new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 9

What Should Data Science Education Do with Large Language Models?

The rapid advances of large language models (LLMs), such as ChatGPT, are revolutionizing data science and statistics. These state-of-the-art tools can streamline complex processes. As a result, it reshapes the role of data scientists. We argue that LLMs are transforming the responsibilities of data scientists, shifting their focus from hands-on coding, data-wrangling and conducting standard analyses to assessing and managing analyses performed by these automated AIs. This evolution of roles is reminiscent of the transition from a software engineer to a product manager. We illustrate this transition with concrete data science case studies using LLMs in this paper. These developments necessitate a meaningful evolution in data science education. Pedagogy must now place greater emphasis on cultivating diverse skillsets among students, such as LLM-informed creativity, critical thinking, AI-guided programming. LLMs can also play a significant role in the classroom as interactive teaching and learning tools, contributing to personalized education. This paper discusses the opportunities, resources and open challenges for each of these directions. As with any transformative technology, integrating LLMs into education calls for careful consideration. While LLMs can perform repetitive tasks efficiently, it's crucial to remember that their role is to supplement human intelligence and creativity, not to replace it. Therefore, the new era of data science education should balance the benefits of LLMs while fostering complementary human expertise and innovations. In conclusion, the rise of LLMs heralds a transformative period for data science and its education. This paper seeks to shed light on the emerging trends, potential opportunities, and challenges accompanying this paradigm shift, hoping to spark further discourse and investigation into this exciting, uncharted territory.

  • 4 authors
·
Jul 6, 2023

AIssistant: An Agentic Approach for Human--AI Collaborative Scientific Work on Reviews and Perspectives in Machine Learning

Advances in AI-assisted research have introduced powerful tools for literature retrieval, hypothesis generation, experimentation, and manuscript preparation. However, systems remain fragmented and lack human-centred workflows. To address these gaps, we introduce AIssistant, an agentic, open-source Human-AI collaborative framework designed to simplify the end-to-end creation of scientific workflows. Since our development is still in an early stage, we present here the first experiments with AIssistant for perspective and review research papers in machine learning. Our system integrates modular tools and agents for literature synthesis, section-wise experimentation, citation management, and automatic LaTeX paper text generation, while maintaining human oversight at every stage to ensure accuracy, coherence, and scholarly rigour. We conducted a comprehensive evaluation across three layers: (1) Independent Human Review, following NeurIPS double-blind standards; (2) Automated LLM Review, using GPT-5 as a scalable human review proxy; and (3) Program Chair Oversight, where the chair monitors the entire review process and makes final validation and acceptance decisions. The results demonstrate that AIssistant improves drafting efficiency and thematic consistency. Nonetheless, Human-AI collaboration remains essential for maintaining factual correctness, methodological soundness, and ethical compliance. Despite its effectiveness, we identify key limitations, including hallucinated citations, difficulty adapting to dynamic paper structures, and incomplete integration of multimodal content.

  • 4 authors
·
Sep 14

From Code Foundation Models to Agents and Applications: A Practical Guide to Code Intelligence

Large language models (LLMs) have fundamentally transformed automated software development by enabling direct translation of natural language descriptions into functional code, driving commercial adoption through tools like Github Copilot (Microsoft), Cursor (Anysphere), Trae (ByteDance), and Claude Code (Anthropic). While the field has evolved dramatically from rule-based systems to Transformer-based architectures, achieving performance improvements from single-digit to over 95\% success rates on benchmarks like HumanEval. In this work, we provide a comprehensive synthesis and practical guide (a series of analytic and probing experiments) about code LLMs, systematically examining the complete model life cycle from data curation to post-training through advanced prompting paradigms, code pre-training, supervised fine-tuning, reinforcement learning, and autonomous coding agents. We analyze the code capability of the general LLMs (GPT-4, Claude, LLaMA) and code-specialized LLMs (StarCoder, Code LLaMA, DeepSeek-Coder, and QwenCoder), critically examining the techniques, design decisions, and trade-offs. Further, we articulate the research-practice gap between academic research (e.g., benchmarks and tasks) and real-world deployment (e.g., software-related code tasks), including code correctness, security, contextual awareness of large codebases, and integration with development workflows, and map promising research directions to practical needs. Last, we conduct a series of experiments to provide a comprehensive analysis of code pre-training, supervised fine-tuning, and reinforcement learning, covering scaling law, framework selection, hyperparameter sensitivity, model architectures, and dataset comparisons.

AutoDev: Automated AI-Driven Development

The landscape of software development has witnessed a paradigm shift with the advent of AI-powered assistants, exemplified by GitHub Copilot. However, existing solutions are not leveraging all the potential capabilities available in an IDE such as building, testing, executing code, git operations, etc. Therefore, they are constrained by their limited capabilities, primarily focusing on suggesting code snippets and file manipulation within a chat-based interface. To fill this gap, we present AutoDev, a fully automated AI-driven software development framework, designed for autonomous planning and execution of intricate software engineering tasks. AutoDev enables users to define complex software engineering objectives, which are assigned to AutoDev's autonomous AI Agents to achieve. These AI agents can perform diverse operations on a codebase, including file editing, retrieval, build processes, execution, testing, and git operations. They also have access to files, compiler output, build and testing logs, static analysis tools, and more. This enables the AI Agents to execute tasks in a fully automated manner with a comprehensive understanding of the contextual information required. Furthermore, AutoDev establishes a secure development environment by confining all operations within Docker containers. This framework incorporates guardrails to ensure user privacy and file security, allowing users to define specific permitted or restricted commands and operations within AutoDev. In our evaluation, we tested AutoDev on the HumanEval dataset, obtaining promising results with 91.5% and 87.8% of Pass@1 for code generation and test generation respectively, demonstrating its effectiveness in automating software engineering tasks while maintaining a secure and user-controlled development environment.

  • 5 authors
·
Mar 13, 2024

AutoIOT: LLM-Driven Automated Natural Language Programming for AIoT Applications

The advent of Large Language Models (LLMs) has profoundly transformed our lives, revolutionizing interactions with AI and lowering the barrier to AI usage. While LLMs are primarily designed for natural language interaction, the extensive embedded knowledge empowers them to comprehend digital sensor data. This capability enables LLMs to engage with the physical world through IoT sensors and actuators, performing a myriad of AIoT tasks. Consequently, this evolution triggers a paradigm shift in conventional AIoT application development, democratizing its accessibility to all by facilitating the design and development of AIoT applications via natural language. However, some limitations need to be addressed to unlock the full potential of LLMs in AIoT application development. First, existing solutions often require transferring raw sensor data to LLM servers, which raises privacy concerns, incurs high query fees, and is limited by token size. Moreover, the reasoning processes of LLMs are opaque to users, making it difficult to verify the robustness and correctness of inference results. This paper introduces AutoIOT, an LLM-based automated program generator for AIoT applications. AutoIOT enables users to specify their requirements using natural language (input) and automatically synthesizes interpretable programs with documentation (output). AutoIOT automates the iterative optimization to enhance the quality of generated code with minimum user involvement. AutoIOT not only makes the execution of AIoT tasks more explainable but also mitigates privacy concerns and reduces token costs with local execution of synthesized programs. Extensive experiments and user studies demonstrate AutoIOT's remarkable capability in program synthesis for various AIoT tasks. The synthesized programs can match and even outperform some representative baselines.

  • 4 authors
·
Mar 7

Securing AI Agents: Implementing Role-Based Access Control for Industrial Applications

The emergence of Large Language Models (LLMs) has significantly advanced solutions across various domains, from political science to software development. However, these models are constrained by their training data, which is static and limited to information available up to a specific date. Additionally, their generalized nature often necessitates fine-tuning -- whether for classification or instructional purposes -- to effectively perform specific downstream tasks. AI agents, leveraging LLMs as their core, mitigate some of these limitations by accessing external tools and real-time data, enabling applications such as live weather reporting and data analysis. In industrial settings, AI agents are transforming operations by enhancing decision-making, predictive maintenance, and process optimization. For example, in manufacturing, AI agents enable near-autonomous systems that boost productivity and support real-time decision-making. Despite these advancements, AI agents remain vulnerable to security threats, including prompt injection attacks, which pose significant risks to their integrity and reliability. To address these challenges, this paper proposes a framework for integrating Role-Based Access Control (RBAC) into AI agents, providing a robust security guardrail. This framework aims to support the effective and scalable deployment of AI agents, with a focus on on-premises implementations.

  • 1 authors
·
Sep 14

You Only Look at Screens: Multimodal Chain-of-Action Agents

Autonomous user interface (UI) agents aim to facilitate task automation by interacting with the user interface without manual intervention. Recent studies have investigated eliciting the capabilities of large language models (LLMs) for effective engagement in diverse environments. To align with the input-output requirement of LLMs, existing approaches are developed under a sandbox setting where they rely on external tools and application-specific APIs to parse the environment into textual elements and interpret the predicted actions. Consequently, those approaches often grapple with inference inefficiency and error propagation risks. To mitigate the challenges, we introduce Auto-UI, a multimodal solution that directly interacts with the interface, bypassing the need for environment parsing or reliance on application-dependent APIs. Moreover, we propose a chain-of-action technique -- leveraging a series of intermediate previous action histories and future action plans -- to help the agent decide what action to execute. We evaluate our approach on a new device-control benchmark AITW with 30K unique instructions, spanning multi-step tasks such as application operation, web searching, and web shopping. Experimental results show that Auto-UI achieves state-of-the-art performance with an action type prediction accuracy of 90% and an overall action success rate of 74%. Code is publicly available at https://github.com/cooelf/Auto-UI.

  • 2 authors
·
Sep 20, 2023

AI for Service: Proactive Assistance with AI Glasses

In an era where AI is evolving from a passive tool into an active and adaptive companion, we introduce AI for Service (AI4Service), a new paradigm that enables proactive and real-time assistance in daily life. Existing AI services remain largely reactive, responding only to explicit user commands. We argue that a truly intelligent and helpful assistant should be capable of anticipating user needs and taking actions proactively when appropriate. To realize this vision, we propose Alpha-Service, a unified framework that addresses two fundamental challenges: Know When to intervene by detecting service opportunities from egocentric video streams, and Know How to provide both generalized and personalized services. Inspired by the von Neumann computer architecture and based on AI glasses, Alpha-Service consists of five key components: an Input Unit for perception, a Central Processing Unit for task scheduling, an Arithmetic Logic Unit for tool utilization, a Memory Unit for long-term personalization, and an Output Unit for natural human interaction. As an initial exploration, we implement Alpha-Service through a multi-agent system deployed on AI glasses. Case studies, including a real-time Blackjack advisor, a museum tour guide, and a shopping fit assistant, demonstrate its ability to seamlessly perceive the environment, infer user intent, and provide timely and useful assistance without explicit prompts.

AI Agents vs. Agentic AI: A Conceptual Taxonomy, Applications and Challenge

This study critically distinguishes between AI Agents and Agentic AI, offering a structured conceptual taxonomy, application mapping, and challenge analysis to clarify their divergent design philosophies and capabilities. We begin by outlining the search strategy and foundational definitions, characterizing AI Agents as modular systems driven by Large Language Models (LLMs) and Large Image Models (LIMs) for narrow, task-specific automation. Generative AI is positioned as a precursor, with AI Agents advancing through tool integration, prompt engineering, and reasoning enhancements. In contrast, Agentic AI systems represent a paradigmatic shift marked by multi-agent collaboration, dynamic task decomposition, persistent memory, and orchestrated autonomy. Through a sequential evaluation of architectural evolution, operational mechanisms, interaction styles, and autonomy levels, we present a comparative analysis across both paradigms. Application domains such as customer support, scheduling, and data summarization are contrasted with Agentic AI deployments in research automation, robotic coordination, and medical decision support. We further examine unique challenges in each paradigm including hallucination, brittleness, emergent behavior, and coordination failure and propose targeted solutions such as ReAct loops, RAG, orchestration layers, and causal modeling. This work aims to provide a definitive roadmap for developing robust, scalable, and explainable AI agent and Agentic AI-driven systems. >AI Agents, Agent-driven, Vision-Language-Models, Agentic AI Decision Support System, Agentic-AI Applications

  • 3 authors
·
May 15 2

Unfolding AIS transmission behavior for vessel movement modeling on noisy data leveraging machine learning

The oceans are a source of an impressive mixture of complex data that could be used to uncover relationships yet to be discovered. Such data comes from the oceans and their surface, such as Automatic Identification System (AIS) messages used for tracking vessels' trajectories. AIS messages are transmitted over radio or satellite at ideally periodic time intervals but vary irregularly over time. As such, this paper aims to model the AIS message transmission behavior through neural networks for forecasting upcoming AIS messages' content from multiple vessels, particularly in a simultaneous approach despite messages' temporal irregularities as outliers. We present a set of experiments comprising multiple algorithms for forecasting tasks with horizon sizes of varying lengths. Deep learning models (e.g., neural networks) revealed themselves to adequately preserve vessels' spatial awareness regardless of temporal irregularity. We show how convolutional layers, feed-forward networks, and recurrent neural networks can improve such tasks by working together. Experimenting with short, medium, and large-sized sequences of messages, our model achieved 36/37/38% of the Relative Percentage Difference - the lower, the better, whereas we observed 92/45/96% on the Elman's RNN, 51/52/40% on the GRU, and 129/98/61% on the LSTM. These results support our model as a driver for improving the prediction of vessel routes when analyzing multiple vessels of diverging types simultaneously under temporally noise data.

  • 4 authors
·
Feb 24, 2022

AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML

Automated machine learning (AutoML) accelerates AI development by automating tasks in the development pipeline, such as optimal model search and hyperparameter tuning. Existing AutoML systems often require technical expertise to set up complex tools, which is in general time-consuming and requires a large amount of human effort. Therefore, recent works have started exploiting large language models (LLM) to lessen such burden and increase the usability of AutoML frameworks via a natural language interface, allowing non-expert users to build their data-driven solutions. These methods, however, are usually designed only for a particular process in the AI development pipeline and do not efficiently use the inherent capacity of the LLMs. This paper proposes AutoML-Agent, a novel multi-agent framework tailored for full-pipeline AutoML, i.e., from data retrieval to model deployment. AutoML-Agent takes user's task descriptions, facilitates collaboration between specialized LLM agents, and delivers deployment-ready models. Unlike existing work, instead of devising a single plan, we introduce a retrieval-augmented planning strategy to enhance exploration to search for more optimal plans. We also decompose each plan into sub-tasks (e.g., data preprocessing and neural network design) each of which is solved by a specialized agent we build via prompting executing in parallel, making the search process more efficient. Moreover, we propose a multi-stage verification to verify executed results and guide the code generation LLM in implementing successful solutions. Extensive experiments on seven downstream tasks using fourteen datasets show that AutoML-Agent achieves a higher success rate in automating the full AutoML process, yielding systems with good performance throughout the diverse domains.

  • 3 authors
·
Oct 3, 2024

Defining and Detecting the Defects of the Large Language Model-based Autonomous Agents

AI agents are systems capable of perceiving their environment, autonomously planning and executing tasks. Recent advancements in LLM have introduced a transformative paradigm for AI agents, enabling them to interact with external resources and tools through prompts. In such agents, the workflow integrates developer-written code, which manages framework construction and logic control, with LLM-generated natural language that enhances dynamic decision-making and interaction. However, discrepancies between developer-implemented logic and the dynamically generated content of LLMs in terms of behavior and expected outcomes can lead to defects, such as tool invocation failures and task execution errors. These issues introduce specific risks, leading to various defects in LLM-based AI Agents, such as service interruptions. Despite the importance of these issues, there is a lack of systematic work that focuses on analyzing LLM-based AI Agents to uncover defects in their code. In this paper, we present the first study focused on identifying and detecting defects in LLM Agents. We collected and analyzed 6,854 relevant posts from StackOverflow to define 8 types of agent defects. For each type, we provided detailed descriptions with an example. Then, we designed a static analysis tool, named Agentable, to detect the defects. Agentable leverages Code Property Graphs and LLMs to analyze Agent workflows by efficiently identifying specific code patterns and analyzing natural language descriptions. To evaluate Agentable, we constructed two datasets: AgentSet, consists of 84 real-world Agents, and AgentTest, which contains 78 Agents specifically designed to include various types of defects. Our results show that Agentable achieved an overall accuracy of 88.79% and a recall rate of 91.03%. Furthermore, our analysis reveals the 889 defects of the AgentSet, highlighting the prevalence of these defects.

  • 8 authors
·
Dec 24, 2024

OS Agents: A Survey on MLLM-based Agents for General Computing Devices Use

The dream to create AI assistants as capable and versatile as the fictional J.A.R.V.I.S from Iron Man has long captivated imaginations. With the evolution of (multi-modal) large language models ((M)LLMs), this dream is closer to reality, as (M)LLM-based Agents using computing devices (e.g., computers and mobile phones) by operating within the environments and interfaces (e.g., Graphical User Interface (GUI)) provided by operating systems (OS) to automate tasks have significantly advanced. This paper presents a comprehensive survey of these advanced agents, designated as OS Agents. We begin by elucidating the fundamentals of OS Agents, exploring their key components including the environment, observation space, and action space, and outlining essential capabilities such as understanding, planning, and grounding. We then examine methodologies for constructing OS Agents, focusing on domain-specific foundation models and agent frameworks. A detailed review of evaluation protocols and benchmarks highlights how OS Agents are assessed across diverse tasks. Finally, we discuss current challenges and identify promising directions for future research, including safety and privacy, personalization and self-evolution. This survey aims to consolidate the state of OS Agents research, providing insights to guide both academic inquiry and industrial development. An open-source GitHub repository is maintained as a dynamic resource to foster further innovation in this field. We present a 9-page version of our work, accepted by ACL 2025, to provide a concise overview to the domain.

AIGS: Generating Science from AI-Powered Automated Falsification

Rapid development of artificial intelligence has drastically accelerated the development of scientific discovery. Trained with large-scale observation data, deep neural networks extract the underlying patterns in an end-to-end manner and assist human researchers with highly-precised predictions in unseen scenarios. The recent rise of Large Language Models (LLMs) and the empowered autonomous agents enable scientists to gain help through interaction in different stages of their research, including but not limited to literature review, research ideation, idea implementation, and academic writing. However, AI researchers instantiated by foundation model empowered agents with full-process autonomy are still in their infancy. In this paper, we study AI-Generated Science (AIGS), where agents independently and autonomously complete the entire research process and discover scientific laws. By revisiting the definition of scientific research, we argue that falsification is the essence of both human research process and the design of an AIGS system. Through the lens of falsification, prior systems attempting towards AI-Generated Science either lack the part in their design, or rely heavily on existing verification engines that narrow the use in specialized domains. In this work, we propose Baby-AIGS as a baby-step demonstration of a full-process AIGS system, which is a multi-agent system with agents in roles representing key research process. By introducing FalsificationAgent, which identify and then verify possible scientific discoveries, we empower the system with explicit falsification. Experiments on three tasks preliminarily show that Baby-AIGS could produce meaningful scientific discoveries, though not on par with experienced human researchers. Finally, we discuss on the limitations of current Baby-AIGS, actionable insights, and related ethical issues in detail.

  • 8 authors
·
Nov 17, 2024

Feedback-Based Self-Learning in Large-Scale Conversational AI Agents

Today, most large-scale conversational AI agents (e.g. Alexa, Siri, or Google Assistant) are built using manually annotated data to train the different components of the system. Typically, the accuracy of the ML models in these components are improved by manually transcribing and annotating data. As the scope of these systems increase to cover more scenarios and domains, manual annotation to improve the accuracy of these components becomes prohibitively costly and time consuming. In this paper, we propose a system that leverages user-system interaction feedback signals to automate learning without any manual annotation. Users here tend to modify a previous query in hopes of fixing an error in the previous turn to get the right results. These reformulations, which are often preceded by defective experiences caused by errors in ASR, NLU, ER or the application. In some cases, users may not properly formulate their requests (e.g. providing partial title of a song), but gleaning across a wider pool of users and sessions reveals the underlying recurrent patterns. Our proposed self-learning system automatically detects the errors, generate reformulations and deploys fixes to the runtime system to correct different types of errors occurring in different components of the system. In particular, we propose leveraging an absorbing Markov Chain model as a collaborative filtering mechanism in a novel attempt to mine these patterns. We show that our approach is highly scalable, and able to learn reformulations that reduce Alexa-user errors by pooling anonymized data across millions of customers. The proposed self-learning system achieves a win/loss ratio of 11.8 and effectively reduces the defect rate by more than 30% on utterance level reformulations in our production A/B tests. To the best of our knowledge, this is the first self-learning large-scale conversational AI system in production.

  • 4 authors
·
Nov 6, 2019

Automatically Detecting Online Deceptive Patterns

Deceptive patterns in digital interfaces manipulate users into making unintended decisions, exploiting cognitive biases and psychological vulnerabilities. These patterns have become ubiquitous on various digital platforms. While efforts to mitigate deceptive patterns have emerged from legal and technical perspectives, a significant gap remains in creating usable and scalable solutions. We introduce our AutoBot framework to address this gap and help web stakeholders navigate and mitigate online deceptive patterns. AutoBot accurately identifies and localizes deceptive patterns from a screenshot of a website without relying on the underlying HTML code. AutoBot employs a two-stage pipeline that leverages the capabilities of specialized vision models to analyze website screenshots, identify interactive elements, and extract textual features. Next, using a large language model, AutoBot understands the context surrounding these elements to determine the presence of deceptive patterns. We also use AutoBot, to create a synthetic dataset to distill knowledge from 'teacher' LLMs to smaller language models. Through extensive evaluation, we demonstrate AutoBot's effectiveness in detecting deceptive patterns on the web, achieving an F1-score of 0.93 when detecting deceptive patterns, underscoring its potential as an essential tool for mitigating online deceptive patterns. We implement AutoBot, across three downstream applications targeting different web stakeholders: (1) a local browser extension providing users with real-time feedback, (2) a Lighthouse audit to inform developers of potential deceptive patterns on their sites, and (3) as a measurement tool designed for researchers and regulators.

  • 5 authors
·
Nov 11, 2024

Barbarians at the Gate: How AI is Upending Systems Research

Artificial Intelligence (AI) is starting to transform the research process as we know it by automating the discovery of new solutions. Given a task, the typical AI-driven approach is (i) to generate a set of diverse solutions, and then (ii) to verify these solutions and select one that solves the problem. Crucially, this approach assumes the existence of a reliable verifier, i.e., one that can accurately determine whether a solution solves the given problem. We argue that systems research, long focused on designing and evaluating new performance-oriented algorithms, is particularly well-suited for AI-driven solution discovery. This is because system performance problems naturally admit reliable verifiers: solutions are typically implemented in real systems or simulators, and verification reduces to running these software artifacts against predefined workloads and measuring performance. We term this approach as AI-Driven Research for Systems (ADRS), which iteratively generates, evaluates, and refines solutions. Using penEvolve, an existing open-source ADRS instance, we present case studies across diverse domains, including load balancing for multi-region cloud scheduling, Mixture-of-Experts inference, LLM-based SQL queries, and transaction scheduling. In multiple instances, ADRS discovers algorithms that outperform state-of-the-art human designs (e.g., achieving up to 5.0x runtime improvements or 50% cost reductions). We distill best practices for guiding algorithm evolution, from prompt design to evaluator construction, for existing frameworks. We then discuss the broader implications for the systems community: as AI assumes a central role in algorithm design, we argue that human researchers will increasingly focus on problem formulation and strategic guidance. Our results highlight both the disruptive potential and the urgent need to adapt systems research practices in the age of AI.

LABIIUM: AI-Enhanced Zero-configuration Measurement Automation System

The complexity of laboratory environments requires solutions that simplify instrument interaction and enhance measurement automation. Traditional tools often require configuration, software, and programming skills, creating barriers to productivity. Previous approaches, including dedicated software suites and custom scripts, frequently fall short in providing user-friendly solutions that align with programming practices. We present LABIIUM, an AI-enhanced, zero-configuration measurement automation system designed to streamline experimental workflows and improve user productivity. LABIIUM integrates an AI assistant powered by Large Language Models (LLMs) to generate code. LABIIUM's Lab-Automation-Measurement Bridges (LAMBs) enable seamless instrument connectivity using standard tools such as VSCode and Python, eliminating setup overhead. To demonstrate its capabilities, we conducted experiments involving the measurement of the parametric transfer curve of a simple two-transistor inverting amplifier with a current source load. The AI assistant was evaluated using different prompt scenarios and compared with multiple models, including Claude Sonnet 3.5, Gemini Pro 1.5, and GPT-4o. An expert solution implementing the Gradient-Weighted Adaptive Stochastic Sampling (GWASS) method was used as a baseline. The solutions generated by the AI assistant were compared with the expert solution and a uniform linear sweep baseline with 10,000 points. The graph results show that the LLMs were able to successfully complete the most basic uniform sweep, but LLMs were unable to develop adaptive sweeping algorithms to compete with GWASS. The evaluation underscores LABIIUM's ability to enhance laboratory productivity and support digital transformation in research and industry, and emphasizes the future work required to improve LLM performance in Electronic Measurement Science Tasks.

  • 2 authors
·
Dec 6, 2024

Jr. AI Scientist and Its Risk Report: Autonomous Scientific Exploration from a Baseline Paper

Understanding the current capabilities and risks of AI Scientist systems is essential for ensuring trustworthy and sustainable AI-driven scientific progress while preserving the integrity of the academic ecosystem. To this end, we develop Jr. AI Scientist, a state-of-the-art autonomous AI scientist system that mimics the core research workflow of a novice student researcher: Given the baseline paper from the human mentor, it analyzes its limitations, formulates novel hypotheses for improvement, validates them through rigorous experimentation, and writes a paper with the results. Unlike previous approaches that assume full automation or operate on small-scale code, Jr. AI Scientist follows a well-defined research workflow and leverages modern coding agents to handle complex, multi-file implementations, leading to scientifically valuable contributions. For evaluation, we conducted automated assessments using AI Reviewers, author-led evaluations, and submissions to Agents4Science, a venue dedicated to AI-driven scientific contributions. The findings demonstrate that Jr. AI Scientist generates papers receiving higher review scores than existing fully automated systems. Nevertheless, we identify important limitations from both the author evaluation and the Agents4Science reviews, indicating the potential risks of directly applying current AI Scientist systems and key challenges for future research. Finally, we comprehensively report various risks identified during development. We hope these insights will deepen understanding of current progress and risks in AI Scientist development.

A Comprehensive Survey of Deep Research: Systems, Methodologies, and Applications

This survey examines the rapidly evolving field of Deep Research systems -- AI-powered applications that automate complex research workflows through the integration of large language models, advanced information retrieval, and autonomous reasoning capabilities. We analyze more than 80 commercial and non-commercial implementations that have emerged since 2023, including OpenAI/Deep Research, Gemini/Deep Research, Perplexity/Deep Research, and numerous open-source alternatives. Through comprehensive examination, we propose a novel hierarchical taxonomy that categorizes systems according to four fundamental technical dimensions: foundation models and reasoning engines, tool utilization and environmental interaction, task planning and execution control, and knowledge synthesis and output generation. We explore the architectural patterns, implementation approaches, and domain-specific adaptations that characterize these systems across academic, scientific, business, and educational applications. Our analysis reveals both the significant capabilities of current implementations and the technical and ethical challenges they present regarding information accuracy, privacy, intellectual property, and accessibility. The survey concludes by identifying promising research directions in advanced reasoning architectures, multimodal integration, domain specialization, human-AI collaboration, and ecosystem standardization that will likely shape the future evolution of this transformative technology. By providing a comprehensive framework for understanding Deep Research systems, this survey contributes to both the theoretical understanding of AI-augmented knowledge work and the practical development of more capable, responsible, and accessible research technologies. The paper resources can be viewed at https://github.com/scienceaix/deepresearch.

  • 2 authors
·
Jun 14

Towards Trustworthy Machine Learning in Production: An Overview of the Robustness in MLOps Approach

Artificial intelligence (AI), and especially its sub-field of Machine Learning (ML), are impacting the daily lives of everyone with their ubiquitous applications. In recent years, AI researchers and practitioners have introduced principles and guidelines to build systems that make reliable and trustworthy decisions. From a practical perspective, conventional ML systems process historical data to extract the features that are consequently used to train ML models that perform the desired task. However, in practice, a fundamental challenge arises when the system needs to be operationalized and deployed to evolve and operate in real-life environments continuously. To address this challenge, Machine Learning Operations (MLOps) have emerged as a potential recipe for standardizing ML solutions in deployment. Although MLOps demonstrated great success in streamlining ML processes, thoroughly defining the specifications of robust MLOps approaches remains of great interest to researchers and practitioners. In this paper, we provide a comprehensive overview of the trustworthiness property of MLOps systems. Specifically, we highlight technical practices to achieve robust MLOps systems. In addition, we survey the existing research approaches that address the robustness aspects of ML systems in production. We also review the tools and software available to build MLOps systems and summarize their support to handle the robustness aspects. Finally, we present the open challenges and propose possible future directions and opportunities within this emerging field. The aim of this paper is to provide researchers and practitioners working on practical AI applications with a comprehensive view to adopt robust ML solutions in production environments.

  • 2 authors
·
Oct 28, 2024

AI4Research: A Survey of Artificial Intelligence for Scientific Research

Recent advancements in artificial intelligence (AI), particularly in large language models (LLMs) such as OpenAI-o1 and DeepSeek-R1, have demonstrated remarkable capabilities in complex domains such as logical reasoning and experimental coding. Motivated by these advancements, numerous studies have explored the application of AI in the innovation process, particularly in the context of scientific research. These AI technologies primarily aim to develop systems that can autonomously conduct research processes across a wide range of scientific disciplines. Despite these significant strides, a comprehensive survey on AI for Research (AI4Research) remains absent, which hampers our understanding and impedes further development in this field. To address this gap, we present a comprehensive survey and offer a unified perspective on AI4Research. Specifically, the main contributions of our work are as follows: (1) Systematic taxonomy: We first introduce a systematic taxonomy to classify five mainstream tasks in AI4Research. (2) New frontiers: Then, we identify key research gaps and highlight promising future directions, focusing on the rigor and scalability of automated experiments, as well as the societal impact. (3) Abundant applications and resources: Finally, we compile a wealth of resources, including relevant multidisciplinary applications, data corpora, and tools. We hope our work will provide the research community with quick access to these resources and stimulate innovative breakthroughs in AI4Research.

  • 16 authors
·
Jul 2

HAICOSYSTEM: An Ecosystem for Sandboxing Safety Risks in Human-AI Interactions

AI agents are increasingly autonomous in their interactions with human users and tools, leading to increased interactional safety risks. We present HAICOSYSTEM, a framework examining AI agent safety within diverse and complex social interactions. HAICOSYSTEM features a modular sandbox environment that simulates multi-turn interactions between human users and AI agents, where the AI agents are equipped with a variety of tools (e.g., patient management platforms) to navigate diverse scenarios (e.g., a user attempting to access other patients' profiles). To examine the safety of AI agents in these interactions, we develop a comprehensive multi-dimensional evaluation framework that uses metrics covering operational, content-related, societal, and legal risks. Through running 1840 simulations based on 92 scenarios across seven domains (e.g., healthcare, finance, education), we demonstrate that HAICOSYSTEM can emulate realistic user-AI interactions and complex tool use by AI agents. Our experiments show that state-of-the-art LLMs, both proprietary and open-sourced, exhibit safety risks in over 50\% cases, with models generally showing higher risks when interacting with simulated malicious users. Our findings highlight the ongoing challenge of building agents that can safely navigate complex interactions, particularly when faced with malicious users. To foster the AI agent safety ecosystem, we release a code platform that allows practitioners to create custom scenarios, simulate interactions, and evaluate the safety and performance of their agents.

  • 12 authors
·
Sep 24, 2024

SmartFlow: Robotic Process Automation using LLMs

Robotic Process Automation (RPA) systems face challenges in handling complex processes and diverse screen layouts that require advanced human-like decision-making capabilities. These systems typically rely on pixel-level encoding through drag-and-drop or automation frameworks such as Selenium to create navigation workflows, rather than visual understanding of screen elements. In this context, we present SmartFlow, an AI-based RPA system that uses pre-trained large language models (LLMs) coupled with deep-learning based image understanding. Our system can adapt to new scenarios, including changes in the user interface and variations in input data, without the need for human intervention. SmartFlow uses computer vision and natural language processing to perceive visible elements on the graphical user interface (GUI) and convert them into a textual representation. This information is then utilized by LLMs to generate a sequence of actions that are executed by a scripting engine to complete an assigned task. To assess the effectiveness of SmartFlow, we have developed a dataset that includes a set of generic enterprise applications with diverse layouts, which we are releasing for research use. Our evaluations on this dataset demonstrate that SmartFlow exhibits robustness across different layouts and applications. SmartFlow can automate a wide range of business processes such as form filling, customer service, invoice processing, and back-office operations. SmartFlow can thus assist organizations in enhancing productivity by automating an even larger fraction of screen-based workflows. The demo-video and dataset are available at https://smartflow-4c5a0a.webflow.io/.

  • 5 authors
·
May 21, 2024

Clio: Privacy-Preserving Insights into Real-World AI Use

How are AI assistants being used in the real world? While model providers in theory have a window into this impact via their users' data, both privacy concerns and practical challenges have made analyzing this data difficult. To address these issues, we present Clio (Claude insights and observations), a privacy-preserving platform that uses AI assistants themselves to analyze and surface aggregated usage patterns across millions of conversations, without the need for human reviewers to read raw conversations. We validate this can be done with a high degree of accuracy and privacy by conducting extensive evaluations. We demonstrate Clio's usefulness in two broad ways. First, we share insights about how models are being used in the real world from one million Claude.ai Free and Pro conversations, ranging from providing advice on hairstyles to providing guidance on Git operations and concepts. We also identify the most common high-level use cases on Claude.ai (coding, writing, and research tasks) as well as patterns that differ across languages (e.g., conversations in Japanese discuss elder care and aging populations at higher-than-typical rates). Second, we use Clio to make our systems safer by identifying coordinated attempts to abuse our systems, monitoring for unknown unknowns during critical periods like launches of new capabilities or major world events, and improving our existing monitoring systems. We also discuss the limitations of our approach, as well as risks and ethical concerns. By enabling analysis of real-world AI usage, Clio provides a scalable platform for empirically grounded AI safety and governance.

  • 21 authors
·
Dec 18, 2024 1

A Survey of WebAgents: Towards Next-Generation AI Agents for Web Automation with Large Foundation Models

With the advancement of web techniques, they have significantly revolutionized various aspects of people's lives. Despite the importance of the web, many tasks performed on it are repetitive and time-consuming, negatively impacting overall quality of life. To efficiently handle these tedious daily tasks, one of the most promising approaches is to advance autonomous agents based on Artificial Intelligence (AI) techniques, referred to as AI Agents, as they can operate continuously without fatigue or performance degradation. In the context of the web, leveraging AI Agents -- termed WebAgents -- to automatically assist people in handling tedious daily tasks can dramatically enhance productivity and efficiency. Recently, Large Foundation Models (LFMs) containing billions of parameters have exhibited human-like language understanding and reasoning capabilities, showing proficiency in performing various complex tasks. This naturally raises the question: `Can LFMs be utilized to develop powerful AI Agents that automatically handle web tasks, providing significant convenience to users?' To fully explore the potential of LFMs, extensive research has emerged on WebAgents designed to complete daily web tasks according to user instructions, significantly enhancing the convenience of daily human life. In this survey, we comprehensively review existing research studies on WebAgents across three key aspects: architectures, training, and trustworthiness. Additionally, several promising directions for future research are explored to provide deeper insights.

  • 11 authors
·
Mar 30

Consent in Crisis: The Rapid Decline of the AI Data Commons

General-purpose artificial intelligence (AI) systems are built on massive swathes of public web data, assembled into corpora such as C4, RefinedWeb, and Dolma. To our knowledge, we conduct the first, large-scale, longitudinal audit of the consent protocols for the web domains underlying AI training corpora. Our audit of 14,000 web domains provides an expansive view of crawlable web data and how consent preferences to use it are changing over time. We observe a proliferation of AI-specific clauses to limit use, acute differences in restrictions on AI developers, as well as general inconsistencies between websites' expressed intentions in their Terms of Service and their robots.txt. We diagnose these as symptoms of ineffective web protocols, not designed to cope with the widespread re-purposing of the internet for AI. Our longitudinal analyses show that in a single year (2023-2024) there has been a rapid crescendo of data restrictions from web sources, rendering ~5%+ of all tokens in C4, or 28%+ of the most actively maintained, critical sources in C4, fully restricted from use. For Terms of Service crawling restrictions, a full 45% of C4 is now restricted. If respected or enforced, these restrictions are rapidly biasing the diversity, freshness, and scaling laws for general-purpose AI systems. We hope to illustrate the emerging crisis in data consent, foreclosing much of the open web, not only for commercial AI, but non-commercial AI and academic purposes.

  • 49 authors
·
Jul 20, 2024 3

AI Kill Switch for malicious web-based LLM agent

Recently, web-based Large Language Model (LLM) agents autonomously perform increasingly complex tasks, thereby bringing significant convenience. However, they also amplify the risks of malicious misuse cases such as unauthorized collection of personally identifiable information (PII), generation of socially divisive content, and even automated web hacking. To address these threats, we propose an AI Kill Switch technique that can immediately halt the operation of malicious web-based LLM agents. To achieve this, we introduce AutoGuard - the key idea is generating defensive prompts that trigger the safety mechanisms of malicious LLM agents. In particular, generated defense prompts are transparently embedded into the website's DOM so that they remain invisible to human users but can be detected by the crawling process of malicious agents, triggering its internal safety mechanisms to abort malicious actions once read. To evaluate our approach, we constructed a dedicated benchmark consisting of three representative malicious scenarios (PII collection, social rift content generation, and web hacking attempts). Experimental results show that the AutoGuard method achieves over 80% Defense Success Rate (DSR) on malicious agents, including GPT-4o, Claude-3, and Llama3.3-70B-Instruct. It also maintains strong performance, achieving around 90% DSR on GPT-5, GPT-4.1, and Gemini-2.5-Flash when used as the malicious agent, demonstrating robust generalization across models and scenarios. Through this research, we have demonstrated the controllability of web-based LLM agents across various scenarios and models, thereby contributing to the broader effort of AI control and safety.

  • 2 authors
·
Sep 25

GPT4AIGChip: Towards Next-Generation AI Accelerator Design Automation via Large Language Models

The remarkable capabilities and intricate nature of Artificial Intelligence (AI) have dramatically escalated the imperative for specialized AI accelerators. Nonetheless, designing these accelerators for various AI workloads remains both labor- and time-intensive. While existing design exploration and automation tools can partially alleviate the need for extensive human involvement, they still demand substantial hardware expertise, posing a barrier to non-experts and stifling AI accelerator development. Motivated by the astonishing potential of large language models (LLMs) for generating high-quality content in response to human language instructions, we embark on this work to examine the possibility of harnessing LLMs to automate AI accelerator design. Through this endeavor, we develop GPT4AIGChip, a framework intended to democratize AI accelerator design by leveraging human natural languages instead of domain-specific languages. Specifically, we first perform an in-depth investigation into LLMs' limitations and capabilities for AI accelerator design, thus aiding our understanding of our current position and garnering insights into LLM-powered automated AI accelerator design. Furthermore, drawing inspiration from the above insights, we develop a framework called GPT4AIGChip, which features an automated demo-augmented prompt-generation pipeline utilizing in-context learning to guide LLMs towards creating high-quality AI accelerator design. To our knowledge, this work is the first to demonstrate an effective pipeline for LLM-powered automated AI accelerator generation. Accordingly, we anticipate that our insights and framework can serve as a catalyst for innovations in next-generation LLM-powered design automation tools.

  • 8 authors
·
Sep 19, 2023

LIMI: Less is More for Agency

We define Agency as the emergent capacity of AI systems to function as autonomous agents actively discovering problems, formulating hypotheses, and executing solutions through self-directed engagement with environments and tools. This fundamental capability marks the dawn of the Age of AI Agency, driven by a critical industry shift: the urgent need for AI systems that don't just think, but work. While current AI excels at reasoning and generating responses, industries demand autonomous agents that can execute tasks, operate tools, and drive real-world outcomes. As agentic intelligence becomes the defining characteristic separating cognitive systems from productive workers, efficiently cultivating machine autonomy becomes paramount. Current approaches assume that more data yields better agency, following traditional scaling laws from language modeling. We fundamentally challenge this paradigm. LIMI (Less Is More for Intelligent Agency) demonstrates that agency follows radically different development principles. Through strategic focus on collaborative software development and scientific research workflows, we show that sophisticated agentic intelligence can emerge from minimal but strategically curated demonstrations of autonomous behavior. Using only 78 carefully designed training samples, LIMI achieves 73.5% on comprehensive agency benchmarks, dramatically outperforming state-of-the-art models: Kimi-K2-Instruct (24.1%), DeepSeek-V3.1 (11.9%), Qwen3-235B-A22B-Instruct (27.5%), and GLM-4.5 (45.1%). Most strikingly, LIMI demonstrates 53.7% improvement over models trained on 10,000 samples-achieving superior agentic intelligence with 128 times fewer samples. Our findings establish the Agency Efficiency Principle: machine autonomy emerges not from data abundance but from strategic curation of high-quality agentic demonstrations.

  • 21 authors
·
Sep 22 5

Automated Design of Agentic Systems

Researchers are investing substantial effort in developing powerful general-purpose agents, wherein Foundation Models are used as modules within agentic systems (e.g. Chain-of-Thought, Self-Reflection, Toolformer). However, the history of machine learning teaches us that hand-designed solutions are eventually replaced by learned solutions. We formulate a new research area, Automated Design of Agentic Systems (ADAS), which aims to automatically create powerful agentic system designs, including inventing novel building blocks and/or combining them in new ways. We further demonstrate that there is an unexplored yet promising approach within ADAS where agents can be defined in code and new agents can be automatically discovered by a meta agent programming ever better ones in code. Given that programming languages are Turing Complete, this approach theoretically enables the learning of any possible agentic system: including novel prompts, tool use, control flows, and combinations thereof. We present a simple yet effective algorithm named Meta Agent Search to demonstrate this idea, where a meta agent iteratively programs interesting new agents based on an ever-growing archive of previous discoveries. Through extensive experiments across multiple domains including coding, science, and math, we show that our algorithm can progressively invent agents with novel designs that greatly outperform state-of-the-art hand-designed agents. Importantly, we consistently observe the surprising result that agents invented by Meta Agent Search maintain superior performance even when transferred across domains and models, demonstrating their robustness and generality. Provided we develop it safely, our work illustrates the potential of an exciting new research direction toward automatically designing ever-more powerful agentic systems to benefit humanity.

  • 3 authors
·
Aug 15, 2024 3

Autonomous Deep Agent

This technical brief introduces Deep Agent, an advanced autonomous AI system designed to manage complex multi-phase tasks through a novel hierarchical task management architecture. The system's foundation is built on our Hierarchical Task DAG (HTDAG) framework, which dynamically decomposes high-level objectives into manageable sub-tasks while rigorously maintaining dependencies and execution coherence. Deep Agent advances beyond traditional agent systems through three key innovations: First, it implements a recursive two-stage planner-executor architecture that enables continuous task refinement and adaptation as circumstances change. Second, it features an Autonomous API & Tool Creation (AATC) system that automatically generates reusable components from UI interactions, substantially reducing operational costs for similar tasks. Third, it incorporates Prompt Tweaking Engine and Autonomous Prompt Feedback Learning components that optimize Large Language Model prompts for specific scenarios, enhancing both inference accuracy and operational stability. These components are integrated to form a service infrastructure that manages user contexts, handles complex task dependencies, and orchestrates end-to-end agentic workflow execution. Through this sophisticated architecture, Deep Agent establishes a novel paradigm in self-governing AI systems, demonstrating robust capability to independently handle intricate, multi-step tasks while maintaining consistent efficiency and reliability through continuous self-optimization.

  • 5 authors
·
Feb 10

AIS Data-Driven Maritime Monitoring Based on Transformer: A Comprehensive Review

With the increasing demands for safety, efficiency, and sustainability in global shipping, Automatic Identification System (AIS) data plays an increasingly important role in maritime monitoring. AIS data contains spatial-temporal variation patterns of vessels that hold significant research value in the marine domain. However, due to its massive scale, the full potential of AIS data has long remained untapped. With its powerful sequence modeling capabilities, particularly its ability to capture long-range dependencies and complex temporal dynamics, the Transformer model has emerged as an effective tool for processing AIS data. Therefore, this paper reviews the research on Transformer-based AIS data-driven maritime monitoring, providing a comprehensive overview of the current applications of Transformer models in the marine field. The focus is on Transformer-based trajectory prediction methods, behavior detection, and prediction techniques. Additionally, this paper collects and organizes publicly available AIS datasets from the reviewed papers, performing data filtering, cleaning, and statistical analysis. The statistical results reveal the operational characteristics of different vessel types, providing data support for further research on maritime monitoring tasks. Finally, we offer valuable suggestions for future research, identifying two promising research directions. Datasets are available at https://github.com/eyesofworld/Maritime-Monitoring.

  • 5 authors
·
May 12

Rethinking Autonomy: Preventing Failures in AI-Driven Software Engineering

The integration of Large Language Models (LLMs) into software engineering has revolutionized code generation, enabling unprecedented productivity through promptware and autonomous AI agents. However, this transformation introduces significant risks, including insecure code generation, hallucinated outputs, irreversible actions, and a lack of transparency and accountability. Incidents like the Replit database deletion underscore the urgent need for robust safety and governance mechanisms. This paper comprehensively analyzes the inherent challenges of LLM-assisted code generation, such as vulnerability inheritance, overtrust, misinterpretation, and the absence of standardized validation and rollback protocols. To address these, we propose the SAFE-AI Framework, a holistic approach emphasizing Safety, Auditability, Feedback, and Explainability. The framework integrates guardrails, sandboxing, runtime verification, risk-aware logging, human-in-the-loop systems, and explainable AI techniques to mitigate risks while fostering trust and compliance. We introduce a novel taxonomy of AI behaviors categorizing suggestive, generative, autonomous, and destructive actions to guide risk assessment and oversight. Additionally, we identify open problems, including the lack of standardized benchmarks for code specific hallucinations and autonomy levels, and propose future research directions for hybrid verification, semantic guardrails, and proactive governance tools. Through detailed comparisons of autonomy control, prompt engineering, explainability, and governance frameworks, this paper provides a roadmap for responsible AI integration in software engineering, aligning with emerging regulations like the EU AI Act and Canada's AIDA to ensure safe, transparent, and accountable AI-driven development.

  • 2 authors
·
Aug 15

Creating an LLM-based AI-agent: A high-level methodology towards enhancing LLMs with APIs

Large Language Models (LLMs) have revolutionized various aspects of engineering and science. Their utility is often bottlenecked by the lack of interaction with the external digital environment. To overcome this limitation and achieve integration of LLMs and Artificial Intelligence (AI) into real-world applications, customized AI agents are being constructed. Based on the technological trends and techniques, we extract a high-level approach for constructing these AI agents, focusing on their underlying architecture. This thesis serves as a comprehensive guide that elucidates a multi-faceted approach for empowering LLMs with the capability to leverage Application Programming Interfaces (APIs). We present a 7-step methodology that begins with the selection of suitable LLMs and the task decomposition that is necessary for complex problem-solving. This methodology includes techniques for generating training data for API interactions and heuristics for selecting the appropriate API among a plethora of options. These steps eventually lead to the generation of API calls that are both syntactically and semantically aligned with the LLM's understanding of a given task. Moreover, we review existing frameworks and tools that facilitate these processes and highlight the gaps in current attempts. In this direction, we propose an on-device architecture that aims to exploit the functionality of carry-on devices by using small models from the Hugging Face community. We examine the effectiveness of these approaches on real-world applications of various domains, including the generation of a piano sheet. Through an extensive analysis of the literature and available technologies, this thesis aims to set a compass for researchers and practitioners to harness the full potential of LLMs augmented with external tool capabilities, thus paving the way for more autonomous, robust, and context-aware AI agents.

  • 1 authors
·
Dec 17, 2024

TRiSM for Agentic AI: A Review of Trust, Risk, and Security Management in LLM-based Agentic Multi-Agent Systems

Agentic AI systems, built on large language models (LLMs) and deployed in multi-agent configurations, are redefining intelligent autonomy, collaboration and decision-making across enterprise and societal domains. This review presents a structured analysis of Trust, Risk, and Security Management (TRiSM) in the context of LLM-based agentic multi-agent systems (AMAS). We begin by examining the conceptual foundations of agentic AI, its architectural differences from traditional AI agents, and the emerging system designs that enable scalable, tool-using autonomy. The TRiSM in the agentic AI framework is then detailed through four pillars governance, explainability, ModelOps, and privacy/security each contextualized for agentic LLMs. We identify unique threat vectors and introduce a comprehensive risk taxonomy for the agentic AI applications, supported by case studies illustrating real-world vulnerabilities. Furthermore, the paper also surveys trust-building mechanisms, transparency and oversight techniques, and state-of-the-art explainability strategies in distributed LLM agent systems. Additionally, metrics for evaluating trust, interpretability, and human-centered performance are reviewed alongside open benchmarking challenges. Security and privacy are addressed through encryption, adversarial defense, and compliance with evolving AI regulations. The paper concludes with a roadmap for responsible agentic AI, proposing research directions to align emerging multi-agent systems with robust TRiSM principles for safe, accountable, and transparent deployment.

  • 4 authors
·
Jun 4 2

Can We Recycle Our Old Models? An Empirical Evaluation of Model Selection Mechanisms for AIOps Solutions

AIOps (Artificial Intelligence for IT Operations) solutions leverage the tremendous amount of data produced during the operation of large-scale systems and machine learning models to assist software practitioners in their system operations. Existing AIOps solutions usually maintain AIOps models against concept drift through periodical retraining, despite leaving a pile of discarded historical models that may perform well on specific future data. Other prior works propose dynamically selecting models for prediction tasks from a set of candidate models to optimize the model performance. However, there is no prior work in the AIOps area that assesses the use of model selection mechanisms on historical models to improve model performance or robustness. To fill the gap, we evaluate several model selection mechanisms by assessing their capabilities in selecting the optimal AIOps models that were built in the past to make predictions for the target data. We performed a case study on three large-scale public operation datasets: two trace datasets from the cloud computing platforms of Google and Alibaba, and one disk stats dataset from the BackBlaze cloud storage data center. We observe that the model selection mechnisms utilizing temporal adjacency tend to have a better performance and can prevail the periodical retraining approach. Our findings also highlight a performance gap between existing model selection mechnisms and the theoretical upper bound which may motivate future researchers and practitioners in investigating more efficient and effective model selection mechanisms that fit in the context of AIOps.

  • 4 authors
·
May 5

Magentic-UI: Towards Human-in-the-loop Agentic Systems

AI agents powered by large language models are increasingly capable of autonomously completing complex, multi-step tasks using external tools. Yet, they still fall short of human-level performance in most domains including computer use, software development, and research. Their growing autonomy and ability to interact with the outside world, also introduces safety and security risks including potentially misaligned actions and adversarial manipulation. We argue that human-in-the-loop agentic systems offer a promising path forward, combining human oversight and control with AI efficiency to unlock productivity from imperfect systems. We introduce Magentic-UI, an open-source web interface for developing and studying human-agent interaction. Built on a flexible multi-agent architecture, Magentic-UI supports web browsing, code execution, and file manipulation, and can be extended with diverse tools via Model Context Protocol (MCP). Moreover, Magentic-UI presents six interaction mechanisms for enabling effective, low-cost human involvement: co-planning, co-tasking, multi-tasking, action guards, and long-term memory. We evaluate Magentic-UI across four dimensions: autonomous task completion on agentic benchmarks, simulated user testing of its interaction capabilities, qualitative studies with real users, and targeted safety assessments. Our findings highlight Magentic-UI's potential to advance safe and efficient human-agent collaboration.

  • 20 authors
·
Jul 29

Governed By Agents: A Survey On The Role Of Agentic AI In Future Computing Environments

The emergence of agentic Artificial Intelligence (AI), which can operate autonomously, demonstrate goal-directed behavior, and adaptively learn, indicates the onset of a massive change in today's computing infrastructure. This study investigates how agentic AI models' multiple characteristics may impact the architecture, governance, and operation under which computing environments function. Agentic AI has the potential to reduce reliance on extremely large (public) cloud environments due to resource efficiency, especially with processing and/or storage. The aforementioned characteristics provide us with an opportunity to canvas the likelihood of strategic migration in computing infrastructures away from massive public cloud services, towards more locally distributed architectures: edge computing and on-premises computing infrastructures. Many of these likely migrations will be spurred by factors like on-premises processing needs, diminished data consumption footprints, and cost savings. This study examines how a solution for implementing AI's autonomy could result in a re-architecture of the systems and model a departure from today's governance models to help us manage these increasingly autonomous agents, and an operational overhaul of processes over a very diverse computing systems landscape that bring together computing via cloud, edge, and on-premises computing solutions. To enable us to explore these intertwined decisions, it will be fundamentally important to understand how to best position agentic AI, and to navigate the future state of computing infrastructures.

  • 2 authors
·
Sep 20

SuperCoder2.0: Technical Report on Exploring the feasibility of LLMs as Autonomous Programmer

We present SuperCoder2.0, an advanced autonomous system designed to enhance software development through artificial intelligence. The system combines an AI-native development approach with intelligent agents to enable fully autonomous coding. Key focus areas include a retry mechanism with error output traceback, comprehensive code rewriting and replacement using Abstract Syntax Tree (ast) parsing to minimize linting issues, code embedding technique for retrieval-augmented generation, and a focus on localizing methods for problem-solving rather than identifying specific line numbers. The methodology employs a three-step hierarchical search space reduction approach for code base navigation and bug localization:utilizing Retrieval Augmented Generation (RAG) and a Repository File Level Map to identify candidate files, (2) narrowing down to the most relevant files using a File Level Schematic Map, and (3) extracting 'relevant locations' within these files. Code editing is performed through a two-part module comprising CodeGeneration and CodeEditing, which generates multiple solutions at different temperature values and replaces entire methods or classes to maintain code integrity. A feedback loop executes repository-level test cases to validate and refine solutions. Experiments conducted on the SWE-bench Lite dataset demonstrate SuperCoder2.0's effectiveness, achieving correct file localization in 84.33% of cases within the top 5 candidates and successfully resolving 34% of test instances. This performance places SuperCoder2.0 fourth globally on the SWE-bench leaderboard. The system's ability to handle diverse repositories and problem types highlights its potential as a versatile tool for autonomous software development. Future work will focus on refining the code editing process and exploring advanced embedding models for improved natural language to code mapping.

  • 5 authors
·
Sep 17, 2024

AutoML-GPT: Automatic Machine Learning with GPT

AI tasks encompass a wide range of domains and fields. While numerous AI models have been designed for specific tasks and applications, they often require considerable human efforts in finding the right model architecture, optimization algorithm, and hyperparameters. Recent advances in large language models (LLMs) like ChatGPT show remarkable capabilities in various aspects of reasoning, comprehension, and interaction. Consequently, we propose developing task-oriented prompts and automatically utilizing LLMs to automate the training pipeline. To implement this concept, we present the AutoML-GPT, which employs GPT as the bridge to diverse AI models and dynamically trains models with optimized hyperparameters. AutoML-GPT dynamically takes user requests from the model and data cards and composes the corresponding prompt paragraph. Ultimately, with this prompt paragraph, AutoML-GPT will automatically conduct the experiments from data processing to model architecture, hyperparameter tuning, and predicted training log. By leveraging {\ours}'s robust language capabilities and the available AI models, AutoML-GPT can tackle numerous intricate AI tasks across various tasks and datasets. This approach achieves remarkable results in computer vision, natural language processing, and other challenging areas. Extensive experiments and ablation studies demonstrate that our method can be general, effective, and beneficial for many AI tasks.

  • 5 authors
·
May 3, 2023 5

Security Challenges in AI Agent Deployment: Insights from a Large Scale Public Competition

Recent advances have enabled LLM-powered AI agents to autonomously execute complex tasks by combining language model reasoning with tools, memory, and web access. But can these systems be trusted to follow deployment policies in realistic environments, especially under attack? To investigate, we ran the largest public red-teaming competition to date, targeting 22 frontier AI agents across 44 realistic deployment scenarios. Participants submitted 1.8 million prompt-injection attacks, with over 60,000 successfully eliciting policy violations such as unauthorized data access, illicit financial actions, and regulatory noncompliance. We use these results to build the Agent Red Teaming (ART) benchmark - a curated set of high-impact attacks - and evaluate it across 19 state-of-the-art models. Nearly all agents exhibit policy violations for most behaviors within 10-100 queries, with high attack transferability across models and tasks. Importantly, we find limited correlation between agent robustness and model size, capability, or inference-time compute, suggesting that additional defenses are needed against adversarial misuse. Our findings highlight critical and persistent vulnerabilities in today's AI agents. By releasing the ART benchmark and accompanying evaluation framework, we aim to support more rigorous security assessment and drive progress toward safer agent deployment.

  • 17 authors
·
Jul 28

LiteCUA: Computer as MCP Server for Computer-Use Agent on AIOS

We present AIOS 1.0, a novel platform designed to advance computer-use agent (CUA) capabilities through environmental contextualization. While existing approaches primarily focus on building more powerful agent frameworks or enhancing agent models, we identify a fundamental limitation: the semantic disconnect between how language models understand the world and how computer interfaces are structured. AIOS 1.0 addresses this challenge by transforming computers into contextual environments that language models can natively comprehend, implementing a Model Context Protocol (MCP) server architecture to abstract computer states and actions. This approach effectively decouples interface complexity from decision complexity, enabling agents to reason more effectively about computing environments. To demonstrate our platform's effectiveness, we introduce LiteCUA, a lightweight computer-use agent built on AIOS 1.0 that achieves a 14.66% success rate on the OSWorld benchmark, outperforming several specialized agent frameworks despite its simple architecture. Our results suggest that contextualizing computer environments for language models represents a promising direction for developing more capable computer-use agents and advancing toward AI that can interact with digital systems. The source code of LiteCUA is available at https://github.com/agiresearch/LiteCUA, and it is also integrated into the AIOS main branch as part of AIOS at https://github.com/agiresearch/AIOS.

  • 5 authors
·
May 24

AlphaGo Moment for Model Architecture Discovery

While AI systems demonstrate exponentially improving capabilities, the pace of AI research itself remains linearly bounded by human cognitive capacity, creating an increasingly severe development bottleneck. We present ASI-Arch, the first demonstration of Artificial Superintelligence for AI research (ASI4AI) in the critical domain of neural architecture discovery--a fully autonomous system that shatters this fundamental constraint by enabling AI to conduct its own architectural innovation. Moving beyond traditional Neural Architecture Search (NAS), which is fundamentally limited to exploring human-defined spaces, we introduce a paradigm shift from automated optimization to automated innovation. ASI-Arch can conduct end-to-end scientific research in the domain of architecture discovery, autonomously hypothesizing novel architectural concepts, implementing them as executable code, training and empirically validating their performance through rigorous experimentation and past experience. ASI-Arch conducted 1,773 autonomous experiments over 20,000 GPU hours, culminating in the discovery of 106 innovative, state-of-the-art (SOTA) linear attention architectures. Like AlphaGo's Move 37 that revealed unexpected strategic insights invisible to human players, our AI-discovered architectures demonstrate emergent design principles that systematically surpass human-designed baselines and illuminate previously unknown pathways for architectural innovation. Crucially, we establish the first empirical scaling law for scientific discovery itself--demonstrating that architectural breakthroughs can be scaled computationally, transforming research progress from a human-limited to a computation-scalable process. We provide comprehensive analysis of the emergent design patterns and autonomous research capabilities that enabled these breakthroughs, establishing a blueprint for self-accelerating AI systems.

  • 7 authors
·
Jul 23 1

Automating the Enterprise with Foundation Models

Automating enterprise workflows could unlock $4 trillion/year in productivity gains. Despite being of interest to the data management community for decades, the ultimate vision of end-to-end workflow automation has remained elusive. Current solutions rely on process mining and robotic process automation (RPA), in which a bot is hard-coded to follow a set of predefined rules for completing a workflow. Through case studies of a hospital and large B2B enterprise, we find that the adoption of RPA has been inhibited by high set-up costs (12-18 months), unreliable execution (60% initial accuracy), and burdensome maintenance (requiring multiple FTEs). Multimodal foundation models (FMs) such as GPT-4 offer a promising new approach for end-to-end workflow automation given their generalized reasoning and planning abilities. To study these capabilities we propose ECLAIR, a system to automate enterprise workflows with minimal human supervision. We conduct initial experiments showing that multimodal FMs can address the limitations of traditional RPA with (1) near-human-level understanding of workflows (93% accuracy on a workflow understanding task) and (2) instant set-up with minimal technical barrier (based solely on a natural language description of a workflow, ECLAIR achieves end-to-end completion rates of 40%). We identify human-AI collaboration, validation, and self-improvement as open challenges, and suggest ways they can be solved with data management techniques. Code is available at: https://github.com/HazyResearch/eclair-agents

  • 6 authors
·
May 3, 2024 1

Guardians of the Agentic System: Preventing Many Shots Jailbreak with Agentic System

The autonomous AI agents using large language models can create undeniable values in all span of the society but they face security threats from adversaries that warrants immediate protective solutions because trust and safety issues arise. Considering the many-shot jailbreaking and deceptive alignment as some of the main advanced attacks, that cannot be mitigated by the static guardrails used during the supervised training, points out a crucial research priority for real world robustness. The combination of static guardrails in dynamic multi-agent system fails to defend against those attacks. We intend to enhance security for LLM-based agents through the development of new evaluation frameworks which identify and counter threats for safe operational deployment. Our work uses three examination methods to detect rogue agents through a Reverse Turing Test and analyze deceptive alignment through multi-agent simulations and develops an anti-jailbreaking system by testing it with GEMINI 1.5 pro and llama-3.3-70B, deepseek r1 models using tool-mediated adversarial scenarios. The detection capabilities are strong such as 94\% accuracy for GEMINI 1.5 pro yet the system suffers persistent vulnerabilities when under long attacks as prompt length increases attack success rates (ASR) and diversity metrics become ineffective in prediction while revealing multiple complex system faults. The findings demonstrate the necessity of adopting flexible security systems based on active monitoring that can be performed by the agents themselves together with adaptable interventions by system admin as the current models can create vulnerabilities that can lead to the unreliable and vulnerable system. So, in our work, we try to address such situations and propose a comprehensive framework to counteract the security issues.

  • 6 authors
·
Feb 23 2

Towards Automatic Translation of Machine Learning Visual Insights to Analytical Assertions

We present our vision for developing an automated tool capable of translating visual properties observed in Machine Learning (ML) visualisations into Python assertions. The tool aims to streamline the process of manually verifying these visualisations in the ML development cycle, which is critical as real-world data and assumptions often change post-deployment. In a prior study, we mined 54,070 Jupyter notebooks from Github and created a catalogue of 269 semantically related visualisation-assertion (VA) pairs. Building on this catalogue, we propose to build a taxonomy that organises the VA pairs based on ML verification tasks. The input feature space comprises of a rich source of information mined from the Jupyter notebooks -- visualisations, Python source code, and associated markdown text. The effectiveness of various AI models, including traditional NLP4Code models and modern Large Language Models, will be compared using established machine translation metrics and evaluated through a qualitative study with human participants. The paper also plans to address the challenge of extending the existing VA pair dataset with additional pairs from Kaggle and to compare the tool's effectiveness with commercial generative AI models like ChatGPT. This research not only contributes to the field of ML system validation but also explores novel ways to leverage AI for automating and enhancing software engineering practices in ML.

  • 3 authors
·
Jan 15, 2024

Building a Safer Maritime Environment Through Multi-Path Long-Term Vessel Trajectory Forecasting

Maritime transportation is paramount in achieving global economic growth, entailing concurrent ecological obligations in sustainability and safeguarding endangered marine species, most notably preserving large whale populations. In this regard, the Automatic Identification System (AIS) data plays a significant role by offering real-time streaming data on vessel movement, allowing enhanced traffic monitoring. This study explores using AIS data to prevent vessel-to-whale collisions by forecasting long-term vessel trajectories from engineered AIS data sequences. For such a task, we have developed an encoder-decoder model architecture using Bidirectional Long Short-Term Memory Networks (Bi-LSTM) to predict the next 12 hours of vessel trajectories using 1 to 3 hours of AIS data as input. We feed the model with probabilistic features engineered from historical AIS data that refer to each trajectory's potential route and destination. The model then predicts the vessel's trajectory, considering these additional features by leveraging convolutional layers for spatial feature learning and a position-aware attention mechanism that increases the importance of recent timesteps of a sequence during temporal feature learning. The probabilistic features have an F1 Score of approximately 85% and 75% for each feature type, respectively, demonstrating their effectiveness in augmenting information to the neural network. We test our model on the Gulf of St. Lawrence, a region known to be the habitat of North Atlantic Right Whales (NARW). Our model achieved a high R2 score of over 98% using various techniques and features. It stands out among other approaches as it can make complex decisions during turnings and path selection. Our study highlights the potential of data engineering and trajectory forecasting models for marine life species preservation.

  • 11 authors
·
Oct 29, 2023

AstaBench: Rigorous Benchmarking of AI Agents with a Scientific Research Suite

AI agents hold the potential to revolutionize scientific productivity by automating literature reviews, replicating experiments, analyzing data, and even proposing new directions of inquiry; indeed, there are now many such agents, ranging from general-purpose "deep research" systems to specialized science-specific agents, such as AI Scientist and AIGS. Rigorous evaluation of these agents is critical for progress. Yet existing benchmarks fall short on several fronts: they (1) fail to provide holistic, product-informed measures of real-world use cases such as science research; (2) lack reproducible agent tools necessary for a controlled comparison of core agentic capabilities; (3) do not account for confounding variables such as model cost and tool access; (4) do not provide standardized interfaces for quick agent prototyping and evaluation; and (5) lack comprehensive baseline agents necessary to identify true advances. In response, we define principles and tooling for more rigorously benchmarking agents. Using these, we present AstaBench, a suite that provides the first holistic measure of agentic ability to perform scientific research, comprising 2400+ problems spanning the entire scientific discovery process and multiple scientific domains, and including many problems inspired by actual user requests to deployed Asta agents. Our suite comes with the first scientific research environment with production-grade search tools that enable controlled, reproducible evaluation, better accounting for confounders. Alongside, we provide a comprehensive suite of nine science-optimized classes of Asta agents and numerous baselines. Our extensive evaluation of 57 agents across 22 agent classes reveals several interesting findings, most importantly that despite meaningful progress on certain individual aspects, AI remains far from solving the challenge of science research assistance.

TheAgentCompany: Benchmarking LLM Agents on Consequential Real World Tasks

We interact with computers on an everyday basis, be it in everyday life or work, and many aspects of work can be done entirely with access to a computer and the Internet. At the same time, thanks to improvements in large language models (LLMs), there has also been a rapid development in AI agents that interact with and affect change in their surrounding environments. But how performant are AI agents at helping to accelerate or even autonomously perform work-related tasks? The answer to this question has important implications for both industry looking to adopt AI into their workflows, and for economic policy to understand the effects that adoption of AI may have on the labor market. To measure the progress of these LLM agents' performance on performing real-world professional tasks, in this paper, we introduce TheAgentCompany, an extensible benchmark for evaluating AI agents that interact with the world in similar ways to those of a digital worker: by browsing the Web, writing code, running programs, and communicating with other coworkers. We build a self-contained environment with internal web sites and data that mimics a small software company environment, and create a variety of tasks that may be performed by workers in such a company. We test baseline agents powered by both closed API-based and open-weights language models (LMs), and find that with the most competitive agent, 24% of the tasks can be completed autonomously. This paints a nuanced picture on task automation with LM agents -- in a setting simulating a real workplace, a good portion of simpler tasks could be solved autonomously, but more difficult long-horizon tasks are still beyond the reach of current systems.

  • 21 authors
·
Dec 18, 2024 2

Magentic-One: A Generalist Multi-Agent System for Solving Complex Tasks

Modern AI agents, driven by advances in large foundation models, promise to enhance our productivity and transform our lives by augmenting our knowledge and capabilities. To achieve this vision, AI agents must effectively plan, perform multi-step reasoning and actions, respond to novel observations, and recover from errors, to successfully complete complex tasks across a wide range of scenarios. In this work, we introduce Magentic-One, a high-performing open-source agentic system for solving such tasks. Magentic-One uses a multi-agent architecture where a lead agent, the Orchestrator, plans, tracks progress, and re-plans to recover from errors. Throughout task execution, the Orchestrator directs other specialized agents to perform tasks as needed, such as operating a web browser, navigating local files, or writing and executing Python code. We show that Magentic-One achieves statistically competitive performance to the state-of-the-art on three diverse and challenging agentic benchmarks: GAIA, AssistantBench, and WebArena. Magentic-One achieves these results without modification to core agent capabilities or to how they collaborate, demonstrating progress towards generalist agentic systems. Moreover, Magentic-One's modular design allows agents to be added or removed from the team without additional prompt tuning or training, easing development and making it extensible to future scenarios. We provide an open-source implementation of Magentic-One, and we include AutoGenBench, a standalone tool for agentic evaluation. AutoGenBench provides built-in controls for repetition and isolation to run agentic benchmarks in a rigorous and contained manner -- which is important when agents' actions have side-effects. Magentic-One, AutoGenBench and detailed empirical performance evaluations of Magentic-One, including ablations and error analysis are available at https://aka.ms/magentic-one

  • 20 authors
·
Nov 7, 2024

Verifying International Agreements on AI: Six Layers of Verification for Rules on Large-Scale AI Development and Deployment

The risks of frontier AI may require international cooperation, which in turn may require verification: checking that all parties follow agreed-on rules. For instance, states might need to verify that powerful AI models are widely deployed only after their risks to international security have been evaluated and deemed manageable. However, research on AI verification could benefit from greater clarity and detail. To address this, this report provides an in-depth overview of AI verification, intended for both policy professionals and technical researchers. We present novel conceptual frameworks, detailed implementation options, and key R&D challenges. These draw on existing literature, expert interviews, and original analysis, all within the scope of confidentially overseeing AI development and deployment that uses thousands of high-end AI chips. We find that states could eventually verify compliance by using six largely independent verification approaches with substantial redundancy: (1) built-in security features in AI chips; (2-3) separate monitoring devices attached to AI chips; and (4-6) personnel-based mechanisms, such as whistleblower programs. While promising, these approaches require guardrails to protect against abuse and power concentration, and many of these technologies have yet to be built or stress-tested. To enable states to confidently verify compliance with rules on large-scale AI development and deployment, the R&D challenges we list need significant progress.

  • 5 authors
·
Jul 21

The Rise of AI Teammates in Software Engineering (SE) 3.0: How Autonomous Coding Agents Are Reshaping Software Engineering

The future of software engineering--SE 3.0--is unfolding with the rise of AI teammates: autonomous, goal-driven systems collaborating with human developers. Among these, autonomous coding agents are especially transformative, now actively initiating, reviewing, and evolving code at scale. This paper introduces AIDev, the first large-scale dataset capturing how such agents operate in the wild. Spanning over 456,000 pull requests by five leading agents--OpenAI Codex, Devin, GitHub Copilot, Cursor, and Claude Code--across 61,000 repositories and 47,000 developers, AIDev provides an unprecedented empirical foundation for studying autonomous teammates in software development. Unlike prior work that has largely theorized the rise of AI-native software engineering, AIDev offers structured, open data to support research in benchmarking, agent readiness, optimization, collaboration modeling, and AI governance. The dataset includes rich metadata on PRs, authorship, review timelines, code changes, and integration outcomes--enabling exploration beyond synthetic benchmarks like SWE-bench. For instance, although agents often outperform humans in speed, their PRs are accepted less frequently, revealing a trust and utility gap. Furthermore, while agents accelerate code submission--one developer submitted as many PRs in three days as they had in three years--these are structurally simpler (via code complexity metrics). We envision AIDev as a living resource: extensible, analyzable, and ready for the SE and AI communities. Grounding SE 3.0 in real-world evidence, AIDev enables a new generation of research into AI-native workflows and supports building the next wave of symbiotic human-AI collaboration. The dataset is publicly available at https://github.com/SAILResearch/AI_Teammates_in_SE3. > AI Agent, Agentic AI, Coding Agent, Agentic Coding, Software Engineering Agent

  • 3 authors
·
Jul 20

UFO2: The Desktop AgentOS

Recent Computer-Using Agents (CUAs), powered by multimodal large language models (LLMs), offer a promising direction for automating complex desktop workflows through natural language. However, most existing CUAs remain conceptual prototypes, hindered by shallow OS integration, fragile screenshot-based interaction, and disruptive execution. We present UFO2, a multiagent AgentOS for Windows desktops that elevates CUAs into practical, system-level automation. UFO2 features a centralized HostAgent for task decomposition and coordination, alongside a collection of application-specialized AppAgent equipped with native APIs, domain-specific knowledge, and a unified GUI--API action layer. This architecture enables robust task execution while preserving modularity and extensibility. A hybrid control detection pipeline fuses Windows UI Automation (UIA) with vision-based parsing to support diverse interface styles. Runtime efficiency is further enhanced through speculative multi-action planning, reducing per-step LLM overhead. Finally, a Picture-in-Picture (PiP) interface enables automation within an isolated virtual desktop, allowing agents and users to operate concurrently without interference. We evaluate UFO2 across over 20 real-world Windows applications, demonstrating substantial improvements in robustness and execution accuracy over prior CUAs. Our results show that deep OS integration unlocks a scalable path toward reliable, user-aligned desktop automation.

  • 21 authors
·
Apr 20 3

The Journey to Trustworthy AI- Part 1: Pursuit of Pragmatic Frameworks

This paper reviews Trustworthy Artificial Intelligence (TAI) and its various definitions. Considering the principles respected in any society, TAI is often characterized by a few attributes, some of which have led to confusion in regulatory or engineering contexts. We argue against using terms such as Responsible or Ethical AI as substitutes for TAI. And to help clarify any confusion, we suggest leaving them behind. Given the subjectivity and complexity inherent in TAI, developing a universal framework is deemed infeasible. Instead, we advocate for approaches centered on addressing key attributes and properties such as fairness, bias, risk, security, explainability, and reliability. We examine the ongoing regulatory landscape, with a focus on initiatives in the EU, China, and the USA. We recognize that differences in AI regulations based on geopolitical and geographical reasons pose an additional challenge for multinational companies. We identify risk as a core factor in AI regulation and TAI. For example, as outlined in the EU-AI Act, organizations must gauge the risk level of their AI products to act accordingly (or risk hefty fines). We compare modalities of TAI implementation and how multiple cross-functional teams are engaged in the overall process. Thus, a brute force approach for enacting TAI renders its efficiency and agility, moot. To address this, we introduce our framework Set-Formalize-Measure-Act (SFMA). Our solution highlights the importance of transforming TAI-aware metrics, drivers of TAI, stakeholders, and business/legal requirements into actual benchmarks or tests. Finally, over-regulation driven by panic of powerful AI models can, in fact, harm TAI too. Based on GitHub user-activity data, in 2023, AI open-source projects rose to top projects by contributor account. Enabling innovation in TAI hinges on the independent contributions of the open-source community.

  • 2 authors
·
Mar 19, 2024

Beyond Text: Implementing Multimodal Large Language Model-Powered Multi-Agent Systems Using a No-Code Platform

This study proposes the design and implementation of a multimodal LLM-based Multi-Agent System (MAS) leveraging a No-Code platform to address the practical constraints and significant entry barriers associated with AI adoption in enterprises. Advanced AI technologies, such as Large Language Models (LLMs), often pose challenges due to their technical complexity and high implementation costs, making them difficult for many organizations to adopt. To overcome these limitations, this research develops a No-Code-based Multi-Agent System designed to enable users without programming knowledge to easily build and manage AI systems. The study examines various use cases to validate the applicability of AI in business processes, including code generation from image-based notes, Advanced RAG-based question-answering systems, text-based image generation, and video generation using images and prompts. These systems lower the barriers to AI adoption, empowering not only professional developers but also general users to harness AI for significantly improved productivity and efficiency. By demonstrating the scalability and accessibility of No-Code platforms, this study advances the democratization of AI technologies within enterprises and validates the practical applicability of Multi-Agent Systems, ultimately contributing to the widespread adoption of AI across various industries.

  • 1 authors
·
Jan 1

ALAS: Autonomous Learning Agent for Self-Updating Language Models

Large language models (LLMs) often have a fixed knowledge cutoff, limiting their accuracy on emerging information. We present ALAS (Autonomous Learning Agent System), a modular pipeline that continuously updates an LLM's knowledge with minimal human intervention. ALAS autonomously generates a learning curriculum for a target domain, retrieves up-to-date information from the web (with citations), distills this into question-answer training data, and fine-tunes the model through supervised fine-tuning (SFT) and direct preference optimization (DPO). It iteratively evaluates performance and revises the curriculum, enabling long-term continual learning. We demonstrate ALAS's ability to self-improve a model on rapidly evolving domains (e.g., new Python releases, latest security CVEs, academic trends), significantly boosting post-cutoff question answering accuracy (from 15% to 90% on average) without manual dataset curation. The system emphasizes modularity and reproducibility: each component (planning, retrieval, distillation, memory, fine-tuning) is interchangeable and built on standard APIs. We discuss comparative baselines (e.g., retrieval-augmented generation vs. fine-tuning) and show that ALAS achieves 90% accuracy on knowledge-updated queries with minimal engineering overhead. Finally, we outline limitations (cost, dependency on source quality) and future directions for autonomous lifelong learning in LLMs.

  • 1 authors
·
Aug 14

Hybrid Reasoning for Perception, Explanation, and Autonomous Action in Manufacturing

Industrial processes must be robust and adaptable, as environments and tasks are often unpredictable, while operational errors remain costly and difficult to detect. AI-based control systems offer a path forward, yet typically depend on supervised learning with extensive labelled datasets, which limits their ability to generalize across variable and data-scarce industrial settings. Foundation models could enable broader reasoning and knowledge integration, but rarely deliver the quantitative precision demanded by engineering applications. Here, we introduceControl and Interpretation of Production via Hybrid Expertise and Reasoning (CIPHER): a vision-language-action (VLA) model framework aiming to replicate human-like reasoning for industrial control, instantiated in a commercial-grade 3D printer. It integrates a process expert, a regression model enabling quantitative characterization of system states required for engineering tasks. CIPHER also incorporates retrieval-augmented generation to access external expert knowledge and support physics-informed, chain-of-thought reasoning. This hybrid architecture exhibits strong generalization to out-of-distribution tasks. It interprets visual or textual inputs from process monitoring, explains its decisions, and autonomously generates precise machine instructions, without requiring explicit annotations. CIPHER thus lays the foundations for autonomous systems that act with precision, reason with context, and communicate decisions transparently, supporting safe and trusted deployment in industrial settings.

  • 2 authors
·
Jun 10

SAI: Solving AI Tasks with Systematic Artificial Intelligence in Communication Network

In the rapid development of artificial intelligence, solving complex AI tasks is a crucial technology in intelligent mobile networks. Despite the good performance of specialized AI models in intelligent mobile networks, they are unable to handle complicated AI tasks. To address this challenge, we propose Systematic Artificial Intelligence (SAI), which is a framework designed to solve AI tasks by leveraging Large Language Models (LLMs) and JSON-format intent-based input to connect self-designed model library and database. Specifically, we first design a multi-input component, which simultaneously integrates Large Language Models (LLMs) and JSON-format intent-based inputs to fulfill the diverse intent requirements of different users. In addition, we introduce a model library module based on model cards which employ model cards to pairwise match between different modules for model composition. Model cards contain the corresponding model's name and the required performance metrics. Then when receiving user network requirements, we execute each subtask for multiple selected model combinations and provide output based on the execution results and LLM feedback. By leveraging the language capabilities of LLMs and the abundant AI models in the model library, SAI can complete numerous complex AI tasks in the communication network, achieving impressive results in network optimization, resource allocation, and other challenging tasks.

  • 4 authors
·
Oct 13, 2023

Kosmos: An AI Scientist for Autonomous Discovery

Data-driven scientific discovery requires iterative cycles of literature search, hypothesis generation, and data analysis. Substantial progress has been made towards AI agents that can automate scientific research, but all such agents remain limited in the number of actions they can take before losing coherence, thus limiting the depth of their findings. Here we present Kosmos, an AI scientist that automates data-driven discovery. Given an open-ended objective and a dataset, Kosmos runs for up to 12 hours performing cycles of parallel data analysis, literature search, and hypothesis generation before synthesizing discoveries into scientific reports. Unlike prior systems, Kosmos uses a structured world model to share information between a data analysis agent and a literature search agent. The world model enables Kosmos to coherently pursue the specified objective over 200 agent rollouts, collectively executing an average of 42,000 lines of code and reading 1,500 papers per run. Kosmos cites all statements in its reports with code or primary literature, ensuring its reasoning is traceable. Independent scientists found 79.4% of statements in Kosmos reports to be accurate, and collaborators reported that a single 20-cycle Kosmos run performed the equivalent of 6 months of their own research time on average. Furthermore, collaborators reported that the number of valuable scientific findings generated scales linearly with Kosmos cycles (tested up to 20 cycles). We highlight seven discoveries made by Kosmos that span metabolomics, materials science, neuroscience, and statistical genetics. Three discoveries independently reproduce findings from preprinted or unpublished manuscripts that were not accessed by Kosmos at runtime, while four make novel contributions to the scientific literature.

  • 37 authors
·
Nov 4

From LLM Reasoning to Autonomous AI Agents: A Comprehensive Review

Large language models and autonomous AI agents have evolved rapidly, resulting in a diverse array of evaluation benchmarks, frameworks, and collaboration protocols. However, the landscape remains fragmented and lacks a unified taxonomy or comprehensive survey. Therefore, we present a side-by-side comparison of benchmarks developed between 2019 and 2025 that evaluate these models and agents across multiple domains. In addition, we propose a taxonomy of approximately 60 benchmarks that cover general and academic knowledge reasoning, mathematical problem-solving, code generation and software engineering, factual grounding and retrieval, domain-specific evaluations, multimodal and embodied tasks, task orchestration, and interactive assessments. Furthermore, we review AI-agent frameworks introduced between 2023 and 2025 that integrate large language models with modular toolkits to enable autonomous decision-making and multi-step reasoning. Moreover, we present real-world applications of autonomous AI agents in materials science, biomedical research, academic ideation, software engineering, synthetic data generation, chemical reasoning, mathematical problem-solving, geographic information systems, multimedia, healthcare, and finance. We then survey key agent-to-agent collaboration protocols, namely the Agent Communication Protocol (ACP), the Model Context Protocol (MCP), and the Agent-to-Agent Protocol (A2A). Finally, we discuss recommendations for future research, focusing on advanced reasoning strategies, failure modes in multi-agent LLM systems, automated scientific discovery, dynamic tool integration via reinforcement learning, integrated search capabilities, and security vulnerabilities in agent protocols.

  • 3 authors
·
Apr 28

PyGlove: Symbolic Programming for Automated Machine Learning

Neural networks are sensitive to hyper-parameter and architecture choices. Automated Machine Learning (AutoML) is a promising paradigm for automating these choices. Current ML software libraries, however, are quite limited in handling the dynamic interactions among the components of AutoML. For example, efficientNAS algorithms, such as ENAS and DARTS, typically require an implementation coupling between the search space and search algorithm, the two key components in AutoML. Furthermore, implementing a complex search flow, such as searching architectures within a loop of searching hardware configurations, is difficult. To summarize, changing the search space, search algorithm, or search flow in current ML libraries usually requires a significant change in the program logic. In this paper, we introduce a new way of programming AutoML based on symbolic programming. Under this paradigm, ML programs are mutable, thus can be manipulated easily by another program. As a result, AutoML can be reformulated as an automated process of symbolic manipulation. With this formulation, we decouple the triangle of the search algorithm, the search space and the child program. This decoupling makes it easy to change the search space and search algorithm (without and with weight sharing), as well as to add search capabilities to existing code and implement complex search flows. We then introduce PyGlove, a new Python library that implements this paradigm. Through case studies on ImageNet and NAS-Bench-101, we show that with PyGlove users can easily convert a static program into a search space, quickly iterate on the search spaces and search algorithms, and craft complex search flows to achieve better results.

  • 10 authors
·
Jan 21, 2021

AutoManual: Constructing Instruction Manuals by LLM Agents via Interactive Environmental Learning

Large Language Models (LLM) based agents have shown promise in autonomously completing tasks across various domains, e.g., robotics, games, and web navigation. However, these agents typically require elaborate design and expert prompts to solve tasks in specific domains, which limits their adaptability. We introduce AutoManual, a framework enabling LLM agents to autonomously build their understanding through interaction and adapt to new environments. AutoManual categorizes environmental knowledge into diverse rules and optimizes them in an online fashion by two agents: 1) The Planner codes actionable plans based on current rules for interacting with the environment. 2) The Builder updates the rules through a well-structured rule system that facilitates online rule management and essential detail retention. To mitigate hallucinations in managing rules, we introduce a *case-conditioned prompting* strategy for the Builder. Finally, the Formulator agent compiles these rules into a comprehensive manual. The self-generated manual can not only improve the adaptability but also guide the planning of smaller LLMs while being human-readable. Given only one simple demonstration, AutoManual significantly improves task success rates, achieving 97.4\% with GPT-4-turbo and 86.2\% with GPT-3.5-turbo on ALFWorld benchmark tasks. The code is available at https://github.com/minghchen/automanual.

  • 6 authors
·
May 25, 2024

The AI Scientist-v2: Workshop-Level Automated Scientific Discovery via Agentic Tree Search

AI is increasingly playing a pivotal role in transforming how scientific discoveries are made. We introduce The AI Scientist-v2, an end-to-end agentic system capable of producing the first entirely AI generated peer-review-accepted workshop paper. This system iteratively formulates scientific hypotheses, designs and executes experiments, analyzes and visualizes data, and autonomously authors scientific manuscripts. Compared to its predecessor (v1, Lu et al., 2024 arXiv:2408.06292), The AI Scientist-v2 eliminates the reliance on human-authored code templates, generalizes effectively across diverse machine learning domains, and leverages a novel progressive agentic tree-search methodology managed by a dedicated experiment manager agent. Additionally, we enhance the AI reviewer component by integrating a Vision-Language Model (VLM) feedback loop for iterative refinement of content and aesthetics of the figures. We evaluated The AI Scientist-v2 by submitting three fully autonomous manuscripts to a peer-reviewed ICLR workshop. Notably, one manuscript achieved high enough scores to exceed the average human acceptance threshold, marking the first instance of a fully AI-generated paper successfully navigating a peer review. This accomplishment highlights the growing capability of AI in conducting all aspects of scientific research. We anticipate that further advancements in autonomous scientific discovery technologies will profoundly impact human knowledge generation, enabling unprecedented scalability in research productivity and significantly accelerating scientific breakthroughs, greatly benefiting society at large. We have open-sourced the code at https://github.com/SakanaAI/AI-Scientist-v2 to foster the future development of this transformative technology. We also discuss the role of AI in science, including AI safety.

  • 8 authors
·
Apr 10 3

Automated Deep Learning: Neural Architecture Search Is Not the End

Deep learning (DL) has proven to be a highly effective approach for developing models in diverse contexts, including visual perception, speech recognition, and machine translation. However, the end-to-end process for applying DL is not trivial. It requires grappling with problem formulation and context understanding, data engineering, model development, deployment, continuous monitoring and maintenance, and so on. Moreover, each of these steps typically relies heavily on humans, in terms of both knowledge and interactions, which impedes the further advancement and democratization of DL. Consequently, in response to these issues, a new field has emerged over the last few years: automated deep learning (AutoDL). This endeavor seeks to minimize the need for human involvement and is best known for its achievements in neural architecture search (NAS), a topic that has been the focus of several surveys. That stated, NAS is not the be-all and end-all of AutoDL. Accordingly, this review adopts an overarching perspective, examining research efforts into automation across the entirety of an archetypal DL workflow. In so doing, this work also proposes a comprehensive set of ten criteria by which to assess existing work in both individual publications and broader research areas. These criteria are: novelty, solution quality, efficiency, stability, interpretability, reproducibility, engineering quality, scalability, generalizability, and eco-friendliness. Thus, ultimately, this review provides an evaluative overview of AutoDL in the early 2020s, identifying where future opportunities for progress may exist.

  • 4 authors
·
Dec 16, 2021

Common Sense Is All You Need

Artificial intelligence (AI) has made significant strides in recent years, yet it continues to struggle with a fundamental aspect of cognition present in all animals: common sense. Current AI systems, including those designed for complex tasks like autonomous driving, problem-solving challenges such as the Abstraction and Reasoning Corpus (ARC), and conversational benchmarks like the Turing Test, often lack the ability to adapt to new situations without extensive prior knowledge. This manuscript argues that integrating common sense into AI systems is essential for achieving true autonomy and unlocking the full societal and commercial value of AI. We propose a shift in the order of knowledge acquisition emphasizing the importance of developing AI systems that start from minimal prior knowledge and are capable of contextual learning, adaptive reasoning, and embodiment -- even within abstract domains. Additionally, we highlight the need to rethink the AI software stack to address this foundational challenge. Without common sense, AI systems may never reach true autonomy, instead exhibiting asymptotic performance that approaches theoretical ideals like AIXI but remains unattainable in practice due to infinite resource and computation requirements. While scaling AI models and passing benchmarks like the Turing Test have brought significant advancements in applications that do not require autonomy, these approaches alone are insufficient to achieve autonomous AI with common sense. By redefining existing benchmarks and challenges to enforce constraints that require genuine common sense, and by broadening our understanding of embodiment to include both physical and abstract domains, we can encourage the development of AI systems better equipped to handle the complexities of real-world and abstract environments.

  • 1 authors
·
Jan 11