new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

Tree-Planner: Efficient Close-loop Task Planning with Large Language Models

This paper studies close-loop task planning, which refers to the process of generating a sequence of skills (a plan) to accomplish a specific goal while adapting the plan based on real-time observations. Recently, prompting Large Language Models (LLMs) to generate actions iteratively has become a prevalent paradigm due to its superior performance and user-friendliness. However, this paradigm is plagued by two inefficiencies: high token consumption and redundant error correction, both of which hinder its scalability for large-scale testing and applications. To address these issues, we propose Tree-Planner, which reframes task planning with LLMs into three distinct phases: plan sampling, action tree construction, and grounded deciding. Tree-Planner starts by using an LLM to sample a set of potential plans before execution, followed by the aggregation of them to form an action tree. Finally, the LLM performs a top-down decision-making process on the tree, taking into account real-time environmental information. Experiments show that Tree-Planner achieves state-of-the-art performance while maintaining high efficiency. By decomposing LLM queries into a single plan-sampling call and multiple grounded-deciding calls, a considerable part of the prompt are less likely to be repeatedly consumed. As a result, token consumption is reduced by 92.2% compared to the previously best-performing model. Additionally, by enabling backtracking on the action tree as needed, the correction process becomes more flexible, leading to a 40.5% decrease in error corrections. Project page: https://tree-planner.github.io/

  • 10 authors
·
Oct 12, 2023

Model-Based and Sample-Efficient AI-Assisted Math Discovery in Sphere Packing

Sphere packing, Hilbert's eighteenth problem, asks for the densest arrangement of congruent spheres in n-dimensional Euclidean space. Although relevant to areas such as cryptography, crystallography, and medical imaging, the problem remains unresolved: beyond a few special dimensions, neither optimal packings nor tight upper bounds are known. Even a major breakthrough in dimension n=8, later recognised with a Fields Medal, underscores its difficulty. A leading technique for upper bounds, the three-point method, reduces the problem to solving large, high-precision semidefinite programs (SDPs). Because each candidate SDP may take days to evaluate, standard data-intensive AI approaches are infeasible. We address this challenge by formulating SDP construction as a sequential decision process, the SDP game, in which a policy assembles SDP formulations from a set of admissible components. Using a sample-efficient model-based framework that combines Bayesian optimisation with Monte Carlo Tree Search, we obtain new state-of-the-art upper bounds in dimensions 4-16, showing that model-based search can advance computational progress in longstanding geometric problems. Together, these results demonstrate that sample-efficient, model-based search can make tangible progress on mathematically rigid, evaluation limited problems, pointing towards a complementary direction for AI-assisted discovery beyond large-scale LLM-driven exploration.

  • 6 authors
·
Dec 4, 2025 2

Ensembling LLM-Induced Decision Trees for Explainable and Robust Error Detection

Error detection (ED), which aims to identify incorrect or inconsistent cell values in tabular data, is important for ensuring data quality. Recent state-of-the-art ED methods leverage the pre-trained knowledge and semantic capability embedded in large language models (LLMs) to directly label whether a cell is erroneous. However, this LLM-as-a-labeler pipeline (1) relies on the black box, implicit decision process, thus failing to provide explainability for the detection results, and (2) is highly sensitive to prompts, yielding inconsistent outputs due to inherent model stochasticity, therefore lacking robustness. To address these limitations, we propose an LLM-as-an-inducer framework that adopts LLM to induce the decision tree for ED (termed TreeED) and further ensembles multiple such trees for consensus detection (termed ForestED), thereby improving explainability and robustness. Specifically, based on prompts derived from data context, decision tree specifications and output requirements, TreeED queries the LLM to induce the decision tree skeleton, whose root-to-leaf decision paths specify the stepwise procedure for evaluating a given sample. Each tree contains three types of nodes: (1) rule nodes that perform simple validation checks (e.g., format or range), (2) Graph Neural Network (GNN) nodes that capture complex patterns (e.g., functional dependencies), and (3) leaf nodes that output the final decision types (error or clean). Furthermore, ForestED employs uncertainty-based sampling to obtain multiple row subsets, constructing a decision tree for each subset using TreeED. It then leverages an Expectation-Maximization-based algorithm that jointly estimates tree reliability and optimizes the consensus ED prediction. Extensive xperiments demonstrate that our methods are accurate, explainable and robust, achieving an average F1-score improvement of 16.1% over the best baseline.

  • 7 authors
·
Dec 8, 2025