new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

Group Generalized Mean Pooling for Vision Transformer

Vision Transformer (ViT) extracts the final representation from either class token or an average of all patch tokens, following the architecture of Transformer in Natural Language Processing (NLP) or Convolutional Neural Networks (CNNs) in computer vision. However, studies for the best way of aggregating the patch tokens are still limited to average pooling, while widely-used pooling strategies, such as max and GeM pooling, can be considered. Despite their effectiveness, the existing pooling strategies do not consider the architecture of ViT and the channel-wise difference in the activation maps, aggregating the crucial and trivial channels with the same importance. In this paper, we present Group Generalized Mean (GGeM) pooling as a simple yet powerful pooling strategy for ViT. GGeM divides the channels into groups and computes GeM pooling with a shared pooling parameter per group. As ViT groups the channels via a multi-head attention mechanism, grouping the channels by GGeM leads to lower head-wise dependence while amplifying important channels on the activation maps. Exploiting GGeM shows 0.1%p to 0.7%p performance boosts compared to the baselines and achieves state-of-the-art performance for ViT-Base and ViT-Large models in ImageNet-1K classification task. Moreover, GGeM outperforms the existing pooling strategies on image retrieval and multi-modal representation learning tasks, demonstrating the superiority of GGeM for a variety of tasks. GGeM is a simple algorithm in that only a few lines of code are necessary for implementation.

  • 7 authors
·
Dec 8, 2022

Robustifying Token Attention for Vision Transformers

Despite the success of vision transformers (ViTs), they still suffer from significant drops in accuracy in the presence of common corruptions, such as noise or blur. Interestingly, we observe that the attention mechanism of ViTs tends to rely on few important tokens, a phenomenon we call token overfocusing. More critically, these tokens are not robust to corruptions, often leading to highly diverging attention patterns. In this paper, we intend to alleviate this overfocusing issue and make attention more stable through two general techniques: First, our Token-aware Average Pooling (TAP) module encourages the local neighborhood of each token to take part in the attention mechanism. Specifically, TAP learns average pooling schemes for each token such that the information of potentially important tokens in the neighborhood can adaptively be taken into account. Second, we force the output tokens to aggregate information from a diverse set of input tokens rather than focusing on just a few by using our Attention Diversification Loss (ADL). We achieve this by penalizing high cosine similarity between the attention vectors of different tokens. In experiments, we apply our methods to a wide range of transformer architectures and improve robustness significantly. For example, we improve corruption robustness on ImageNet-C by 2.4% while simultaneously improving accuracy by 0.4% based on state-of-the-art robust architecture FAN. Also, when finetuning on semantic segmentation tasks, we improve robustness on CityScapes-C by 2.4% and ACDC by 3.1%.

  • 3 authors
·
Mar 20, 2023

EVE: Towards End-to-End Video Subtitle Extraction with Vision-Language Models

The advent of Large Vision-Language Models (LVLMs) has advanced the video-based tasks, such as video captioning and video understanding. Some previous research indicates that taking texts in videos as input can further improve the performance of video understanding. As a type of indispensable information in short videos or movies, subtitles can assist LVLMs to better understand videos. Most existing methods for video subtitle extraction are based on a multi-stage framework, handling each frame independently. They can hardly exploit the temporal information of videos. Although some LVLMs exhibit the robust OCR capability, predicting accurate timestamps for subtitle texts is still challenging. In this paper, we propose an End-to-end Video Subtitle Extraction method, called EVE, which consists of three modules: a vision encoder, an adapter module, and a large language model. To effectively compress the visual tokens from the vision encoder, we propose a novel adapter InterleavedVT to interleave two modalities. It contains a visual compressor and a textual region compressor. The proposed InterleavedVT exploits both the merits of average pooling and Q-Former in token compression. Taking the temporal information of videos into account, we introduce a sliding-window mechanism in the textual region compressor. To benchmark the video subtitle extraction task, we propose a large dataset ViSa including 2.5M videos. Extensive experiments on ViSa demonstrate that the proposed EVE can outperform existing open-sourced tools and LVLMs.

  • 7 authors
·
Mar 5

FlowTransformer: A Transformer Framework for Flow-based Network Intrusion Detection Systems

This paper presents the FlowTransformer framework, a novel approach for implementing transformer-based Network Intrusion Detection Systems (NIDSs). FlowTransformer leverages the strengths of transformer models in identifying the long-term behaviour and characteristics of networks, which are often overlooked by most existing NIDSs. By capturing these complex patterns in network traffic, FlowTransformer offers a flexible and efficient tool for researchers and practitioners in the cybersecurity community who are seeking to implement NIDSs using transformer-based models. FlowTransformer allows the direct substitution of various transformer components, including the input encoding, transformer, classification head, and the evaluation of these across any flow-based network dataset. To demonstrate the effectiveness and efficiency of the FlowTransformer framework, we utilise it to provide an extensive evaluation of various common transformer architectures, such as GPT 2.0 and BERT, on three commonly used public NIDS benchmark datasets. We provide results for accuracy, model size and speed. A key finding of our evaluation is that the choice of classification head has the most significant impact on the model performance. Surprisingly, Global Average Pooling, which is commonly used in text classification, performs very poorly in the context of NIDS. In addition, we show that model size can be reduced by over 50\%, and inference and training times improved, with no loss of accuracy, by making specific choices of input encoding and classification head instead of other commonly used alternatives.

  • 6 authors
·
Apr 28, 2023

LLaVolta: Efficient Multi-modal Models via Stage-wise Visual Context Compression

While significant advancements have been made in compressed representations for text embeddings in large language models (LLMs), the compression of visual tokens in large multi-modal models (LMMs) has remained a largely overlooked area. In this work, we present the study on the analysis of redundancy concerning visual tokens and efficient training within these models. Our initial experiments show that eliminating up to 70% of visual tokens at the testing stage by simply average pooling only leads to a minimal 3% reduction in visual question answering accuracy on the GQA benchmark, indicating significant redundancy in visual context. Addressing this, we introduce Visual Context Compressor, which reduces the number of visual tokens during training to enhance training efficiency without sacrificing performance. To minimize information loss caused by the compression on visual tokens while maintaining training efficiency, we develop LLaVolta as a lite training scheme. LLaVolta incorporates stage-wise visual context compression to progressively compress the visual tokens from heavily to lightly, and finally no compression at the end of training, yielding no loss of information when testing. Extensive experiments demonstrate that our approach enhances the performance of MLLMs in both image-language and video-language understanding, while also significantly cutting training costs. Code is available at https://github.com/Beckschen/LLaVolta

  • 6 authors
·
Jun 28, 2024

LM-SPT: LM-Aligned Semantic Distillation for Speech Tokenization

With the rapid progress of speech language models (SLMs), discrete speech tokens have emerged as a core interface between speech and text, enabling unified modeling across modalities. Recent speech tokenization approaches aim to isolate semantic information from low-level acoustics to better align with language models. In particular, previous methods use SSL teachers such as HuBERT to extract semantic representations, which are then distilled into a semantic quantizer to suppress acoustic redundancy as well as capture content-related latent structures. However, they still produce speech token sequences significantly longer than their textual counterparts, creating challenges for efficient speech-language modeling. Reducing the frame rate is a natural solution, but standard techniques, such as rigid average pooling across frames, can distort or dilute the semantic structure required for effective LM alignment. To address this, we propose LM-SPT, a speech tokenization method that introduces a novel semantic distillation. Instead of directly matching teacher and student features via pooling, we reconstruct speech solely from semantic tokens and minimize the discrepancy between the encoded representations of the original and reconstructed waveforms, obtained from a frozen automatic speech recognition (ASR) encoder. This indirect yet data-driven supervision enables the tokenizer to learn discrete units that are more semantically aligned with language models. LM-SPT further incorporates architectural improvements to the encoder and decoder for speech tokenization, and supports multiple frame rates, including 25Hz, 12.5Hz, and 6.25Hz. Experimental results show that LM-SPT achieves superior reconstruction fidelity compared to baselines, and that SLMs trained with LM-SPT tokens achieve competitive performances on speech-to-text and consistently outperform baselines on text-to-speech tasks.

  • 4 authors
·
Jun 20

InvGC: Robust Cross-Modal Retrieval by Inverse Graph Convolution

Over recent decades, significant advancements in cross-modal retrieval are mainly driven by breakthroughs in visual and linguistic modeling. However, a recent study shows that multi-modal data representations tend to cluster within a limited convex cone (as representation degeneration problem), which hinders retrieval performance due to the inseparability of these representations. In our study, we first empirically validate the presence of the representation degeneration problem across multiple cross-modal benchmarks and methods. Next, to address it, we introduce a novel method, called InvGC, a post-processing technique inspired by graph convolution and average pooling. Specifically, InvGC defines the graph topology within the datasets and then applies graph convolution in a subtractive manner. This method effectively separates representations by increasing the distances between data points. To improve the efficiency and effectiveness of InvGC, we propose an advanced graph topology, LocalAdj, which only aims to increase the distances between each data point and its nearest neighbors. To understand why InvGC works, we present a detailed theoretical analysis, proving that the lower bound of recall will be improved after deploying InvGC. Extensive empirical results show that InvGC and InvGC w/LocalAdj significantly mitigate the representation degeneration problem, thereby enhancing retrieval performance. Our code is available at https://github.com/yimuwangcs/Better_Cross_Modal_Retrieval

  • 2 authors
·
Oct 20, 2023