new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

Enhancing Document-level Event Argument Extraction with Contextual Clues and Role Relevance

Document-level event argument extraction poses new challenges of long input and cross-sentence inference compared to its sentence-level counterpart. However, most prior works focus on capturing the relations between candidate arguments and the event trigger in each event, ignoring two crucial points: a) non-argument contextual clue information; b) the relevance among argument roles. In this paper, we propose a SCPRG (Span-trigger-based Contextual Pooling and latent Role Guidance) model, which contains two novel and effective modules for the above problem. The Span-Trigger-based Contextual Pooling(STCP) adaptively selects and aggregates the information of non-argument clue words based on the context attention weights of specific argument-trigger pairs from pre-trained model. The Role-based Latent Information Guidance (RLIG) module constructs latent role representations, makes them interact through role-interactive encoding to capture semantic relevance, and merges them into candidate arguments. Both STCP and RLIG introduce no more than 1% new parameters compared with the base model and can be easily applied to other event extraction models, which are compact and transplantable. Experiments on two public datasets show that our SCPRG outperforms previous state-of-the-art methods, with 1.13 F1 and 2.64 F1 improvements on RAMS and WikiEvents respectively. Further analyses illustrate the interpretability of our model.

  • 4 authors
·
Oct 8, 2023

AutoRE: Document-Level Relation Extraction with Large Language Models

Large Language Models (LLMs) have demonstrated exceptional abilities in comprehending and generating text, motivating numerous researchers to utilize them for Information Extraction (IE) purposes, including Relation Extraction (RE). Nonetheless, most existing methods are predominantly designed for Sentence-level Relation Extraction (SentRE) tasks, which typically encompass a restricted set of relations and triplet facts within a single sentence. Furthermore, certain approaches resort to treating relations as candidate choices integrated into prompt templates, leading to inefficient processing and suboptimal performance when tackling Document-Level Relation Extraction (DocRE) tasks, which entail handling multiple relations and triplet facts distributed across a given document, posing distinct challenges. To overcome these limitations, we introduce AutoRE, an end-to-end DocRE model that adopts a novel RE extraction paradigm named RHF (Relation-Head-Facts). Unlike existing approaches, AutoRE does not rely on the assumption of known relation options, making it more reflective of real-world scenarios. Additionally, we have developed an easily extensible RE framework using a Parameters Efficient Fine Tuning (PEFT) algorithm (QLoRA). Our experiments on the RE-DocRED dataset showcase AutoRE's best performance, achieving state-of-the-art results, surpassing TAG by 10.03\% and 9.03\% respectively on the dev and test set. The code is available at https://github.com/THUDM/AutoRE and the demonstration video is provided at https://www.youtube.com/watch?v=IhKRsZUAxKk.

  • 4 authors
·
Mar 21, 2024

Zero-Shot Document-Level Biomedical Relation Extraction via Scenario-based Prompt Design in Two-Stage with LLM

With the advent of artificial intelligence (AI), many researchers are attempting to extract structured information from document-level biomedical literature by fine-tuning large language models (LLMs). However, they face significant challenges such as the need for expensive hardware, like high-performance GPUs and the high labor costs associated with annotating training datasets, especially in biomedical realm. Recent research on LLMs, such as GPT-4 and Llama3, has shown promising performance in zero-shot settings, inspiring us to explore a novel approach to achieve the same results from unannotated full documents using general LLMs with lower hardware and labor costs. Our approach combines two major stages: named entity recognition (NER) and relation extraction (RE). NER identifies chemical, disease and gene entities from the document with synonym and hypernym extraction using an LLM with a crafted prompt. RE extracts relations between entities based on predefined relation schemas and prompts. To enhance the effectiveness of prompt, we propose a five-part template structure and a scenario-based prompt design principles, along with evaluation method to systematically assess the prompts. Finally, we evaluated our approach against fine-tuning and pre-trained models on two biomedical datasets: ChemDisGene and CDR. The experimental results indicate that our proposed method can achieve comparable accuracy levels to fine-tuning and pre-trained models but with reduced human and hardware expenses.

  • 3 authors
·
May 2

On the Robustness of Document-Level Relation Extraction Models to Entity Name Variations

Driven by the demand for cross-sentence and large-scale relation extraction, document-level relation extraction (DocRE) has attracted increasing research interest. Despite the continuous improvement in performance, we find that existing DocRE models which initially perform well may make more mistakes when merely changing the entity names in the document, hindering the generalization to novel entity names. To this end, we systematically investigate the robustness of DocRE models to entity name variations in this work. We first propose a principled pipeline to generate entity-renamed documents by replacing the original entity names with names from Wikidata. By applying the pipeline to DocRED and Re-DocRED datasets, we construct two novel benchmarks named Env-DocRED and Env-Re-DocRED for robustness evaluation. Experimental results show that both three representative DocRE models and two in-context learned large language models consistently lack sufficient robustness to entity name variations, particularly on cross-sentence relation instances and documents with more entities. Finally, we propose an entity variation robust training method which not only improves the robustness of DocRE models but also enhances their understanding and reasoning capabilities. We further verify that the basic idea of this method can be effectively transferred to in-context learning for DocRE as well.

  • 7 authors
·
Jun 11, 2024

PromptRE: Weakly-Supervised Document-Level Relation Extraction via Prompting-Based Data Programming

Relation extraction aims to classify the relationships between two entities into pre-defined categories. While previous research has mainly focused on sentence-level relation extraction, recent studies have expanded the scope to document-level relation extraction. Traditional relation extraction methods heavily rely on human-annotated training data, which is time-consuming and labor-intensive. To mitigate the need for manual annotation, recent weakly-supervised approaches have been developed for sentence-level relation extraction while limited work has been done on document-level relation extraction. Weakly-supervised document-level relation extraction faces significant challenges due to an imbalanced number "no relation" instances and the failure of directly probing pretrained large language models for document relation extraction. To address these challenges, we propose PromptRE, a novel weakly-supervised document-level relation extraction method that combines prompting-based techniques with data programming. Furthermore, PromptRE incorporates the label distribution and entity types as prior knowledge to improve the performance. By leveraging the strengths of both prompting and data programming, PromptRE achieves improved performance in relation classification and effectively handles the "no relation" problem. Experimental results on ReDocRED, a benchmark dataset for document-level relation extraction, demonstrate the superiority of PromptRE over baseline approaches.

  • 4 authors
·
Oct 13, 2023

Diagnosis extraction from unstructured Dutch echocardiogram reports using span- and document-level characteristic classification

Clinical machine learning research and AI driven clinical decision support models rely on clinically accurate labels. Manually extracting these labels with the help of clinical specialists is often time-consuming and expensive. This study tests the feasibility of automatic span- and document-level diagnosis extraction from unstructured Dutch echocardiogram reports. We included 115,692 unstructured echocardiogram reports from the UMCU a large university hospital in the Netherlands. A randomly selected subset was manually annotated for the occurrence and severity of eleven commonly described cardiac characteristics. We developed and tested several automatic labelling techniques at both span and document levels, using weighted and macro F1-score, precision, and recall for performance evaluation. We compared the performance of span labelling against document labelling methods, which included both direct document classifiers and indirect document classifiers that rely on span classification results. The SpanCategorizer and MedRoBERTa.nl models outperformed all other span and document classifiers, respectively. The weighted F1-score varied between characteristics, ranging from 0.60 to 0.93 in SpanCategorizer and 0.96 to 0.98 in MedRoBERTa.nl. Direct document classification was superior to indirect document classification using span classifiers. SetFit achieved competitive document classification performance using only 10\% of the training data. Utilizing a reduced label set yielded near-perfect document classification results. We recommend using our published SpanCategorizer and MedRoBERTa.nl models for span- and document-level diagnosis extraction from Dutch echocardiography reports. For settings with limited training data, SetFit may be a promising alternative for document classification.

  • 7 authors
·
Aug 13, 2024

mOSCAR: A Large-scale Multilingual and Multimodal Document-level Corpus

Multimodal Large Language Models (mLLMs) are trained on a large amount of text-image data. While most mLLMs are trained on caption-like data only, Alayrac et al. [2022] showed that additionally training them on interleaved sequences of text and images can lead to the emergence of in-context learning capabilities. However, the dataset they used, M3W, is not public and is only in English. There have been attempts to reproduce their results but the released datasets are English-only. In contrast, current multilingual and multimodal datasets are either composed of caption-like only or medium-scale or fully private data. This limits mLLM research for the 7,000 other languages spoken in the world. We therefore introduce mOSCAR, to the best of our knowledge the first large-scale multilingual and multimodal document corpus crawled from the web. It covers 163 languages, 315M documents, 214B tokens and 1.2B images. We carefully conduct a set of filtering and evaluation steps to make sure mOSCAR is sufficiently safe, diverse and of good quality. We additionally train two types of multilingual model to prove the benefits of mOSCAR: (1) a model trained on a subset of mOSCAR and captioning data and (2) a model train on captioning data only. The model additionally trained on mOSCAR shows a strong boost in few-shot learning performance across various multilingual image-text tasks and benchmarks, confirming previous findings for English-only mLLMs.

  • 8 authors
·
Jun 12, 2024 4

Did the Neurons Read your Book? Document-level Membership Inference for Large Language Models

With large language models (LLMs) poised to become embedded in our daily lives, questions are starting to be raised about the data they learned from. These questions range from potential bias or misinformation LLMs could retain from their training data to questions of copyright and fair use of human-generated text. However, while these questions emerge, developers of the recent state-of-the-art LLMs become increasingly reluctant to disclose details on their training corpus. We here introduce the task of document-level membership inference for real-world LLMs, i.e. inferring whether the LLM has seen a given document during training or not. First, we propose a procedure for the development and evaluation of document-level membership inference for LLMs by leveraging commonly used data sources for training and the model release date. We then propose a practical, black-box method to predict document-level membership and instantiate it on OpenLLaMA-7B with both books and academic papers. We show our methodology to perform very well, reaching an AUC of 0.856 for books and 0.678 for papers. We then show our approach to outperform the sentence-level membership inference attacks used in the privacy literature for the document-level membership task. We further evaluate whether smaller models might be less sensitive to document-level inference and show OpenLLaMA-3B to be approximately as sensitive as OpenLLaMA-7B to our approach. Finally, we consider two mitigation strategies and find the AUC to slowly decrease when only partial documents are considered but to remain fairly high when the model precision is reduced. Taken together, our results show that accurate document-level membership can be inferred for LLMs, increasing the transparency of technology poised to change our lives.

  • 4 authors
·
Oct 23, 2023

BN-HTRd: A Benchmark Dataset for Document Level Offline Bangla Handwritten Text Recognition (HTR) and Line Segmentation

We introduce a new dataset for offline Handwritten Text Recognition (HTR) from images of Bangla scripts comprising words, lines, and document-level annotations. The BN-HTRd dataset is based on the BBC Bangla News corpus, meant to act as ground truth texts. These texts were subsequently used to generate the annotations that were filled out by people with their handwriting. Our dataset includes 788 images of handwritten pages produced by approximately 150 different writers. It can be adopted as a basis for various handwriting classification tasks such as end-to-end document recognition, word-spotting, word or line segmentation, and so on. We also propose a scheme to segment Bangla handwritten document images into corresponding lines in an unsupervised manner. Our line segmentation approach takes care of the variability involved in different writing styles, accurately segmenting complex handwritten text lines of curvilinear nature. Along with a bunch of pre-processing and morphological operations, both Hough line and circle transforms were employed to distinguish different linear components. In order to arrange those components into their corresponding lines, we followed an unsupervised clustering approach. The average success rate of our segmentation technique is 81.57% in terms of FM metrics (similar to F-measure) with a mean Average Precision (mAP) of 0.547.

  • 5 authors
·
May 29, 2022

DWIE: an entity-centric dataset for multi-task document-level information extraction

This paper presents DWIE, the 'Deutsche Welle corpus for Information Extraction', a newly created multi-task dataset that combines four main Information Extraction (IE) annotation subtasks: (i) Named Entity Recognition (NER), (ii) Coreference Resolution, (iii) Relation Extraction (RE), and (iv) Entity Linking. DWIE is conceived as an entity-centric dataset that describes interactions and properties of conceptual entities on the level of the complete document. This contrasts with currently dominant mention-driven approaches that start from the detection and classification of named entity mentions in individual sentences. Further, DWIE presented two main challenges when building and evaluating IE models for it. First, the use of traditional mention-level evaluation metrics for NER and RE tasks on entity-centric DWIE dataset can result in measurements dominated by predictions on more frequently mentioned entities. We tackle this issue by proposing a new entity-driven metric that takes into account the number of mentions that compose each of the predicted and ground truth entities. Second, the document-level multi-task annotations require the models to transfer information between entity mentions located in different parts of the document, as well as between different tasks, in a joint learning setting. To realize this, we propose to use graph-based neural message passing techniques between document-level mention spans. Our experiments show an improvement of up to 5.5 F1 percentage points when incorporating neural graph propagation into our joint model. This demonstrates DWIE's potential to stimulate further research in graph neural networks for representation learning in multi-task IE. We make DWIE publicly available at https://github.com/klimzaporojets/DWIE.

  • 4 authors
·
Sep 26, 2020

Fine-Grained Detection of AI-Generated Text Using Sentence-Level Segmentation

Generation of Artificial Intelligence (AI) texts in important works has become a common practice that can be used to misuse and abuse AI at various levels. Traditional AI detectors often rely on document-level classification, which struggles to identify AI content in hybrid or slightly edited texts designed to avoid detection, leading to concerns about the model's efficiency, which makes it hard to distinguish between human-written and AI-generated texts. A sentence-level sequence labeling model proposed to detect transitions between human- and AI-generated text, leveraging nuanced linguistic signals overlooked by document-level classifiers. By this method, detecting and segmenting AI and human-written text within a single document at the token-level granularity is achieved. Our model combines the state-of-the-art pre-trained Transformer models, incorporating Neural Networks (NN) and Conditional Random Fields (CRFs). This approach extends the power of transformers to extract semantic and syntactic patterns, and the neural network component to capture enhanced sequence-level representations, thereby improving the boundary predictions by the CRF layer, which enhances sequence recognition and further identification of the partition between Human- and AI-generated texts. The evaluation is performed on two publicly available benchmark datasets containing collaborative human and AI-generated texts. Our experimental comparisons are with zero-shot detectors and the existing state-of-the-art models, along with rigorous ablation studies to justify that this approach, in particular, can accurately detect the spans of AI texts in a completely collaborative text. All our source code and the processed datasets are available in our GitHub repository.

  • 5 authors
·
Sep 22

Lightweight and Direct Document Relevance Optimization for Generative Information Retrieval

Generative information retrieval (GenIR) is a promising neural retrieval paradigm that formulates document retrieval as a document identifier (docid) generation task, allowing for end-to-end optimization toward a unified global retrieval objective. However, existing GenIR models suffer from token-level misalignment, where models trained to predict the next token often fail to capture document-level relevance effectively. While reinforcement learning-based methods, such as reinforcement learning from relevance feedback (RLRF), aim to address this misalignment through reward modeling, they introduce significant complexity, requiring the optimization of an auxiliary reward function followed by reinforcement fine-tuning, which is computationally expensive and often unstable. To address these challenges, we propose direct document relevance optimization (DDRO), which aligns token-level docid generation with document-level relevance estimation through direct optimization via pairwise ranking, eliminating the need for explicit reward modeling and reinforcement learning. Experimental results on benchmark datasets, including MS MARCO document and Natural Questions, show that DDRO outperforms reinforcement learning-based methods, achieving a 7.4% improvement in MRR@10 for MS MARCO and a 19.9% improvement for Natural Questions. These findings highlight DDRO's potential to enhance retrieval effectiveness with a simplified optimization approach. By framing alignment as a direct optimization problem, DDRO simplifies the ranking optimization pipeline of GenIR models while offering a viable alternative to reinforcement learning-based methods.

  • 3 authors
·
Apr 7

FinAI-BERT: A Transformer-Based Model for Sentence-Level Detection of AI Disclosures in Financial Reports

The proliferation of artificial intelligence (AI) in financial services has prompted growing demand for tools that can systematically detect AI-related disclosures in corporate filings. While prior approaches often rely on keyword expansion or document-level classification, they fall short in granularity, interpretability, and robustness. This study introduces FinAI-BERT, a domain-adapted transformer-based language model designed to classify AI-related content at the sentence level within financial texts. The model was fine-tuned on a manually curated and balanced dataset of 1,586 sentences drawn from 669 annual reports of U.S. banks (2015 to 2023). FinAI-BERT achieved near-perfect classification performance (accuracy of 99.37 percent, F1 score of 0.993), outperforming traditional baselines such as Logistic Regression, Naive Bayes, Random Forest, and XGBoost. Interpretability was ensured through SHAP-based token attribution, while bias analysis and robustness checks confirmed the model's stability across sentence lengths, adversarial inputs, and temporal samples. Theoretically, the study advances financial NLP by operationalizing fine-grained, theme-specific classification using transformer architectures. Practically, it offers a scalable, transparent solution for analysts, regulators, and scholars seeking to monitor the diffusion and framing of AI across financial institutions.

  • 1 authors
·
Jun 29

A General-Purpose Multilingual Document Encoder

Massively multilingual pretrained transformers (MMTs) have tremendously pushed the state of the art on multilingual NLP and cross-lingual transfer of NLP models in particular. While a large body of work leveraged MMTs to mine parallel data and induce bilingual document embeddings, much less effort has been devoted to training general-purpose (massively) multilingual document encoder that can be used for both supervised and unsupervised document-level tasks. In this work, we pretrain a massively multilingual document encoder as a hierarchical transformer model (HMDE) in which a shallow document transformer contextualizes sentence representations produced by a state-of-the-art pretrained multilingual sentence encoder. We leverage Wikipedia as a readily available source of comparable documents for creating training data, and train HMDE by means of a cross-lingual contrastive objective, further exploiting the category hierarchy of Wikipedia for creation of difficult negatives. We evaluate the effectiveness of HMDE in two arguably most common and prominent cross-lingual document-level tasks: (1) cross-lingual transfer for topical document classification and (2) cross-lingual document retrieval. HMDE is significantly more effective than (i) aggregations of segment-based representations and (ii) multilingual Longformer. Crucially, owing to its massively multilingual lower transformer, HMDE successfully generalizes to languages unseen in document-level pretraining. We publicly release our code and models at https://github.com/ogaloglu/pre-training-multilingual-document-encoders .

  • 3 authors
·
May 11, 2023

UniHDSA: A Unified Relation Prediction Approach for Hierarchical Document Structure Analysis

Document structure analysis, aka document layout analysis, is crucial for understanding both the physical layout and logical structure of documents, serving information retrieval, document summarization, knowledge extraction, etc. Hierarchical Document Structure Analysis (HDSA) specifically aims to restore the hierarchical structure of documents created using authoring software with hierarchical schemas. Previous research has primarily followed two approaches: one focuses on tackling specific subtasks of HDSA in isolation, such as table detection or reading order prediction, while the other adopts a unified framework that uses multiple branches or modules, each designed to address a distinct task. In this work, we propose a unified relation prediction approach for HDSA, called UniHDSA, which treats various HDSA sub-tasks as relation prediction problems and consolidates relation prediction labels into a unified label space. This allows a single relation prediction module to handle multiple tasks simultaneously, whether at a page-level or document-level structure analysis. To validate the effectiveness of UniHDSA, we develop a multimodal end-to-end system based on Transformer architectures. Extensive experimental results demonstrate that our approach achieves state-of-the-art performance on a hierarchical document structure analysis benchmark, Comp-HRDoc, and competitive results on a large-scale document layout analysis dataset, DocLayNet, effectively illustrating the superiority of our method across all sub-tasks. The Comp-HRDoc benchmark and UniHDSA's configurations are publicly available at https://github.com/microsoft/CompHRDoc.

  • 3 authors
·
Mar 20 2

LayoutLLM: Layout Instruction Tuning with Large Language Models for Document Understanding

Recently, leveraging large language models (LLMs) or multimodal large language models (MLLMs) for document understanding has been proven very promising. However, previous works that employ LLMs/MLLMs for document understanding have not fully explored and utilized the document layout information, which is vital for precise document understanding. In this paper, we propose LayoutLLM, an LLM/MLLM based method for document understanding. The core of LayoutLLM is a layout instruction tuning strategy, which is specially designed to enhance the comprehension and utilization of document layouts. The proposed layout instruction tuning strategy consists of two components: Layout-aware Pre-training and Layout-aware Supervised Fine-tuning. To capture the characteristics of document layout in Layout-aware Pre-training, three groups of pre-training tasks, corresponding to document-level, region-level and segment-level information, are introduced. Furthermore, a novel module called layout chain-of-thought (LayoutCoT) is devised to enable LayoutLLM to focus on regions relevant to the question and generate accurate answers. LayoutCoT is effective for boosting the performance of document understanding. Meanwhile, it brings a certain degree of interpretability, which could facilitate manual inspection and correction. Experiments on standard benchmarks show that the proposed LayoutLLM significantly outperforms existing methods that adopt open-source 7B LLMs/MLLMs for document understanding. The training data of the LayoutLLM is publicly available at https://github.com/AlibabaResearch/AdvancedLiterateMachinery/tree/main/DocumentUnderstanding/LayoutLLM

  • 6 authors
·
Apr 8, 2024

Marten: Visual Question Answering with Mask Generation for Multi-modal Document Understanding

Multi-modal Large Language Models (MLLMs) have introduced a novel dimension to document understanding, i.e., they endow large language models with visual comprehension capabilities; however, how to design a suitable image-text pre-training task for bridging the visual and language modality in document-level MLLMs remains underexplored. In this study, we introduce a novel visual-language alignment method that casts the key issue as a Visual Question Answering with Mask generation (VQAMask) task, optimizing two tasks simultaneously: VQA-based text parsing and mask generation. The former allows the model to implicitly align images and text at the semantic level. The latter introduces an additional mask generator (discarded during inference) to explicitly ensure alignment between visual texts within images and their corresponding image regions at a spatially-aware level. Together, they can prevent model hallucinations when parsing visual text and effectively promote spatially-aware feature representation learning. To support the proposed VQAMask task, we construct a comprehensive image-mask generation pipeline and provide a large-scale dataset with 6M data (MTMask6M). Subsequently, we demonstrate that introducing the proposed mask generation task yields competitive document-level understanding performance. Leveraging the proposed VQAMask, we introduce Marten, a training-efficient MLLM tailored for document-level understanding. Extensive experiments show that our Marten consistently achieves significant improvements among 8B-MLLMs in document-centric tasks. Code and datasets are available at https://github.com/PriNing/Marten.

  • 10 authors
·
Mar 18

DAPFAM: A Domain-Aware Patent Retrieval Dataset Aggregated at the Family Level

In the landscape of publicly available patent retrieval datasets, the need for explicit indomain and out-of-domain labeling, multi-jurisdiction coverage, balanced query domain representation and manageable sizes that support sub document level experiments on moderate computational resources is often overlooked. To address these gaps, we propose DAPFAM, a new open access domain-aware patent retrieval dataset constructed at the simple-family level. The dataset contains 1,247 domain balanced full text query families and 45,336 full text target families. The dataset is enriched by clear relevance judgments (forward/backward citations as positive links, random negatives), as well as explicit in-domain or out-of-domain relationships via a novel proposed labelling scheme based on via International Patent Classification (IPC) codes, resulting in 49,869 evaluation pairs. The dataset is multi jurisdictional, requires little to no preprocessing for retrieval evaluation, and remains of a size manageable for entities with limited ressources allowing for sub document level retrieval experiments without excessive computational costs. We describe our three-step data-curation pipeline, present comprehensive dataset statistics, and provide baseline experiments using lexical and neural retrieval methods. Our baseline experiments highlight significant challenges in crossdomain patent retrieval. The dataset will be publicly available (for now the access link is this repository: https://osf.io/vbyzd/?view_only=1a40242e0d1941a58aa854af3e50cf6b).

  • 3 authors
·
Jun 27

Copyright Traps for Large Language Models

Questions of fair use of copyright-protected content to train Large Language Models (LLMs) are being very actively debated. Document-level inference has been proposed as a new task: inferring from black-box access to the trained model whether a piece of content has been seen during training. SOTA methods however rely on naturally occurring memorization of (part of) the content. While very effective against models that memorize a lot, we hypothesize--and later confirm--that they will not work against models that do not naturally memorize, e.g. medium-size 1B models. We here propose to use copyright traps, the inclusion of fictitious entries in original content, to detect the use of copyrighted materials in LLMs with a focus on models where memorization does not naturally occur. We carefully design an experimental setup, randomly inserting traps into original content (books) and train a 1.3B LLM. We first validate that the use of content in our target model would be undetectable using existing methods. We then show, contrary to intuition, that even medium-length trap sentences repeated a significant number of times (100) are not detectable using existing methods. However, we show that longer sequences repeated a large number of times can be reliably detected (AUC=0.75) and used as copyright traps. We further improve these results by studying how the number of times a sequence is seen improves detectability, how sequences with higher perplexity tend to be memorized more, and how taking context into account further improves detectability.

  • 4 authors
·
Feb 14, 2024

Vector representations of text data in deep learning

In this dissertation we report results of our research on dense distributed representations of text data. We propose two novel neural models for learning such representations. The first model learns representations at the document level, while the second model learns word-level representations. For document-level representations we propose Binary Paragraph Vector: a neural network models for learning binary representations of text documents, which can be used for fast document retrieval. We provide a thorough evaluation of these models and demonstrate that they outperform the seminal method in the field in the information retrieval task. We also report strong results in transfer learning settings, where our models are trained on a generic text corpus and then used to infer codes for documents from a domain-specific dataset. In contrast to previously proposed approaches, Binary Paragraph Vector models learn embeddings directly from raw text data. For word-level representations we propose Disambiguated Skip-gram: a neural network model for learning multi-sense word embeddings. Representations learned by this model can be used in downstream tasks, like part-of-speech tagging or identification of semantic relations. In the word sense induction task Disambiguated Skip-gram outperforms state-of-the-art models on three out of four benchmarks datasets. Our model has an elegant probabilistic interpretation. Furthermore, unlike previous models of this kind, it is differentiable with respect to all its parameters and can be trained with backpropagation. In addition to quantitative results, we present qualitative evaluation of Disambiguated Skip-gram, including two-dimensional visualisations of selected word-sense embeddings.

  • 1 authors
·
Jan 7, 2019

Extending TrOCR for Text Localization-Free OCR of Full-Page Scanned Receipt Images

Digitization of scanned receipts aims to extract text from receipt images and save it into structured documents. This is usually split into two sub-tasks: text localization and optical character recognition (OCR). Most existing OCR models only focus on the cropped text instance images, which require the bounding box information provided by a text region detection model. Introducing an additional detector to identify the text instance images in advance adds complexity, however instance-level OCR models have very low accuracy when processing the whole image for the document-level OCR, such as receipt images containing multiple text lines arranged in various layouts. To this end, we propose a localization-free document-level OCR model for transcribing all the characters in a receipt image into an ordered sequence end-to-end. Specifically, we finetune the pretrained instance-level model TrOCR with randomly cropped image chunks, and gradually increase the image chunk size to generalize the recognition ability from instance images to full-page images. In our experiments on the SROIE receipt OCR dataset, the model finetuned with our strategy achieved 64.4 F1-score and a 22.8% character error rate (CER), respectively, which outperforms the baseline results with 48.5 F1-score and 50.6% CER. The best model, which splits the full image into 15 equally sized chunks, gives 87.8 F1-score and 4.98% CER with minimal additional pre or post-processing of the output. Moreover, the characters in the generated document-level sequences are arranged in the reading order, which is practical for real-world applications.

  • 3 authors
·
Dec 11, 2022

Enhancing Domain-Specific Retrieval-Augmented Generation: Synthetic Data Generation and Evaluation using Reasoning Models

Retrieval-Augmented Generation (RAG) systems face significant performance gaps when applied to technical domains requiring precise information extraction from complex documents. Current evaluation methodologies relying on document-level metrics inadequately capture token-resolution retrieval accuracy that is critical for domain-related documents. We propose a framework combining granular evaluation metrics with synthetic data generation to optimize domain-specific RAG performance. First, we introduce token-aware metrics Precision Omega and Intersection-over-Union (IoU) that quantify context preservation versus information density trade-offs inherent in technical texts. Second, we develop a reasoning model-driven pipeline using instruction-tuned LLMs (DeepSeek-R1, DeepSeek-R1 distilled variants, and Phi-4) to generate context-anchored QA pairs with discontinuous reference spans across three specialized corpora: SEC 10-K filings (finance), biomedical abstracts (PubMed), and APT threat reports (cybersecurity). Our empirical analysis reveals critical insights: smaller chunks (less than 10 tokens) improve precision by 31-42% (IoU = 0.071 vs. baseline 0.053) at recall costs (-18%), while domain-specific embedding strategies yield 22% variance in optimal chunk sizing (5-20 tokens). The DeepSeek-R1-Distill-Qwen-32B model demonstrates superior concept alignment (+14% mean IoU over alternatives), though no configuration universally dominates. Financial texts favor larger chunks for risk factor coverage (Recall = 0.81 at size = 20), whereas cybersecurity content benefits from atomic segmentation, Precision Omega = 0.28 at size = 5. Our code is available on https://github.com/aryan-jadon/Synthetic-Data-Generation-and-Evaluation-using-Reasoning-Model

  • 3 authors
·
Feb 21

LLM-based Rewriting of Inappropriate Argumentation using Reinforcement Learning from Machine Feedback

Ensuring that online discussions are civil and productive is a major challenge for social media platforms. Such platforms usually rely both on users and on automated detection tools to flag inappropriate arguments of other users, which moderators then review. However, this kind of post-hoc moderation is expensive and time-consuming, and moderators are often overwhelmed by the amount and severity of flagged content. Instead, a promising alternative is to prevent negative behavior during content creation. This paper studies how inappropriate language in arguments can be computationally mitigated. We propose a reinforcement learning-based rewriting approach that balances content preservation and appropriateness based on existing classifiers, prompting an instruction-finetuned large language model (LLM) as our initial policy. Unlike related style transfer tasks, rewriting inappropriate arguments allows deleting and adding content permanently. It is therefore tackled on document level rather than sentence level. We evaluate different weighting schemes for the reward function in both absolute and relative human assessment studies. Systematic experiments on non-parallel data provide evidence that our approach can mitigate the inappropriateness of arguments while largely preserving their content. It significantly outperforms competitive baselines, including few-shot learning, prompting, and humans.

  • 4 authors
·
Jun 5, 2024

Logic Induced High-Order Reasoning Network for Event-Event Relation Extraction

To understand a document with multiple events, event-event relation extraction (ERE) emerges as a crucial task, aiming to discern how natural events temporally or structurally associate with each other. To achieve this goal, our work addresses the problems of temporal event relation extraction (TRE) and subevent relation extraction (SRE). The latest methods for such problems have commonly built document-level event graphs for global reasoning across sentences. However, the edges between events are usually derived from external tools heuristically, which are not always reliable and may introduce noise. Moreover, they are not capable of preserving logical constraints among event relations, e.g., coreference constraint, symmetry constraint and conjunction constraint. These constraints guarantee coherence between different relation types,enabling the generation of a uniffed event evolution graph. In this work, we propose a novel method named LogicERE, which performs high-order event relation reasoning through modeling logic constraints. Speciffcally, different from conventional event graphs, we design a logic constraint induced graph (LCG) without any external tools. LCG involves event nodes where the interactions among them can model the coreference constraint, and event pairs nodes where the interactions among them can retain the symmetry constraint and conjunction constraint. Then we perform high-order reasoning on LCG with relational graph transformer to obtain enhanced event and event pair embeddings. Finally, we further incorporate logic constraint information via a joint logic learning module. Extensive experiments demonstrate the effectiveness of the proposed method with state-of-the-art performance on benchmark datasets.

  • 5 authors
·
Dec 19, 2024

Discourse Centric Evaluation of Machine Translation with a Densely Annotated Parallel Corpus

Several recent papers claim human parity at sentence-level Machine Translation (MT), especially in high-resource languages. Thus, in response, the MT community has, in part, shifted its focus to document-level translation. Translating documents requires a deeper understanding of the structure and meaning of text, which is often captured by various kinds of discourse phenomena such as consistency, coherence, and cohesion. However, this renders conventional sentence-level MT evaluation benchmarks inadequate for evaluating the performance of context-aware MT systems. This paper presents a new dataset with rich discourse annotations, built upon the large-scale parallel corpus BWB introduced in Jiang et al. (2022). The new BWB annotation introduces four extra evaluation aspects, i.e., entity, terminology, coreference, and quotation, covering 15,095 entity mentions in both languages. Using these annotations, we systematically investigate the similarities and differences between the discourse structures of source and target languages, and the challenges they pose to MT. We discover that MT outputs differ fundamentally from human translations in terms of their latent discourse structures. This gives us a new perspective on the challenges and opportunities in document-level MT. We make our resource publicly available to spur future research in document-level MT and the generalization to other language translation tasks.

  • 6 authors
·
May 18, 2023

UniSent: Universal Adaptable Sentiment Lexica for 1000+ Languages

In this paper, we introduce UniSent universal sentiment lexica for 1000+ languages. Sentiment lexica are vital for sentiment analysis in absence of document-level annotations, a very common scenario for low-resource languages. To the best of our knowledge, UniSent is the largest sentiment resource to date in terms of the number of covered languages, including many low resource ones. In this work, we use a massively parallel Bible corpus to project sentiment information from English to other languages for sentiment analysis on Twitter data. We introduce a method called DomDrift to mitigate the huge domain mismatch between Bible and Twitter by a confidence weighting scheme that uses domain-specific embeddings to compare the nearest neighbors for a candidate sentiment word in the source (Bible) and target (Twitter) domain. We evaluate the quality of UniSent in a subset of languages for which manually created ground truth was available, Macedonian, Czech, German, Spanish, and French. We show that the quality of UniSent is comparable to manually created sentiment resources when it is used as the sentiment seed for the task of word sentiment prediction on top of embedding representations. In addition, we show that emoticon sentiments could be reliably predicted in the Twitter domain using only UniSent and monolingual embeddings in German, Spanish, French, and Italian. With the publication of this paper, we release the UniSent sentiment lexica.

  • 5 authors
·
Apr 21, 2019

Pixel Sentence Representation Learning

Pretrained language models are long known to be subpar in capturing sentence and document-level semantics. Though heavily investigated, transferring perturbation-based methods from unsupervised visual representation learning to NLP remains an unsolved problem. This is largely due to the discreteness of subword units brought by tokenization of language models, limiting small perturbations of inputs to form semantics-preserved positive pairs. In this work, we conceptualize the learning of sentence-level textual semantics as a visual representation learning process. Drawing from cognitive and linguistic sciences, we introduce an unsupervised visual sentence representation learning framework, employing visually-grounded text perturbation methods like typos and word order shuffling, resonating with human cognitive patterns, and enabling perturbation to texts to be perceived as continuous. Our approach is further bolstered by large-scale unsupervised topical alignment training and natural language inference supervision, achieving comparable performance in semantic textual similarity (STS) to existing state-of-the-art NLP methods. Additionally, we unveil our method's inherent zero-shot cross-lingual transferability and a unique leapfrogging pattern across languages during iterative training. To our knowledge, this is the first representation learning method devoid of traditional language models for understanding sentence and document semantics, marking a stride closer to human-like textual comprehension. Our code is available at https://github.com/gowitheflow-1998/Pixel-Linguist

  • 10 authors
·
Feb 12, 2024

GenerationPrograms: Fine-grained Attribution with Executable Programs

Recent large language models (LLMs) achieve impressive performance in source-conditioned text generation but often fail to correctly provide fine-grained attributions for their outputs, undermining verifiability and trust. Moreover, existing attribution methods do not explain how and why models leverage the provided source documents to generate their final responses, limiting interpretability. To overcome these challenges, we introduce a modular generation framework, GenerationPrograms, inspired by recent advancements in executable "code agent" architectures. Unlike conventional generation methods that simultaneously generate outputs and attributions or rely on post-hoc attribution, GenerationPrograms decomposes the process into two distinct stages: first, creating an executable program plan composed of modular text operations (such as paraphrasing, compression, and fusion) explicitly tailored to the query, and second, executing these operations following the program's specified instructions to produce the final response. Empirical evaluations demonstrate that GenerationPrograms significantly improves attribution quality at both the document level and sentence level across two long-form question-answering tasks and a multi-document summarization task. We further demonstrate that GenerationPrograms can effectively function as a post-hoc attribution method, outperforming traditional techniques in recovering accurate attributions. In addition, the interpretable programs generated by GenerationPrograms enable localized refinement through modular-level improvements that further enhance overall attribution quality.

  • 5 authors
·
Jun 17

LLMs Can Achieve High-quality Simultaneous Machine Translation as Efficiently as Offline

When the complete source sentence is provided, Large Language Models (LLMs) perform excellently in offline machine translation even with a simple prompt "Translate the following sentence from [src lang] into [tgt lang]:". However, in many real scenarios, the source tokens arrive in a streaming manner and simultaneous machine translation (SiMT) is required, then the efficiency and performance of decoder-only LLMs are significantly limited by their auto-regressive nature. To enable LLMs to achieve high-quality SiMT as efficiently as offline translation, we propose a novel paradigm that includes constructing supervised fine-tuning (SFT) data for SiMT, along with new training and inference strategies. To replicate the token input/output stream in SiMT, the source and target tokens are rearranged into an interleaved sequence, separated by special tokens according to varying latency requirements. This enables powerful LLMs to learn read and write operations adaptively, based on varying latency prompts, while still maintaining efficient auto-regressive decoding. Experimental results show that, even with limited SFT data, our approach achieves state-of-the-art performance across various SiMT benchmarks, and preserves the original abilities of offline translation. Moreover, our approach generalizes well to document-level SiMT setting without requiring specific fine-tuning, even beyond the offline translation model.

  • 7 authors
·
Apr 13

Neural Natural Language Processing for Long Texts: A Survey of the State-of-the-Art

The adoption of Deep Neural Networks (DNNs) has greatly benefited Natural Language Processing (NLP) during the past decade. However, the demands of long document analysis are quite different from those of shorter texts, while the ever increasing size of documents uploaded on-line renders automated understanding of lengthy texts a critical issue. Relevant applications include automated Web mining, legal document review, medical records analysis, financial reports analysis, contract management, environmental impact assessment, news aggregation, etc. Despite the relatively recent development of efficient algorithms for analyzing long documents, practical tools in this field are currently flourishing. This article serves as an entry point into this dynamic domain and aims to achieve two objectives. Firstly, it provides an overview of the relevant neural building blocks, serving as a concise tutorial for the field. Secondly, it offers a brief examination of the current state-of-the-art in long document NLP, with a primary focus on two key tasks: document classification and document summarization. Sentiment analysis for long texts is also covered, since it is typically treated as a particular case of document classification. Consequently, this article presents an introductory exploration of document-level analysis, addressing the primary challenges, concerns, and existing solutions. Finally, the article presents publicly available annotated datasets that can facilitate further research in this area.

  • 4 authors
·
May 25, 2023