10 training samples. To handle the low-resource MTR task, we raise a new query-tool alignment (QTA) framework leverages LLMs to enhance query-tool alignment by rewriting user queries through ranking functions and the direct preference optimization (DPO) method. This approach consistently outperforms existing state-of-the-art models in top-5 and top-10 retrieval tasks across the MTRB benchmark, with improvements up to 93.28% based on the metric Sufficiency@k, which measures the adequacy of tool retrieval within the first k results. Furthermore, ablation studies validate the efficacy of our framework, highlighting its capacity to optimize performance even with limited annotated samples. Specifically, our framework achieves up to 78.53% performance improvement in Sufficiency@k with just a single annotated sample. Additionally, QTA exhibits strong cross-dataset generalizability, emphasizing its potential for real-world applications.

  • 7 authors
·
Oct 4, 2024

Object Detection as an Optional Basis: A Graph Matching Network for Cross-View UAV Localization

With the rapid growth of the low-altitude economy, UAVs have become crucial for measurement and tracking in patrol systems. However, in GNSS-denied areas, satellite-based localization methods are prone to failure. This paper presents a cross-view UAV localization framework that performs map matching via object detection, aimed at effectively addressing cross-temporal, cross-view, heterogeneous aerial image matching. In typical pipelines, UAV visual localization is formulated as an image-retrieval problem: features are extracted to build a localization map, and the pose of a query image is estimated by matching it to a reference database with known poses. Because publicly available UAV localization datasets are limited, many approaches recast localization as a classification task and rely on scene labels in these datasets to ensure accuracy. Other methods seek to reduce cross-domain differences using polar-coordinate reprojection, perspective transformations, or generative adversarial networks; however, they can suffer from misalignment, content loss, and limited realism. In contrast, we leverage modern object detection to accurately extract salient instances from UAV and satellite images, and integrate a graph neural network to reason about inter-image and intra-image node relationships. Using a fine-grained, graph-based node-similarity metric, our method achieves strong retrieval and localization performance. Extensive experiments on public and real-world datasets show that our approach handles heterogeneous appearance differences effectively and generalizes well, making it applicable to scenarios with larger modality gaps, such as infrared-visible image matching. Our dataset will be publicly available at the following URL: https://github.com/liutao23/ODGNNLoc.git.

  • 3 authors
·
Nov 4

CSIM: A Copula-based similarity index sensitive to local changes for Image quality assessment

Image similarity metrics play an important role in computer vision applications, as they are used in image processing, computer vision and machine learning. Furthermore, those metrics enable tasks such as image retrieval, object recognition and quality assessment, essential in fields like healthcare, astronomy and surveillance. Existing metrics, such as PSNR, MSE, SSIM, ISSM and FSIM, often face limitations in terms of either speed, complexity or sensitivity to small changes in images. To address these challenges, a novel image similarity metric, namely CSIM, that combines real-time while being sensitive to subtle image variations is investigated in this paper. The novel metric uses Gaussian Copula from probability theory to transform an image into vectors of pixel distribution associated to local image patches. These vectors contain, in addition to intensities and pixel positions, information on the dependencies between pixel values, capturing the structural relationships within the image. By leveraging the properties of Copulas, CSIM effectively models the joint distribution of pixel intensities, enabling a more nuanced comparison of image patches making it more sensitive to local changes compared to other metrics. Experimental results demonstrate that CSIM outperforms existing similarity metrics in various image distortion scenarios, including noise, compression artifacts and blur. The metric's ability to detect subtle differences makes it suitable for applications requiring high precision, such as medical imaging, where the detection of minor anomalies can be of a high importance. The results obtained in this work can be reproduced from this Github repository: https://github.com/safouaneelg/copulasimilarity.

  • 4 authors
·
Oct 2, 2024

SCENIR: Visual Semantic Clarity through Unsupervised Scene Graph Retrieval

Despite the dominance of convolutional and transformer-based architectures in image-to-image retrieval, these models are prone to biases arising from low-level visual features, such as color. Recognizing the lack of semantic understanding as a key limitation, we propose a novel scene graph-based retrieval framework that emphasizes semantic content over superficial image characteristics. Prior approaches to scene graph retrieval predominantly rely on supervised Graph Neural Networks (GNNs), which require ground truth graph pairs driven from image captions. However, the inconsistency of caption-based supervision stemming from variable text encodings undermine retrieval reliability. To address these, we present SCENIR, a Graph Autoencoder-based unsupervised retrieval framework, which eliminates the dependence on labeled training data. Our model demonstrates superior performance across metrics and runtime efficiency, outperforming existing vision-based, multimodal, and supervised GNN approaches. We further advocate for Graph Edit Distance (GED) as a deterministic and robust ground truth measure for scene graph similarity, replacing the inconsistent caption-based alternatives for the first time in image-to-image retrieval evaluation. Finally, we validate the generalizability of our method by applying it to unannotated datasets via automated scene graph generation, while substantially contributing in advancing state-of-the-art in counterfactual image retrieval.

  • 4 authors
·
May 21

Multi-Similarity Loss with General Pair Weighting for Deep Metric Learning

A family of loss functions built on pair-based computation have been proposed in the literature which provide a myriad of solutions for deep metric learning. In this paper, we provide a general weighting framework for understanding recent pair-based loss functions. Our contributions are three-fold: (1) we establish a General Pair Weighting (GPW) framework, which casts the sampling problem of deep metric learning into a unified view of pair weighting through gradient analysis, providing a powerful tool for understanding recent pair-based loss functions; (2) we show that with GPW, various existing pair-based methods can be compared and discussed comprehensively, with clear differences and key limitations identified; (3) we propose a new loss called multi-similarity loss (MS loss) under the GPW, which is implemented in two iterative steps (i.e., mining and weighting). This allows it to fully consider three similarities for pair weighting, providing a more principled approach for collecting and weighting informative pairs. Finally, the proposed MS loss obtains new state-of-the-art performance on four image retrieval benchmarks, where it outperforms the most recent approaches, such as ABEKim_2018_ECCV and HTL by a large margin: 60.6% to 65.7% on CUB200, and 80.9% to 88.0% on In-Shop Clothes Retrieval dataset at Recall@1. Code is available at https://github.com/MalongTech/research-ms-loss.

  • 5 authors
·
Apr 14, 2019

KeySG: Hierarchical Keyframe-Based 3D Scene Graphs

In recent years, 3D scene graphs have emerged as a powerful world representation, offering both geometric accuracy and semantic richness. Combining 3D scene graphs with large language models enables robots to reason, plan, and navigate in complex human-centered environments. However, current approaches for constructing 3D scene graphs are semantically limited to a predefined set of relationships, and their serialization in large environments can easily exceed an LLM's context window. We introduce KeySG, a framework that represents 3D scenes as a hierarchical graph consisting of floors, rooms, objects, and functional elements, where nodes are augmented with multi-modal information extracted from keyframes selected to optimize geometric and visual coverage. The keyframes allow us to efficiently leverage VLM to extract scene information, alleviating the need to explicitly model relationship edges between objects, enabling more general, task-agnostic reasoning and planning. Our approach can process complex and ambiguous queries while mitigating the scalability issues associated with large scene graphs by utilizing a hierarchical retrieval-augmented generation (RAG) pipeline to extract relevant context from the graph. Evaluated across four distinct benchmarks -- including 3D object segmentation and complex query retrieval -- KeySG outperforms prior approaches on most metrics, demonstrating its superior semantic richness and efficiency.

  • 4 authors
·
Oct 1

RAGBench: Explainable Benchmark for Retrieval-Augmented Generation Systems

Retrieval-Augmented Generation (RAG) has become a standard architectural pattern for incorporating domain-specific knowledge into user-facing chat applications powered by Large Language Models (LLMs). RAG systems are characterized by (1) a document retriever that queries a domain-specific corpus for context information relevant to an input query, and (2) an LLM that generates a response based on the provided query and context. However, comprehensive evaluation of RAG systems remains a challenge due to the lack of unified evaluation criteria and annotated datasets. In response, we introduce RAGBench: the first comprehensive, large-scale RAG benchmark dataset of 100k examples. It covers five unique industry-specific domains and various RAG task types. RAGBench examples are sourced from industry corpora such as user manuals, making it particularly relevant for industry applications. Further, we formalize the TRACe evaluation framework: a set of explainable and actionable RAG evaluation metrics applicable across all RAG domains. We release the labeled dataset at https://huggingface.co/datasets/rungalileo/ragbench. RAGBench explainable labels facilitate holistic evaluation of RAG systems, enabling actionable feedback for continuous improvement of production applications. Thorough extensive benchmarking, we find that LLM-based RAG evaluation methods struggle to compete with a finetuned RoBERTa model on the RAG evaluation task. We identify areas where existing approaches fall short and propose the adoption of RAGBench with TRACe towards advancing the state of RAG evaluation systems.

  • 3 authors
·
Jun 25, 2024 1

Exploring the Capabilities of LLM Encoders for Image-Text Retrieval in Chest X-rays

Vision-language pretraining has advanced image-text alignment, yet progress in radiology remains constrained by the heterogeneity of clinical reports, including abbreviations, impression-only notes, and stylistic variability. Unlike general-domain settings where more data often leads to better performance, naively scaling to large collections of noisy reports can plateau or even degrade model learning. We ask whether large language model (LLM) encoders can provide robust clinical representations that transfer across diverse styles and better guide image-text alignment. We introduce LLM2VEC4CXR, a domain-adapted LLM encoder for chest X-ray reports, and LLM2CLIP4CXR, a dual-tower framework that couples this encoder with a vision backbone. LLM2VEC4CXR improves clinical text understanding over BERT-based baselines, handles abbreviations and style variation, and achieves strong clinical alignment on report-level metrics. LLM2CLIP4CXR leverages these embeddings to boost retrieval accuracy and clinically oriented scores, with stronger cross-dataset generalization than prior medical CLIP variants. Trained on 1.6M CXR studies from public and private sources with heterogeneous and noisy reports, our models demonstrate that robustness -- not scale alone -- is the key to effective multimodal learning. We release models to support further research in medical image-text representation learning.

  • 8 authors
·
Sep 17

Refine Medical Diagnosis Using Generation Augmented Retrieval and Clinical Practice Guidelines

Current medical language models, adapted from large language models (LLMs), typically predict ICD code-based diagnosis from electronic health records (EHRs) because these labels are readily available. However, ICD codes do not capture the nuanced, context-rich reasoning clinicians use for diagnosis. Clinicians synthesize diverse patient data and reference clinical practice guidelines (CPGs) to make evidence-based decisions. This misalignment limits the clinical utility of existing models. We introduce GARMLE-G, a Generation-Augmented Retrieval framework that grounds medical language model outputs in authoritative CPGs. Unlike conventional Retrieval-Augmented Generation based approaches, GARMLE-G enables hallucination-free outputs by directly retrieving authoritative guideline content without relying on model-generated text. It (1) integrates LLM predictions with EHR data to create semantically rich queries, (2) retrieves relevant CPG knowledge snippets via embedding similarity, and (3) fuses guideline content with model output to generate clinically aligned recommendations. A prototype system for hypertension diagnosis was developed and evaluated on multiple metrics, demonstrating superior retrieval precision, semantic relevance, and clinical guideline adherence compared to RAG-based baselines, while maintaining a lightweight architecture suitable for localized healthcare deployment. This work provides a scalable, low-cost, and hallucination-free method for grounding medical language models in evidence-based clinical practice, with strong potential for broader clinical deployment.

  • 8 authors
·
Jun 22

Yes, we CANN: Constrained Approximate Nearest Neighbors for local feature-based visual localization

Large-scale visual localization systems continue to rely on 3D point clouds built from image collections using structure-from-motion. While the 3D points in these models are represented using local image features, directly matching a query image's local features against the point cloud is challenging due to the scale of the nearest-neighbor search problem. Many recent approaches to visual localization have thus proposed a hybrid method, where first a global (per image) embedding is used to retrieve a small subset of database images, and local features of the query are matched only against those. It seems to have become common belief that global embeddings are critical for said image-retrieval in visual localization, despite the significant downside of having to compute two feature types for each query image. In this paper, we take a step back from this assumption and propose Constrained Approximate Nearest Neighbors (CANN), a joint solution of k-nearest-neighbors across both the geometry and appearance space using only local features. We first derive the theoretical foundation for k-nearest-neighbor retrieval across multiple metrics and then showcase how CANN improves visual localization. Our experiments on public localization benchmarks demonstrate that our method significantly outperforms both state-of-the-art global feature-based retrieval and approaches using local feature aggregation schemes. Moreover, it is an order of magnitude faster in both index and query time than feature aggregation schemes for these datasets. Code will be released.

  • 3 authors
·
Jun 15, 2023

RAG-IGBench: Innovative Evaluation for RAG-based Interleaved Generation in Open-domain Question Answering

In real-world scenarios, providing user queries with visually enhanced responses can considerably benefit understanding and memory, underscoring the great value of interleaved image-text generation. Despite recent progress, like the visual autoregressive model that unifies text and image processing in a single transformer architecture, generating high-quality interleaved content remains challenging. Moreover, evaluations of these interleaved sequences largely remain underexplored, with existing benchmarks often limited by unimodal metrics that inadequately assess the intricacies of combined image-text outputs. To address these issues, we present RAG-IGBench, a thorough benchmark designed specifically to evaluate the task of Interleaved Generation based on Retrieval-Augmented Generation (RAG-IG) in open-domain question answering. RAG-IG integrates multimodal large language models (MLLMs) with retrieval mechanisms, enabling the models to access external image-text information for generating coherent multimodal content. Distinct from previous datasets, RAG-IGBench draws on the latest publicly available content from social platforms and introduces innovative evaluation metrics that measure the quality of text and images, as well as their consistency. Through extensive experiments with state-of-the-art MLLMs (both open-source and proprietary) on RAG-IGBench, we provide an in-depth analysis examining the capabilities and limitations of these models. Additionally, we validate our evaluation metrics by demonstrating their high correlation with human assessments. Models fine-tuned on RAG-IGBench's training set exhibit improved performance across multiple benchmarks, confirming both the quality and practical utility of our dataset. Our benchmark is available at https://github.com/USTC-StarTeam/RAG-IGBench.

  • 11 authors
·
Oct 10

JurisTCU: A Brazilian Portuguese Information Retrieval Dataset with Query Relevance Judgments

This paper introduces JurisTCU, a Brazilian Portuguese dataset for legal information retrieval (LIR). The dataset is freely available and consists of 16,045 jurisprudential documents from the Brazilian Federal Court of Accounts, along with 150 queries annotated with relevance judgments. It addresses the scarcity of Portuguese-language LIR datasets with query relevance annotations. The queries are organized into three groups: real user keyword-based queries, synthetic keyword-based queries, and synthetic question-based queries. Relevance judgments were produced through a hybrid approach combining LLM-based scoring with expert domain validation. We used JurisTCU in 14 experiments using lexical search (document expansion methods) and semantic search (BERT-based and OpenAI embeddings). We show that the document expansion methods significantly improve the performance of standard BM25 search on this dataset, with improvements exceeding 45% in P@10, R@10, and nDCG@10 metrics when evaluating short keyword-based queries. Among the embedding models, the OpenAI models produced the best results, with improvements of approximately 70% in P@10, R@10, and nDCG@10 metrics for short keyword-based queries, suggesting that these dense embeddings capture semantic relationships in this domain, surpassing the reliance on lexical terms. Besides offering a dataset for the Portuguese-language IR research community, suitable for evaluating search systems, the results also contribute to enhancing a search system highly relevant to Brazilian citizens.

  • 5 authors
·
Mar 11

FrugalRAG: Learning to retrieve and reason for multi-hop QA

We consider the problem of answering complex questions, given access to a large unstructured document corpus. The de facto approach to solving the problem is to leverage language models that (iteratively) retrieve and reason through the retrieved documents, until the model has sufficient information to generate an answer. Attempts at improving this approach focus on retrieval-augmented generation (RAG) metrics such as accuracy and recall and can be categorized into two types: (a) fine-tuning on large question answering (QA) datasets augmented with chain-of-thought traces, and (b) leveraging RL-based fine-tuning techniques that rely on question-document relevance signals. However, efficiency in the number of retrieval searches is an equally important metric, which has received less attention. In this work, we show that: (1) Large-scale fine-tuning is not needed to improve RAG metrics, contrary to popular claims in recent literature. Specifically, a standard ReAct pipeline with improved prompts can outperform state-of-the-art methods on benchmarks such as HotPotQA. (2) Supervised and RL-based fine-tuning can help RAG from the perspective of frugality, i.e., the latency due to number of searches at inference time. For example, we show that we can achieve competitive RAG metrics at nearly half the cost (in terms of number of searches) on popular RAG benchmarks, using the same base model, and at a small training cost (1000 examples).

  • 4 authors
·
Jul 10

OmniEval: An Omnidirectional and Automatic RAG Evaluation Benchmark in Financial Domain

As a typical and practical application of Large Language Models (LLMs), Retrieval-Augmented Generation (RAG) techniques have gained extensive attention, particularly in vertical domains where LLMs may lack domain-specific knowledge. In this paper, we introduce an omnidirectional and automatic RAG benchmark, OmniEval, in the financial domain. Our benchmark is characterized by its multi-dimensional evaluation framework, including (1) a matrix-based RAG scenario evaluation system that categorizes queries into five task classes and 16 financial topics, leading to a structured assessment of diverse query scenarios; (2) a multi-dimensional evaluation data generation approach, which combines GPT-4-based automatic generation and human annotation, achieving an 87.47\% acceptance ratio in human evaluations on generated instances; (3) a multi-stage evaluation system that evaluates both retrieval and generation performance, result in a comprehensive evaluation on the RAG pipeline; and (4) robust evaluation metrics derived from rule-based and LLM-based ones, enhancing the reliability of assessments through manual annotations and supervised fine-tuning of an LLM evaluator. Our experiments demonstrate the comprehensiveness of OmniEval, which includes extensive test datasets and highlights the performance variations of RAG systems across diverse topics and tasks, revealing significant opportunities for RAG models to improve their capabilities in vertical domains. We open source the code of our benchmark in https://github.com/RUC-NLPIR/OmniEval{https://github.com/RUC-NLPIR/OmniEval}.

  • 4 authors
·
Dec 17, 2024 2

T2Ranking: A large-scale Chinese Benchmark for Passage Ranking

Passage ranking involves two stages: passage retrieval and passage re-ranking, which are important and challenging topics for both academics and industries in the area of Information Retrieval (IR). However, the commonly-used datasets for passage ranking usually focus on the English language. For non-English scenarios, such as Chinese, the existing datasets are limited in terms of data scale, fine-grained relevance annotation and false negative issues. To address this problem, we introduce T2Ranking, a large-scale Chinese benchmark for passage ranking. T2Ranking comprises more than 300K queries and over 2M unique passages from real-world search engines. Expert annotators are recruited to provide 4-level graded relevance scores (fine-grained) for query-passage pairs instead of binary relevance judgments (coarse-grained). To ease the false negative issues, more passages with higher diversities are considered when performing relevance annotations, especially in the test set, to ensure a more accurate evaluation. Apart from the textual query and passage data, other auxiliary resources are also provided, such as query types and XML files of documents which passages are generated from, to facilitate further studies. To evaluate the dataset, commonly used ranking models are implemented and tested on T2Ranking as baselines. The experimental results show that T2Ranking is challenging and there is still scope for improvement. The full data and all codes are available at https://github.com/THUIR/T2Ranking/

  • 11 authors
·
Apr 7, 2023

Autoregressive Search Engines: Generating Substrings as Document Identifiers

Knowledge-intensive language tasks require NLP systems to both provide the correct answer and retrieve supporting evidence for it in a given corpus. Autoregressive language models are emerging as the de-facto standard for generating answers, with newer and more powerful systems emerging at an astonishing pace. In this paper we argue that all this (and future) progress can be directly applied to the retrieval problem with minimal intervention to the models' architecture. Previous work has explored ways to partition the search space into hierarchical structures and retrieve documents by autoregressively generating their unique identifier. In this work we propose an alternative that doesn't force any structure in the search space: using all ngrams in a passage as its possible identifiers. This setup allows us to use an autoregressive model to generate and score distinctive ngrams, that are then mapped to full passages through an efficient data structure. Empirically, we show this not only outperforms prior autoregressive approaches but also leads to an average improvement of at least 10 points over more established retrieval solutions for passage-level retrieval on the KILT benchmark, establishing new state-of-the-art downstream performance on some datasets, while using a considerably lighter memory footprint than competing systems. Code and pre-trained models at https://github.com/facebookresearch/SEAL.

  • 6 authors
·
Apr 22, 2022

Redefining Retrieval Evaluation in the Era of LLMs

Traditional Information Retrieval (IR) metrics, such as nDCG, MAP, and MRR, assume that human users sequentially examine documents with diminishing attention to lower ranks. This assumption breaks down in Retrieval Augmented Generation (RAG) systems, where search results are consumed by Large Language Models (LLMs), which, unlike humans, process all retrieved documents as a whole rather than sequentially. Additionally, traditional IR metrics do not account for related but irrelevant documents that actively degrade generation quality, rather than merely being ignored. Due to these two major misalignments, namely human vs. machine position discount and human relevance vs. machine utility, classical IR metrics do not accurately predict RAG performance. We introduce a utility-based annotation schema that quantifies both the positive contribution of relevant passages and the negative impact of distracting ones. Building on this foundation, we propose UDCG (Utility and Distraction-aware Cumulative Gain), a metric using an LLM-oriented positional discount to directly optimize the correlation with the end-to-end answer accuracy. Experiments on five datasets and six LLMs demonstrate that UDCG improves correlation by up to 36% compared to traditional metrics. Our work provides a critical step toward aligning IR evaluation with LLM consumers and enables more reliable assessment of RAG components

Structural Text Segmentation of Legal Documents

The growing complexity of legal cases has lead to an increasing interest in legal information retrieval systems that can effectively satisfy user-specific information needs. However, such downstream systems typically require documents to be properly formatted and segmented, which is often done with relatively simple pre-processing steps, disregarding topical coherence of segments. Systems generally rely on representations of individual sentences or paragraphs, which may lack crucial context, or document-level representations, which are too long for meaningful search results. To address this issue, we propose a segmentation system that can predict topical coherence of sequential text segments spanning several paragraphs, effectively segmenting a document and providing a more balanced representation for downstream applications. We build our model on top of popular transformer networks and formulate structural text segmentation as topical change detection, by performing a series of independent classifications that allow for efficient fine-tuning on task-specific data. We crawl a novel dataset consisting of roughly 74,000 online Terms-of-Service documents, including hierarchical topic annotations, which we use for training. Results show that our proposed system significantly outperforms baselines, and adapts well to structural peculiarities of legal documents. We release both data and trained models to the research community for future work.https://github.com/dennlinger/TopicalChange

  • 4 authors
·
Dec 7, 2020

Benchmarking Information Retrieval Models on Complex Retrieval Tasks

Large language models (LLMs) are incredible and versatile tools for text-based tasks that have enabled countless, previously unimaginable, applications. Retrieval models, in contrast, have not yet seen such capable general-purpose models emerge. To achieve this goal, retrieval models must be able to perform complex retrieval tasks, where queries contain multiple parts, constraints, or requirements in natural language. These tasks represent a natural progression from the simple, single-aspect queries that are used in the vast majority of existing, commonly used evaluation sets. Complex queries naturally arise as people expect search systems to handle more specific and often ambitious information requests, as is demonstrated by how people use LLM-based information systems. Despite the growing desire for retrieval models to expand their capabilities in complex retrieval tasks, there exist limited resources to assess the ability of retrieval models on a comprehensive set of diverse complex tasks. The few resources that do exist feature a limited scope and often lack realistic settings making it hard to know the true capabilities of retrieval models on complex real-world retrieval tasks. To address this shortcoming and spur innovation in next-generation retrieval models, we construct a diverse and realistic set of complex retrieval tasks and benchmark a representative set of state-of-the-art retrieval models. Additionally, we explore the impact of LLM-based query expansion and rewriting on retrieval quality. Our results show that even the best models struggle to produce high-quality retrieval results with the highest average nDCG@10 of only 0.346 and R@100 of only 0.587 across all tasks. Although LLM augmentation can help weaker models, the strongest model has decreased performance across all metrics with all rewriting techniques.

  • 2 authors
·
Sep 8 2

PODTILE: Facilitating Podcast Episode Browsing with Auto-generated Chapters

Listeners of long-form talk-audio content, such as podcast episodes, often find it challenging to understand the overall structure and locate relevant sections. A practical solution is to divide episodes into chapters--semantically coherent segments labeled with titles and timestamps. Since most episodes on our platform at Spotify currently lack creator-provided chapters, automating the creation of chapters is essential. Scaling the chapterization of podcast episodes presents unique challenges. First, episodes tend to be less structured than written texts, featuring spontaneous discussions with nuanced transitions. Second, the transcripts are usually lengthy, averaging about 16,000 tokens, which necessitates efficient processing that can preserve context. To address these challenges, we introduce PODTILE, a fine-tuned encoder-decoder transformer to segment conversational data. The model simultaneously generates chapter transitions and titles for the input transcript. To preserve context, each input text is augmented with global context, including the episode's title, description, and previous chapter titles. In our intrinsic evaluation, PODTILE achieved an 11% improvement in ROUGE score over the strongest baseline. Additionally, we provide insights into the practical benefits of auto-generated chapters for listeners navigating episode content. Our findings indicate that auto-generated chapters serve as a useful tool for engaging with less popular podcasts. Finally, we present empirical evidence that using chapter titles can enhance effectiveness of sparse retrieval in search tasks.

  • 17 authors
·
Oct 21, 2024

Are Large Language Models Good at Utility Judgments?

Retrieval-augmented generation (RAG) is considered to be a promising approach to alleviate the hallucination issue of large language models (LLMs), and it has received widespread attention from researchers recently. Due to the limitation in the semantic understanding of retrieval models, the success of RAG heavily lies on the ability of LLMs to identify passages with utility. Recent efforts have explored the ability of LLMs to assess the relevance of passages in retrieval, but there has been limited work on evaluating the utility of passages in supporting question answering. In this work, we conduct a comprehensive study about the capabilities of LLMs in utility evaluation for open-domain QA. Specifically, we introduce a benchmarking procedure and collection of candidate passages with different characteristics, facilitating a series of experiments with five representative LLMs. Our experiments reveal that: (i) well-instructed LLMs can distinguish between relevance and utility, and that LLMs are highly receptive to newly generated counterfactual passages. Moreover, (ii) we scrutinize key factors that affect utility judgments in the instruction design. And finally, (iii) to verify the efficacy of utility judgments in practical retrieval augmentation applications, we delve into LLMs' QA capabilities using the evidence judged with utility and direct dense retrieval results. (iv) We propose a k-sampling, listwise approach to reduce the dependency of LLMs on the sequence of input passages, thereby facilitating subsequent answer generation. We believe that the way we formalize and study the problem along with our findings contributes to a critical assessment of retrieval-augmented LLMs. Our code and benchmark can be found at https://github.com/ict-bigdatalab/utility_judgments.

  • 6 authors
·
Mar 28, 2024

How Does Generative Retrieval Scale to Millions of Passages?

Popularized by the Differentiable Search Index, the emerging paradigm of generative retrieval re-frames the classic information retrieval problem into a sequence-to-sequence modeling task, forgoing external indices and encoding an entire document corpus within a single Transformer. Although many different approaches have been proposed to improve the effectiveness of generative retrieval, they have only been evaluated on document corpora on the order of 100k in size. We conduct the first empirical study of generative retrieval techniques across various corpus scales, ultimately scaling up to the entire MS MARCO passage ranking task with a corpus of 8.8M passages and evaluating model sizes up to 11B parameters. We uncover several findings about scaling generative retrieval to millions of passages; notably, the central importance of using synthetic queries as document representations during indexing, the ineffectiveness of existing proposed architecture modifications when accounting for compute cost, and the limits of naively scaling model parameters with respect to retrieval performance. While we find that generative retrieval is competitive with state-of-the-art dual encoders on small corpora, scaling to millions of passages remains an important and unsolved challenge. We believe these findings will be valuable for the community to clarify the current state of generative retrieval, highlight the unique challenges, and inspire new research directions.

  • 8 authors
·
May 19, 2023

LitSearch: A Retrieval Benchmark for Scientific Literature Search

Literature search questions, such as "where can I find research on the evaluation of consistency in generated summaries?" pose significant challenges for modern search engines and retrieval systems. These questions often require a deep understanding of research concepts and the ability to reason over entire articles. In this work, we introduce LitSearch, a retrieval benchmark comprising 597 realistic literature search queries about recent ML and NLP papers. LitSearch is constructed using a combination of (1) questions generated by GPT-4 based on paragraphs containing inline citations from research papers and (2) questions about recently published papers, manually written by their authors. All LitSearch questions were manually examined or edited by experts to ensure high quality. We extensively benchmark state-of-the-art retrieval models and also evaluate two LLM-based reranking pipelines. We find a significant performance gap between BM25 and state-of-the-art dense retrievers, with a 24.8% difference in absolute recall@5. The LLM-based reranking strategies further improve the best-performing dense retriever by 4.4%. Additionally, commercial search engines and research tools like Google Search perform poorly on LitSearch, lagging behind the best dense retriever by 32 points. Taken together, these results show that LitSearch is an informative new testbed for retrieval systems while catering to a real-world use case.

  • 6 authors
·
Jul 10, 2024

Resources for Brewing BEIR: Reproducible Reference Models and an Official Leaderboard

BEIR is a benchmark dataset for zero-shot evaluation of information retrieval models across 18 different domain/task combinations. In recent years, we have witnessed the growing popularity of a representation learning approach to building retrieval models, typically using pretrained transformers in a supervised setting. This naturally begs the question: How effective are these models when presented with queries and documents that differ from the training data? Examples include searching in different domains (e.g., medical or legal text) and with different types of queries (e.g., keywords vs. well-formed questions). While BEIR was designed to answer these questions, our work addresses two shortcomings that prevent the benchmark from achieving its full potential: First, the sophistication of modern neural methods and the complexity of current software infrastructure create barriers to entry for newcomers. To this end, we provide reproducible reference implementations that cover the two main classes of approaches: learned dense and sparse models. Second, there does not exist a single authoritative nexus for reporting the effectiveness of different models on BEIR, which has led to difficulty in comparing different methods. To remedy this, we present an official self-service BEIR leaderboard that provides fair and consistent comparisons of retrieval models. By addressing both shortcomings, our work facilitates future explorations in a range of interesting research questions that BEIR enables.

  • 6 authors
·
Jun 12, 2023

LexSemBridge: Fine-Grained Dense Representation Enhancement through Token-Aware Embedding Augmentation

As queries in retrieval-augmented generation (RAG) pipelines powered by large language models (LLMs) become increasingly complex and diverse, dense retrieval models have demonstrated strong performance in semantic matching. Nevertheless, they often struggle with fine-grained retrieval tasks, where precise keyword alignment and span-level localization are required, even in cases with high lexical overlap that would intuitively suggest easier retrieval. To systematically evaluate this limitation, we introduce two targeted tasks, keyword retrieval and part-of-passage retrieval, designed to simulate practical fine-grained scenarios. Motivated by these observations, we propose LexSemBridge, a unified framework that enhances dense query representations through fine-grained, input-aware vector modulation. LexSemBridge constructs latent enhancement vectors from input tokens using three paradigms: Statistical (SLR), Learned (LLR), and Contextual (CLR), and integrates them with dense embeddings via element-wise interaction. Theoretically, we show that this modulation preserves the semantic direction while selectively amplifying discriminative dimensions. LexSemBridge operates as a plug-in without modifying the backbone encoder and naturally extends to both text and vision modalities. Extensive experiments across semantic and fine-grained retrieval tasks validate the effectiveness and generality of our approach. All code and models are publicly available at https://github.com/Jasaxion/LexSemBridge/

  • 9 authors
·
Aug 25

Dense Text Retrieval based on Pretrained Language Models: A Survey

Text retrieval is a long-standing research topic on information seeking, where a system is required to return relevant information resources to user's queries in natural language. From classic retrieval methods to learning-based ranking functions, the underlying retrieval models have been continually evolved with the ever-lasting technical innovation. To design effective retrieval models, a key point lies in how to learn the text representation and model the relevance matching. The recent success of pretrained language models (PLMs) sheds light on developing more capable text retrieval approaches by leveraging the excellent modeling capacity of PLMs. With powerful PLMs, we can effectively learn the representations of queries and texts in the latent representation space, and further construct the semantic matching function between the dense vectors for relevance modeling. Such a retrieval approach is referred to as dense retrieval, since it employs dense vectors (a.k.a., embeddings) to represent the texts. Considering the rapid progress on dense retrieval, in this survey, we systematically review the recent advances on PLM-based dense retrieval. Different from previous surveys on dense retrieval, we take a new perspective to organize the related work by four major aspects, including architecture, training, indexing and integration, and summarize the mainstream techniques for each aspect. We thoroughly survey the literature, and include 300+ related reference papers on dense retrieval. To support our survey, we create a website for providing useful resources, and release a code repertory and toolkit for implementing dense retrieval models. This survey aims to provide a comprehensive, practical reference focused on the major progress for dense text retrieval.

  • 4 authors
·
Nov 27, 2022

Multi-view-guided Passage Reranking with Large Language Models

Recent advances in large language models (LLMs) have shown impressive performance in passage reranking tasks. Despite their success, LLM-based methods still face challenges in efficiency and sensitivity to external biases. (1) Existing models rely mostly on autoregressive generation and sliding window strategies to rank passages, which incur heavy computational overhead as the number of passages increases. (2) External biases, such as position or selection bias, hinder the model's ability to accurately represent passages and increase input-order sensitivity. To address these limitations, we introduce a novel passage reranking model, called Multi-View-guided Passage Reranking (MVP). MVP is a non-generative LLM-based reranking method that encodes query-passage information into diverse view embeddings without being influenced by external biases. For each view, it combines query-aware passage embeddings to produce a distinct anchor vector, which is then used to directly compute relevance scores in a single decoding step. In addition, it employs an orthogonal loss to make the views more distinctive. Extensive experiments demonstrate that MVP, with just 220M parameters, matches the performance of much larger 7B-scale fine-tuned models while achieving a 100x reduction in inference latency. Notably, the 3B-parameter variant of MVP achieves state-of-the-art performance on both in-domain and out-of-domain benchmarks. The source code is available at: https://github.com/bulbna/MVP

  • 4 authors
·
Sep 9

FinCPRG: A Bidirectional Generation Pipeline for Hierarchical Queries and Rich Relevance in Financial Chinese Passage Retrieval

In recent years, large language models (LLMs) have demonstrated significant potential in constructing passage retrieval datasets. However, existing methods still face limitations in expressing cross-doc query needs and controlling annotation quality. To address these issues, this paper proposes a bidirectional generation pipeline, which aims to generate 3-level hierarchical queries for both intra-doc and cross-doc scenarios and mine additional relevance labels on top of direct mapping annotation. The pipeline introduces two query generation methods: bottom-up from single-doc text and top-down from multi-doc titles. The bottom-up method uses LLMs to disassemble and generate structured queries at both sentence-level and passage-level simultaneously from intra-doc passages. The top-down approach incorporates three key financial elements--industry, topic, and time--to divide report titles into clusters and prompts LLMs to generate topic-level queries from each cluster. For relevance annotation, our pipeline not only relies on direct mapping annotation from the generation relationship but also implements an indirect positives mining method to enrich the relevant query-passage pairs. Using this pipeline, we constructed a Financial Passage Retrieval Generated dataset (FinCPRG) from almost 1.3k Chinese financial research reports, which includes hierarchical queries and rich relevance labels. Through evaluations of mined relevance labels, benchmarking and training experiments, we assessed the quality of FinCPRG and validated its effectiveness as a passage retrieval dataset for both training and benchmarking.

  • 10 authors
·
Aug 4