new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 9

Visual Abstract Thinking Empowers Multimodal Reasoning

Images usually convey richer detail than text, but often include redundant information which potentially downgrades multimodal reasoning performance. When faced with lengthy or complex messages, humans tend to employ abstract thinking to convert them into simple and concise abstracts. Inspired by this cognitive strategy, we introduce Visual Abstract Thinking (VAT), a novel thinking paradigm that prompts Multimodal Large Language Models (MLLMs) with visual abstract instead of explicit verbal thoughts or elaborate guidance, permitting a more concentrated visual reasoning mechanism. Explicit thinking, such as Chain-of-thought (CoT) or tool-augmented approaches, increases the complexity of reasoning process via inserting verbose intermediate steps, external knowledge or visual information. In contrast, VAT reduces redundant visual information and encourages models to focus their reasoning on more essential visual elements. Experimental results show that VAT consistently empowers different models, and achieves an average gain of 17% over GPT-4o baseline by employing diverse types of visual abstracts, demonstrating that VAT can enhance visual reasoning abilities for MLLMs regarding conceptual, structural and relational reasoning tasks. VAT is also compatible with CoT in knowledge-intensive multimodal reasoning tasks. These findings highlight the effectiveness of visual reasoning via abstract thinking and encourage further exploration of more diverse reasoning paradigms from the perspective of human cognition.

  • 7 authors
·
May 26

Monet: Reasoning in Latent Visual Space Beyond Images and Language

"Thinking with images" has emerged as an effective paradigm for advancing visual reasoning, extending beyond text-only chains of thought by injecting visual evidence into intermediate reasoning steps. However, existing methods fall short of human-like abstract visual thinking, as their flexibility is fundamentally limited by external tools. In this work, we introduce Monet, a training framework that enables multimodal large language models (MLLMs) to reason directly within the latent visual space by generating continuous embeddings that function as intermediate visual thoughts. We identify two core challenges in training MLLMs for latent visual reasoning: high computational cost in latent-vision alignment and insufficient supervision over latent embeddings, and address them with a three-stage distillation-based supervised fine-tuning (SFT) pipeline. We further reveal a limitation of applying GRPO to latent reasoning: it primarily enhances text-based reasoning rather than latent reasoning. To overcome this, we propose VLPO (Visual-latent Policy Optimization), a reinforcement learning method that explicitly incorporates latent embeddings into policy gradient updates. To support SFT, we construct Monet-SFT-125K, a high-quality text-image interleaved CoT dataset containing 125K real-world, chart, OCR, and geometry CoTs. Our model, Monet-7B, shows consistent gains across real-world perception and reasoning benchmarks and exhibits strong out-of-distribution generalization on challenging abstract visual reasoning tasks. We also empirically analyze the role of each training component and discuss our early unsuccessful attempts, providing insights for future developments in visual latent reasoning. Our model, data, and code are available at https://github.com/NOVAglow646/Monet.

  • 8 authors
·
Nov 26 2

Coherent Multimodal Reasoning with Iterative Self-Evaluation for Vision-Language Models

Despite significant advancements, current large language models (LLMs) and vision-language models (LVLMs) continue to struggle with complex, multi-step, cross-modal common sense reasoning tasks, often exhibiting a lack of "deliberative thinking." They tend to rely on superficial associations rather than deep, chained inference, particularly when integrating visual information with abstract concepts. To address this, we propose the Coherent Multimodal Reasoning Framework (CMRF), a novel approach that enhances LVLMs' common sense reasoning capabilities through an iterative, self-evaluating inference mechanism. CMRF mimics human problem-solving by decomposing complex queries, generating step-by-step inferences, and self-correcting errors. Our framework integrates three key modules: a Reasoning Decomposition Unit (RDU) for breaking down problems into sub-questions, a Contextual Inference Engine (CIE) for contextual inference, and a Coherence Assessment Module (CAM) for evaluating logical consistency and confidence. Coupled with an Adaptive Iterative Refinement strategy, CMRF systematically refines its reasoning paths. Built upon LLaVA-1.6-34B and trained on a novel Multimodal Daily Activity Reasoning (MDAR) dataset, CMRF achieves state-of-the-art performance among open-source LVLMs on challenging benchmarks like VCR, A-OKVQA, and DailyLife-MRC. It attains an average accuracy of 69.4%, surpassing the best open-source baseline by +2.4 percentage points, with particular strength in complex reasoning scenarios. Extensive ablation studies and human evaluations confirm the critical contributions of each module and the effectiveness of iterative refinement in fostering more coherent and accurate reasoning.

  • 4 authors
·
Aug 4

FutureSightDrive: Thinking Visually with Spatio-Temporal CoT for Autonomous Driving

Visual language models (VLMs) have attracted increasing interest in autonomous driving due to their powerful reasoning capabilities. However, existing VLMs typically utilize discrete text Chain-of-Thought (CoT) tailored to the current scenario, which essentially represents highly abstract and symbolic compression of visual information, potentially leading to spatio-temporal relationship ambiguity and fine-grained information loss. Is autonomous driving better modeled on real-world simulation and imagination than on pure symbolic logic? In this paper, we propose a spatio-temporal CoT reasoning method that enables models to think visually. First, VLM serves as a world model to generate unified image frame for predicting future world states: where perception results (e.g., lane divider and 3D detection) represent the future spatial relationships, and ordinary future frame represent the temporal evolution relationships. This spatio-temporal CoT then serves as intermediate reasoning steps, enabling the VLM to function as an inverse dynamics model for trajectory planning based on current observations and future predictions. To implement visual generation in VLMs, we propose a unified pretraining paradigm integrating visual generation and understanding, along with a progressive visual CoT enhancing autoregressive image generation. Extensive experimental results demonstrate the effectiveness of the proposed method, advancing autonomous driving towards visual reasoning.

  • 8 authors
·
May 23

Thinking with Generated Images

We present Thinking with Generated Images, a novel paradigm that fundamentally transforms how large multimodal models (LMMs) engage with visual reasoning by enabling them to natively think across text and vision modalities through spontaneous generation of intermediate visual thinking steps. Current visual reasoning with LMMs is constrained to either processing fixed user-provided images or reasoning solely through text-based chain-of-thought (CoT). Thinking with Generated Images unlocks a new dimension of cognitive capability where models can actively construct intermediate visual thoughts, critique their own visual hypotheses, and refine them as integral components of their reasoning process. We demonstrate the effectiveness of our approach through two complementary mechanisms: (1) vision generation with intermediate visual subgoals, where models decompose complex visual tasks into manageable components that are generated and integrated progressively, and (2) vision generation with self-critique, where models generate an initial visual hypothesis, analyze its shortcomings through textual reasoning, and produce refined outputs based on their own critiques. Our experiments on vision generation benchmarks show substantial improvements over baseline approaches, with our models achieving up to 50% (from 38% to 57%) relative improvement in handling complex multi-object scenarios. From biochemists exploring novel protein structures, and architects iterating on spatial designs, to forensic analysts reconstructing crime scenes, and basketball players envisioning strategic plays, our approach enables AI models to engage in the kind of visual imagination and iterative refinement that characterizes human creative, analytical, and strategic thinking. We release our open-source suite at https://github.com/GAIR-NLP/thinking-with-generated-images.

  • 8 authors
·
May 28 3

Whiteboard-of-Thought: Thinking Step-by-Step Across Modalities

When presented with questions involving visual thinking, humans naturally switch reasoning modalities, often forming mental images or drawing visual aids. Large language models have shown promising results in arithmetic and symbolic reasoning by expressing intermediate reasoning in text as a chain of thought, yet struggle to extend this capability to answer text queries that are easily solved by visual reasoning, even with extensive multimodal pretraining. We introduce a simple method, whiteboard-of-thought prompting, to unlock the visual reasoning capabilities of multimodal large language models across modalities. Whiteboard-of-thought prompting provides multimodal large language models with a metaphorical `whiteboard' to draw out reasoning steps as images, then returns these images back to the model for further processing. We find this can be accomplished with no demonstrations or specialized modules, instead leveraging models' existing ability to write code with libraries such as Matplotlib and Turtle. This simple approach shows state-of-the-art results on four difficult natural language tasks that involve visual and spatial reasoning. We identify multiple settings where GPT-4o using chain-of-thought fails dramatically, including more than one where it achieves 0% accuracy, while whiteboard-of-thought enables up to 92% accuracy in these same settings. We present a detailed exploration of where the technique succeeds as well as its sources of error.

  • 3 authors
·
Jun 20, 2024 1

DeepSketcher: Internalizing Visual Manipulation for Multimodal Reasoning

The "thinking with images" paradigm represents a pivotal shift in the reasoning of Vision Language Models (VLMs), moving from text-dominant chain-of-thought to image-interactive reasoning. By invoking visual tools or generating intermediate visual representations, VLMs can iteratively attend to fine-grained regions, enabling deeper image understanding and more faithful multimodal reasoning. As an emerging paradigm, however, it still leaves substantial room for exploration in data construction accuracy, structural design, and broader application scenarios, which offer rich opportunities for advancing multimodal reasoning. To further advance this line of work, we present DeepSketcher, a comprehensive suite comprising both an image-text interleaved dataset and a self-contained model. The dataset contains 31k chain-of-thought (CoT) reasoning trajectories with diverse tool calls and resulting edited images, covering a wide range of data types and manipulation instructions with high annotation accuracy. Building on this resource, we design a model that performs interleaved image-text reasoning and natively generates "visual thoughts" by operating directly in the visual embedding space, rather than invoking external tools and repeatedly re-encoding generated images. This design enables tool-free and more flexible "thinking with images". Extensive experiments on multimodal reasoning benchmarks demonstrate strong performance, validating both the utility of the dataset and the effectiveness of the model design.

  • 6 authors
·
Sep 30

Thinking with Images for Multimodal Reasoning: Foundations, Methods, and Future Frontiers

Recent progress in multimodal reasoning has been significantly advanced by textual Chain-of-Thought (CoT), a paradigm where models conduct reasoning within language. This text-centric approach, however, treats vision as a static, initial context, creating a fundamental "semantic gap" between rich perceptual data and discrete symbolic thought. Human cognition often transcends language, utilizing vision as a dynamic mental sketchpad. A similar evolution is now unfolding in AI, marking a fundamental paradigm shift from models that merely think about images to those that can truly think with images. This emerging paradigm is characterized by models leveraging visual information as intermediate steps in their thought process, transforming vision from a passive input into a dynamic, manipulable cognitive workspace. In this survey, we chart this evolution of intelligence along a trajectory of increasing cognitive autonomy, which unfolds across three key stages: from external tool exploration, through programmatic manipulation, to intrinsic imagination. To structure this rapidly evolving field, our survey makes four key contributions. (1) We establish the foundational principles of the think with image paradigm and its three-stage framework. (2) We provide a comprehensive review of the core methods that characterize each stage of this roadmap. (3) We analyze the critical landscape of evaluation benchmarks and transformative applications. (4) We identify significant challenges and outline promising future directions. By providing this structured overview, we aim to offer a clear roadmap for future research towards more powerful and human-aligned multimodal AI.

  • 15 authors
·
Jun 30 3

MARVEL: Multidimensional Abstraction and Reasoning through Visual Evaluation and Learning

While multi-modal large language models (MLLMs) have shown significant progress on many popular visual reasoning benchmarks, whether they possess abstract visual reasoning abilities remains an open question. Similar to the Sudoku puzzles, abstract visual reasoning (AVR) problems require finding high-level patterns (e.g., repetition constraints) that control the input shapes (e.g., digits) in a specific task configuration (e.g., matrix). However, existing AVR benchmarks only considered a limited set of patterns (addition, conjunction), input shapes (rectangle, square), and task configurations (3 by 3 matrices). To evaluate MLLMs' reasoning abilities comprehensively, we introduce MARVEL, a multidimensional AVR benchmark with 770 puzzles composed of six core knowledge patterns, geometric and abstract shapes, and five different task configurations. To inspect whether the model accuracy is grounded in perception and reasoning, MARVEL complements the general AVR question with perception questions in a hierarchical evaluation framework. We conduct comprehensive experiments on MARVEL with nine representative MLLMs in zero-shot and few-shot settings. Our experiments reveal that all models show near-random performance on the AVR question, with significant performance gaps (40%) compared to humans across all patterns and task configurations. Further analysis of perception questions reveals that MLLMs struggle to comprehend the visual features (near-random performance) and even count the panels in the puzzle ( <45%), hindering their ability for abstract reasoning. We release our entire code and dataset.

  • 8 authors
·
Apr 21, 2024

Latent Sketchpad: Sketching Visual Thoughts to Elicit Multimodal Reasoning in MLLMs

While Multimodal Large Language Models (MLLMs) excel at visual understanding, they often struggle in complex scenarios that require visual planning and imagination. Inspired by how humans use sketching as a form of visual thinking to develop and communicate ideas, we introduce Latent Sketchpad, a framework that equips MLLMs with an internal visual scratchpad. The internal visual representations of MLLMs have traditionally been confined to perceptual understanding. We repurpose them to support generative visual thought without compromising reasoning ability. Building on frontier MLLMs, our approach integrates visual generation directly into their native autoregressive reasoning process. It allows the model to interleave textual reasoning with the generation of visual latents. These latents guide the internal thought process and can be translated into sketch images for interpretability. To realize this, we introduce two components: a Context-Aware Vision Head autoregressively produces visual representations, and a pretrained Sketch Decoder renders these into human-interpretable images. We evaluate the framework on our new dataset MazePlanning. Experiments across various MLLMs show that Latent Sketchpad delivers comparable or even superior reasoning performance to their backbone. It further generalizes across distinct frontier MLLMs, including Gemma3 and Qwen2.5-VL. By extending model's textual reasoning to visual thinking, our framework opens new opportunities for richer human-computer interaction and broader applications. More details and resources are available on our project page: https://latent-sketchpad.github.io/.

microsoft Microsoft
·
Oct 28 1

From Illusion to Intention: Visual Rationale Learning for Vision-Language Reasoning

Recent advances in vision-language reasoning underscore the importance of thinking with images, where models actively ground their reasoning in visual evidence. Yet, prevailing frameworks treat visual actions as optional tools, boosting metrics but leaving reasoning ungrounded and crops ineffective. This gap gives rise to the illusion of thinking with images: models seem visually grounded but rely on context-agnostic actions that neither refine perception nor guide reasoning toward correct answers. We address this problem by reframing visual actions as core reasoning primitives rather than optional tools, which we term visual rationalization, the visual analogue of textual Chain-of-Thought. Building on this insight, we propose Visual Rationale Learning (ViRL), an end-to-end paradigm that grounds training in the visual rationale itself. ViRL integrates (1) Process Supervision with ground-truth rationales, (2) Objective Alignment via step-level reward shaping, and (3) Fine-Grained Credit Assignment to distinguish correct, redundant, and erroneous actions. By ensuring each action contributes meaningfully to the reasoning chain, ViRL enables models to "get the right answer for the right visual reason". Trained purely with end-to-end RL, ViRL achieves state-of-the-art results across benchmarks spanning perception, hallucination, and reasoning. This work establishes visual rationalization as a task-agnostic, process-grounded paradigm for building transparent, verifiable, and trustworthy vision-language models.

  • 9 authors
·
Nov 28

V-Thinker: Interactive Thinking with Images

Empowering Large Multimodal Models (LMMs) to deeply integrate image interaction with long-horizon reasoning capabilities remains a long-standing challenge in this field. Recent advances in vision-centric reasoning explore a promising "Thinking with Images" paradigm for LMMs, marking a shift from image-assisted reasoning to image-interactive thinking. While this milestone enables models to focus on fine-grained image regions, progress remains constrained by limited visual tool spaces and task-specific workflow designs. To bridge this gap, we present V-Thinker, a general-purpose multimodal reasoning assistant that enables interactive, vision-centric thinking through end-to-end reinforcement learning. V-Thinker comprises two key components: (1) a Data Evolution Flywheel that automatically synthesizes, evolves, and verifies interactive reasoning datasets across three dimensions-diversity, quality, and difficulty; and (2) a Visual Progressive Training Curriculum that first aligns perception via point-level supervision, then integrates interactive reasoning through a two-stage reinforcement learning framework. Furthermore, we introduce VTBench, an expert-verified benchmark targeting vision-centric interactive reasoning tasks. Extensive experiments demonstrate that V-Thinker consistently outperforms strong LMM-based baselines in both general and interactive reasoning scenarios, providing valuable insights for advancing image-interactive reasoning applications.

VisReason: A Large-Scale Dataset for Visual Chain-of-Thought Reasoning

Chain-of-Thought (CoT) prompting has proven remarkably effective for eliciting complex reasoning in large language models (LLMs). Yet, its potential in multimodal large language models (MLLMs) remains largely untapped, hindered by the absence of large-scale datasets that capture the rich, spatially grounded reasoning intrinsic to visual understanding. Existing visual-CoT resources are typically small, domain-specific, or lack the human-like stepwise structure necessary for compositional visual reasoning. In this paper, we introduce VisReason, a large-scale dataset designed to advance visual Chain-of-Thought reasoning. VisReason comprises 489K annotated examples spanning four diverse domains, each featuring multi-round, human-like rationales that guide MLLMs through interpretable visual reasoning steps. Building upon this, we curate VisReason-Pro, a 165K subset produced with a stronger expert-level GPT annotator, enriched with detailed reasoning traces and 3D spatial grounding via depth-informed annotations. Fine-tuning the state-of-the-art Qwen2.5-VL model on VisReason and VisReason-Pro yields substantial improvements in step-by-step visual reasoning accuracy, interpretability, and cross-benchmark generalization. These results demonstrate that VisReason equips MLLMs with more systematic and generalizable reasoning capabilities. We envision VisReason as a cornerstone for cultivating human-like visual reasoning, paving the way toward the next generation of multimodal intelligence.

  • 6 authors
·
Nov 21

Thyme: Think Beyond Images

Following OpenAI's introduction of the ``thinking with images'' concept, recent efforts have explored stimulating the use of visual information in the reasoning process to enhance model performance in perception and reasoning tasks. However, to the best of our knowledge, no open-source work currently offers a feature set as rich as proprietary models (O3), which can perform diverse image manipulations and simultaneously enhance logical reasoning capabilities through code. In this paper, we make a preliminary attempt in this direction by introducing Thyme (Think Beyond Images), a novel paradigm for enabling MLLMs to transcend existing ``think with images'' approaches by autonomously generating and executing diverse image processing and computational operations via executable code. This approach not only facilitates a rich, on-the-fly set of image manipulations (e.g., cropping, rotation, contrast enhancement) but also allows for mathematical computations, all while maintaining high autonomy in deciding when and how to apply these operations. We activate this capability through a two-stage training strategy: an initial SFT on a curated dataset of 500K samples to teach code generation, followed by a RL phase to refine decision-making. For the RL stage, we manually collect and design high-resolution question-answer pairs to increase the learning difficulty, and we propose GRPO-ATS (Group Relative Policy Optimization with Adaptive Temperature Sampling), an algorithm that applies distinct temperatures to text and code generation to balance reasoning exploration with code execution precision. We conduct extensive experimental analysis and ablation studies. Comprehensive evaluations on nearly 20 benchmarks show that Thyme yields significant and consistent performance gains, particularly in challenging high-resolution perception and complex reasoning tasks.

  • 20 authors
·
Aug 15 5

DeepEyes: Incentivizing "Thinking with Images" via Reinforcement Learning

Large Vision-Language Models (VLMs) have shown strong capabilities in multimodal understanding and reasoning, yet they are primarily constrained by text-based reasoning processes. However, achieving seamless integration of visual and textual reasoning which mirrors human cognitive processes remains a significant challenge. In particular, effectively incorporating advanced visual input processing into reasoning mechanisms is still an open question. Thus, in this paper, we explore the interleaved multimodal reasoning paradigm and introduce DeepEyes, a model with "thinking with images" capabilities incentivized through end-to-end reinforcement learning without the need for cold-start SFT. Notably, this ability emerges natively within the model itself, leveraging its inherent grounding ability as a tool instead of depending on separate specialized models. Specifically, we propose a tool-use-oriented data selection mechanism and a reward strategy to encourage successful tool-assisted reasoning trajectories. DeepEyes achieves significant performance gains on fine-grained perception and reasoning benchmarks and also demonstrates improvement in grounding, hallucination, and mathematical reasoning tasks. Interestingly, we observe the distinct evolution of tool-calling behavior from initial exploration to efficient and accurate exploitation, and diverse thinking patterns that closely mirror human visual reasoning processes. Code is available at https://github.com/Visual-Agent/DeepEyes.

  • 8 authors
·
May 20 2

Reasoning Limitations of Multimodal Large Language Models. A case study of Bongard Problems

Abstract visual reasoning (AVR) encompasses a suite of tasks whose solving requires the ability to discover common concepts underlying the set of pictures through an analogy-making process, similarly to human IQ tests. Bongard Problems (BPs), proposed in 1968, constitute a fundamental challenge in this domain mainly due to their requirement to combine visual reasoning and verbal description. This work poses a question whether multimodal large language models (MLLMs) inherently designed to combine vision and language are capable of tackling BPs. To this end, we propose a set of diverse MLLM-suited strategies to tackle BPs and examine four popular proprietary MLLMs: GPT-4o, GPT-4 Turbo, Gemini 1.5 Pro, and Claude 3.5 Sonnet, and four open models: InternVL2-8B, LLaVa-1.6 Mistral-7B, Phi-3.5-Vision, and Pixtral 12B. The above MLLMs are compared on three BP datasets: a set of original BP instances relying on synthetic, geometry-based images and two recent datasets based on real-world images, i.e., Bongard-HOI and Bongard-OpenWorld. The experiments reveal significant limitations of MLLMs in solving BPs. In particular, the models struggle to solve the classical set of synthetic BPs, despite their visual simplicity. Though their performance ameliorates on real-world concepts expressed in Bongard-HOI and Bongard-OpenWorld, the models still have difficulty in utilizing new information to improve their predictions, as well as utilizing a dialog context window effectively. To capture the reasons of performance discrepancy between synthetic and real-world AVR domains, we propose Bongard-RWR, a new BP dataset consisting of real-world images that translates concepts from hand-crafted synthetic BPs to real-world concepts. The MLLMs' results on Bongard-RWR suggest that their poor performance on classical BPs is not due to domain specificity but rather reflects their general AVR limitations.

  • 3 authors
·
Nov 2, 2024

Think Visually, Reason Textually: Vision-Language Synergy in ARC

Abstract reasoning from minimal examples remains a core unsolved problem for frontier foundation models such as GPT-5 and Grok 4. These models still fail to infer structured transformation rules from a handful of examples, which is a key hallmark of human intelligence. The Abstraction and Reasoning Corpus for Artificial General Intelligence (ARC-AGI) provides a rigorous testbed for this capability, demanding conceptual rule induction and transfer to novel tasks. Most existing methods treat ARC-AGI as a purely textual reasoning task, overlooking the fact that humans rely heavily on visual abstraction when solving such puzzles. However, our pilot experiments reveal a paradox: naively rendering ARC-AGI grids as images degrades performance due to imprecise rule execution. This leads to our central hypothesis that vision and language possess complementary strengths across distinct reasoning stages: vision supports global pattern abstraction and verification, whereas language specializes in symbolic rule formulation and precise execution. Building on this insight, we introduce two synergistic strategies: (1) Vision-Language Synergy Reasoning (VLSR), which decomposes ARC-AGI into modality-aligned subtasks; and (2) Modality-Switch Self-Correction (MSSC), which leverages vision to verify text-based reasoning for intrinsic error correction. Extensive experiments demonstrate that our approach yields up to a 4.33% improvement over text-only baselines across diverse flagship models and multiple ARC-AGI tasks. Our findings suggest that unifying visual abstraction with linguistic reasoning is a crucial step toward achieving generalizable, human-like intelligence in future foundation models. Source code will be released soon.

Forgotten Polygons: Multimodal Large Language Models are Shape-Blind

Despite strong performance on vision-language tasks, Multimodal Large Language Models (MLLMs) struggle with mathematical problem-solving, with both open-source and state-of-the-art models falling short of human performance on visual-math benchmarks. To systematically examine visual-mathematical reasoning in MLLMs, we (1) evaluate their understanding of geometric primitives, (2) test multi-step reasoning, and (3) explore a potential solution to improve visual reasoning capabilities. Our findings reveal fundamental shortcomings in shape recognition, with top models achieving under 50% accuracy in identifying regular polygons. We analyze these failures through the lens of dual-process theory and show that MLLMs rely on System 1 (intuitive, memorized associations) rather than System 2 (deliberate reasoning). Consequently, MLLMs fail to count the sides of both familiar and novel shapes, suggesting they have neither learned the concept of sides nor effectively process visual inputs. Finally, we propose Visually Cued Chain-of-Thought (VC-CoT) prompting, which enhances multi-step mathematical reasoning by explicitly referencing visual annotations in diagrams, boosting GPT-4o's accuracy on an irregular polygon side-counting task from 7% to 93%. Our findings suggest that System 2 reasoning in MLLMs remains an open problem, and visually-guided prompting is essential for successfully engaging visual reasoning. Code available at: https://github.com/rsinghlab/Shape-Blind.

  • 7 authors
·
Feb 21

When Visualizing is the First Step to Reasoning: MIRA, a Benchmark for Visual Chain-of-Thought

We propose MIRA, a new benchmark designed to evaluate models in scenarios where generating intermediate visual images is essential for successful reasoning. Unlike traditional CoT methods that rely solely on text, tasks in MIRA require models to generate and utilize intermediate images - such as sketches, structural diagrams, or path drawings - to guide their reasoning process. This setup closely mirrors how humans solve complex problems through "drawing to think". To solve this, MIRA focuses on tasks that are intrinsically challenging and involve complex structures, spatial relationships, or reasoning steps that are difficult to express through language alone. To ensure that our evaluation data is of high-quality, we include 546 multimodal problems, annotated with intermediate visual images and final answers. We also propose a unified evaluation protocol for MIRA that spans three levels of evaluation input: direct input with image and question only, text-only CoT input with image and thinking prompts, and Visual-CoT input with both annotated image clues and textual thinking prompts. To probe the upper bound of model capacity on our benchmark, we also report pass@k and majority voting accuracies under different k settings. Experimental results show that existing multimodal large language models, including strongest private models as well as strong open-weight models, perform poorly when relying solely on textual prompts. However, when intermediate visual cues are provided, model performance improves consistently, yielding an average relative gain of 33.7% across all models and tasks. We also probe the upper bound by expanding the search space and designing textual prompts aligned with Visual-CoT, but both yield only limited improvements compared to our Visual-CoT setting. These results underscore the critical role of imagined visual information in enabling successful reasoning on MIRA.

MathCanvas: Intrinsic Visual Chain-of-Thought for Multimodal Mathematical Reasoning

While Large Language Models (LLMs) have excelled in textual reasoning, they struggle with mathematical domains like geometry that intrinsically rely on visual aids. Existing approaches to Visual Chain-of-Thought (VCoT) are often limited by rigid external tools or fail to generate the high-fidelity, strategically-timed diagrams necessary for complex problem-solving. To bridge this gap, we introduce MathCanvas, a comprehensive framework designed to endow unified Large Multimodal Models (LMMs) with intrinsic VCoT capabilities for mathematics. Our approach consists of two phases. First, a Visual Manipulation stage pre-trains the model on a novel 15.2M-pair corpus, comprising 10M caption-to-diagram pairs (MathCanvas-Imagen) and 5.2M step-by-step editing trajectories (MathCanvas-Edit), to master diagram generation and editing. Second, a Strategic Visual-Aided Reasoning stage fine-tunes the model on MathCanvas-Instruct, a new 219K-example dataset of interleaved visual-textual reasoning paths, teaching it when and how to leverage visual aids. To facilitate rigorous evaluation, we introduce MathCanvas-Bench, a challenging benchmark with 3K problems that require models to produce interleaved visual-textual solutions. Our model, BAGEL-Canvas, trained under this framework, achieves an 86% relative improvement over strong LMM baselines on MathCanvas-Bench, demonstrating excellent generalization to other public math benchmarks. Our work provides a complete toolkit-framework, datasets, and benchmark-to unlock complex, human-like visual-aided reasoning in LMMs. Project Page: https://mathcanvas.github.io/

CameraBench: Benchmarking Visual Reasoning in MLLMs via Photography

Large language models (LLMs) and multimodal large language models (MLLMs) have significantly advanced artificial intelligence. However, visual reasoning, reasoning involving both visual and textual inputs, remains underexplored. Recent advancements, including the reasoning models like OpenAI o1 and Gemini 2.0 Flash Thinking, which incorporate image inputs, have opened this capability. In this ongoing work, we focus specifically on photography-related tasks because a photo is a visual snapshot of the physical world where the underlying physics (i.e., illumination, blur extent, etc.) interplay with the camera parameters. Successfully reasoning from the visual information of a photo to identify these numerical camera settings requires the MLLMs to have a deeper understanding of the underlying physics for precise visual comprehension, representing a challenging and intelligent capability essential for practical applications like photography assistant agents. We aim to evaluate MLLMs on their ability to distinguish visual differences related to numerical camera settings, extending a methodology previously proposed for vision-language models (VLMs). Our preliminary results demonstrate the importance of visual reasoning in photography-related tasks. Moreover, these results show that no single MLLM consistently dominates across all evaluation tasks, demonstrating ongoing challenges and opportunities in developing MLLMs with better visual reasoning.

  • 2 authors
·
Apr 14

Reason-RFT: Reinforcement Fine-Tuning for Visual Reasoning

Visual reasoning abilities play a crucial role in understanding complex multimodal data, advancing both domain-specific applications and artificial general intelligence (AGI). Existing methods improve VLM reasoning via Chain-of-Thought (CoT) supervised fine-tuning, using meticulously annotated training data to enhance visual reasoning capabilities. However, this training paradigm may lead to overfitting and cognitive rigidity, restricting the model's ability to transfer visual reasoning skills across domains and limiting its real-world applicability. To address these limitations, we propose Reason-RFT, a novel reinforcement fine-tuning framework that significantly enhances generalization capabilities in visual reasoning tasks. Reason-RFT introduces a two-phase training framework for visual reasoning: (1) Supervised Fine-Tuning (SFT) with curated Chain-of-Thought (CoT) data activates the reasoning potential of Vision-Language Models (VLMs), followed by (2) Group Relative Policy Optimization (GRPO)-based reinforcement learning that generates multiple reasoning-response pairs, significantly enhancing generalization in visual reasoning tasks. To evaluate Reason-RFT's visual reasoning capabilities, we reconstructed a comprehensive dataset spanning visual counting, structure perception, and spatial transformation. Experimental results demonstrate Reasoning-RFT's three key advantages: (1) Performance Enhancement: achieving state-of-the-art results across multiple tasks, outperforming most mainstream open-source and proprietary models; (2) Generalization Superiority: consistently maintaining robust performance across diverse tasks and domains, outperforming alternative training paradigms; (3) Data Efficiency: excelling in few-shot learning scenarios while surpassing full-dataset SFT baselines. Project website: https://tanhuajie.github.io/ReasonRFT

  • 7 authors
·
Mar 26

VisRL: Intention-Driven Visual Perception via Reinforced Reasoning

Visual understanding is inherently intention-driven - humans selectively focus on different regions of a scene based on their goals. Recent advances in large multimodal models (LMMs) enable flexible expression of such intentions through natural language, allowing queries to guide visual reasoning processes. Frameworks like Visual Chain-of-Thought have demonstrated the benefit of incorporating explicit reasoning steps, where the model predicts a focus region before answering a query. However, existing approaches rely heavily on supervised training with annotated intermediate bounding boxes, which severely limits scalability due to the combinatorial explosion of intention-region pairs. To overcome this limitation, we propose VisRL, the first framework that applies reinforcement learning (RL) to the problem of intention-driven visual perception. VisRL optimizes the entire visual reasoning process using only reward signals. By treating intermediate focus selection as an internal decision optimized through trial-and-error, our method eliminates the need for costly region annotations while aligning more closely with how humans learn to perceive the world. Extensive experiments across multiple benchmarks show that VisRL consistently outperforms strong baselines, demonstrating both its effectiveness and its strong generalization across different LMMs. Our code is available at https://github.com/zhangquanchen/VisRL.

  • 3 authors
·
Mar 10

Explain Before You Answer: A Survey on Compositional Visual Reasoning

Compositional visual reasoning has emerged as a key research frontier in multimodal AI, aiming to endow machines with the human-like ability to decompose visual scenes, ground intermediate concepts, and perform multi-step logical inference. While early surveys focus on monolithic vision-language models or general multimodal reasoning, a dedicated synthesis of the rapidly expanding compositional visual reasoning literature is still missing. We fill this gap with a comprehensive survey spanning 2023 to 2025 that systematically reviews 260+ papers from top venues (CVPR, ICCV, NeurIPS, ICML, ACL, etc.). We first formalize core definitions and describe why compositional approaches offer advantages in cognitive alignment, semantic fidelity, robustness, interpretability, and data efficiency. Next, we trace a five-stage paradigm shift: from prompt-enhanced language-centric pipelines, through tool-enhanced LLMs and tool-enhanced VLMs, to recently minted chain-of-thought reasoning and unified agentic VLMs, highlighting their architectural designs, strengths, and limitations. We then catalog 60+ benchmarks and corresponding metrics that probe compositional visual reasoning along dimensions such as grounding accuracy, chain-of-thought faithfulness, and high-resolution perception. Drawing on these analyses, we distill key insights, identify open challenges (e.g., limitations of LLM-based reasoning, hallucination, a bias toward deductive reasoning, scalable supervision, tool integration, and benchmark limitations), and outline future directions, including world-model integration, human-AI collaborative reasoning, and richer evaluation protocols. By offering a unified taxonomy, historical roadmap, and critical outlook, this survey aims to serve as a foundational reference and inspire the next generation of compositional visual reasoning research.

  • 13 authors
·
Aug 24 2

Decoupling Reasoning and Perception: An LLM-LMM Framework for Faithful Visual Reasoning

Significant advancements in the reasoning capabilities of Large Language Models (LLMs) are now driven by test-time scaling laws, particularly those leveraging extended Chain-of-Thought (CoT) reasoning. Inspired by these breakthroughs, researchers have extended these paradigms to Large Multimodal Models (LMMs). However, a critical limitation emerges: as their reasoning chains extend, LMMs increasingly rely on textual logic, progressively losing grounding in the underlying visual information. This leads to reasoning paths that diverge from the image content, culminating in erroneous conclusions. To address this, we introduce a strikingly simple yet effective training-free visual-reasoning pipeline. The core concept is to decouple the reasoning and perception processes. A powerful LLM orchestrates the high-level reasoning, strategically interrogating a LMM to extract specific visual information required for its logical chain. The LMM, in turn, functions exclusively as a visual question-answering engine, supplying the necessary perceptual details on demand. This lightweight, plug-and-play approach requires no additional training or architectural changes. Comprehensive evaluations validate that our framework effectively governs the visual reasoning process, leading to a significant reduction in visually-unfounded reasoning steps and a substantial improvement in reasoning fidelity.

  • 4 authors
·
Sep 27

MINT-CoT: Enabling Interleaved Visual Tokens in Mathematical Chain-of-Thought Reasoning

Chain-of-Thought (CoT) has widely enhanced mathematical reasoning in Large Language Models (LLMs), but it still remains challenging for extending it to multimodal domains. Existing works either adopt a similar textual reasoning for image input, or seek to interleave visual signals into mathematical CoT. However, they face three key limitations for math problem-solving: reliance on coarse-grained box-shaped image regions, limited perception of vision encoders on math content, and dependence on external capabilities for visual modification. In this paper, we propose MINT-CoT, introducing Mathematical INterleaved Tokens for Chain-of-Thought visual reasoning. MINT-CoT adaptively interleaves relevant visual tokens into textual reasoning steps via an Interleave Token, which dynamically selects visual regions of any shapes within math figures. To empower this capability, we construct the MINT-CoT dataset, containing 54K mathematical problems aligning each reasoning step with visual regions at the token level, accompanied by a rigorous data generation pipeline. We further present a three-stage MINT-CoT training strategy, progressively combining text-only CoT SFT, interleaved CoT SFT, and interleaved CoT RL, which derives our MINT-CoT-7B model. Extensive experiments demonstrate the effectiveness of our method for effective visual interleaved reasoning in mathematical domains, where MINT-CoT-7B outperforms the baseline model by +34.08% on MathVista, +28.78% on GeoQA, and +23.2% on MMStar, respectively. Our code and data are available at https://github.com/xinyan-cxy/MINT-CoT

  • 7 authors
·
Jun 5 1

What Makes a Maze Look Like a Maze?

A unique aspect of human visual understanding is the ability to flexibly interpret abstract concepts: acquiring lifted rules explaining what they symbolize, grounding them across familiar and unfamiliar contexts, and making predictions or reasoning about them. While off-the-shelf vision-language models excel at making literal interpretations of images (e.g., recognizing object categories such as tree branches), they still struggle to make sense of such visual abstractions (e.g., how an arrangement of tree branches may form the walls of a maze). To address this challenge, we introduce Deep Schema Grounding (DSG), a framework that leverages explicit structured representations of visual abstractions for grounding and reasoning. At the core of DSG are schemas--dependency graph descriptions of abstract concepts that decompose them into more primitive-level symbols. DSG uses large language models to extract schemas, then hierarchically grounds concrete to abstract components of the schema onto images with vision-language models. The grounded schema is used to augment visual abstraction understanding. We systematically evaluate DSG and different methods in reasoning on our new Visual Abstractions Dataset, which consists of diverse, real-world images of abstract concepts and corresponding question-answer pairs labeled by humans. We show that DSG significantly improves the abstract visual reasoning performance of vision-language models, and is a step toward human-aligned understanding of visual abstractions.

  • 5 authors
·
Sep 12, 2024

Beyond Seeing: Evaluating Multimodal LLMs on Tool-Enabled Image Perception, Transformation, and Reasoning

Multimodal Large Language Models (MLLMs) are increasingly applied in real-world scenarios where user-provided images are often imperfect, requiring active image manipulations such as cropping, editing, or enhancement to uncover salient visual cues. Beyond static visual perception, MLLMs must also think with images: dynamically transforming visual content and integrating it with other tools to solve complex tasks. However, this shift from treating vision as passive context to a manipulable cognitive workspace remains underexplored. Most existing benchmarks still follow a think about images paradigm, where images are regarded as static inputs. To address this gap, we introduce VisualToolBench, a visual tool-use reasoning benchmark that rigorously evaluates MLLMs' ability to perceive, transform, and reason across complex visual-textual tasks under the think-with-images paradigm. VisualToolBench comprises 1,204 challenging, open-ended vision tasks (603 single-turn, 601 multi-turn) spanning across five diverse domains, each paired with detailed rubrics to enable systematic evaluation. Our evaluation shows that current MLLMs struggle with tasks requiring effective integration of vision and general-purpose tools. Even the strongest model (GPT-5-think) reaches only 18.68% pass rate. We further observe divergent tool-use behaviors, with OpenAI models benefiting from diverse image manipulations while Gemini-2.5-pro shows no improvement. By introducing the first benchmark centered on think with images, VisualToolBench offers critical insights for advancing visual intelligence in MLLMs.

  • 11 authors
·
Oct 14

From Perception to Cognition: A Survey of Vision-Language Interactive Reasoning in Multimodal Large Language Models

Multimodal Large Language Models (MLLMs) strive to achieve a profound, human-like understanding of and interaction with the physical world, but often exhibit a shallow and incoherent integration when acquiring information (Perception) and conducting reasoning (Cognition). This disconnect leads to a spectrum of reasoning failures, with hallucination being the most prominent. Collectively, these issues expose a fundamental challenge: the ability to process pixels does not yet confer the ability to construct a coherent, credible internal world model. To systematically dissect and address this challenge, this survey introduces a novel and unified analytical framework: ``From Perception to Cognition." We deconstruct the complex process of vision-language interactive understanding into two interdependent layers: Perception, the foundational ability to accurately extract visual information and achieve fine-grained alignment with textual instructions; and Cognition, the higher-order capability for proactive, multi-step, goal-oriented reasoning built upon this perceptual foundation, the core of which is the formation of a dynamic observe-think-verify reasoning loop. Guided by this framework, this paper systematically analyzes the key bottlenecks of current MLLMs at both layers. It surveys the landscape of cutting-edge methods designed to address these challenges, spanning from techniques that enhance low-level visual representations to those that improve high-level reasoning paradigms. Furthermore, we review critical benchmarks and delineate future research directions. This survey aims to provide the research community with a clear, structured perspective for understanding the intrinsic limitations of current MLLMs and to illuminate the path toward building next-generation models capable of deep reasoning and a genuine understanding of the world.

  • 22 authors
·
Sep 29

Thinking with Video: Video Generation as a Promising Multimodal Reasoning Paradigm

"Thinking with Text" and "Thinking with Images" paradigm significantly improve the reasoning ability of large language models (LLMs) and Vision Language Models (VLMs). However, these paradigms have inherent limitations. (1) Images capture only single moments and fail to represent dynamic processes or continuous changes, and (2) The separation of text and vision as distinct modalities, hindering unified multimodal understanding and generation. To overcome these limitations, we introduce "Thinking with Video", a new paradigm that leverages video generation models, such as Sora-2, to bridge visual and textual reasoning in a unified temporal framework. To support this exploration, we developed the Video Thinking Benchmark (VideoThinkBench). VideoThinkBench encompasses two task categories: (1) vision-centric tasks (e.g., Eyeballing Puzzles), and (2) text-centric tasks (e.g., subsets of GSM8K, MMMU). Our evaluation establishes Sora-2 as a capable reasoner. On vision-centric tasks, Sora-2 is generally comparable to state-of-the-art (SOTA) VLMs, and even surpasses VLMs on several tasks, such as Eyeballing Games. On text-centric tasks, Sora-2 achieves 92% accuracy on MATH, and 75.53% accuracy on MMMU. Furthermore, we systematically analyse the source of these abilities. We also find that self-consistency and in-context learning can improve Sora-2's performance. In summary, our findings demonstrate that the video generation model is the potential unified multimodal understanding and generation model, positions "thinking with video" as a unified multimodal reasoning paradigm.

OpenMOSS-Team OpenMOSS
·
Nov 6 4

Mitigating Visual Forgetting via Take-along Visual Conditioning for Multi-modal Long CoT Reasoning

Recent advancements in Large Language Models (LLMs) have demonstrated enhanced reasoning capabilities, evolving from Chain-of-Thought (CoT) prompting to advanced, product-oriented solutions like OpenAI o1. During our re-implementation of this model, we noticed that in multimodal tasks requiring visual input (e.g., geometry problems), Multimodal LLMs (MLLMs) struggle to maintain focus on the visual information, in other words, MLLMs suffer from a gradual decline in attention to visual information as reasoning progresses, causing text-over-relied outputs. To investigate this, we ablate image inputs during long-chain reasoning. Concretely, we truncate the reasoning process midway, then re-complete the reasoning process with the input image removed. We observe only a ~2% accuracy drop on MathVista's test-hard subset, revealing the model's textual outputs dominate the following reasoning process. Motivated by this, we propose Take-along Visual Conditioning (TVC), a strategy that shifts image input to critical reasoning stages and compresses redundant visual tokens via dynamic pruning. This methodology helps the model retain attention to the visual components throughout the reasoning. Our approach achieves state-of-the-art performance on average across five mathematical reasoning benchmarks (+3.4% vs previous sota), demonstrating the effectiveness of TVC in enhancing multimodal reasoning systems.

  • 4 authors
·
Mar 17 2

ViC-Bench: Benchmarking Visual-Interleaved Chain-of-Thought Capability in MLLMs with Free-Style Intermediate State Representations

Visual-Interleaved Chain-of-Thought (VI-CoT) enables MLLMs to continually update their understanding and decisions based on step-wise intermediate visual states (IVS), much like a human would, which demonstrates impressive success in various tasks, thereby leading to emerged advancements in related benchmarks. Despite promising progress, current benchmarks provide models with relatively fixed IVS, rather than free-style IVS, whch might forcibly distort the original thinking trajectories, failing to evaluate their intrinsic reasoning capabilities. More importantly, existing benchmarks neglect to systematically explore the impact factors that IVS would impart to untamed reasoning performance. To tackle above gaps, we introduce a specialized benchmark termed ViC-Bench, consisting of four representive tasks: maze navigation, jigsaw puzzle, embodied long-horizon planning, and complex counting, where each task has dedicated free-style IVS generation pipeline supporting function calls. To systematically examine VI-CoT capability, we propose a thorough evaluation suite incorporating a progressive three-stage strategy with targeted new metrics. Besides, we establish Incremental Prompting Information Injection (IPII) strategy to ablatively explore the prompting factors for VI-CoT. We extensively conduct evaluations for 18 advanced MLLMs, revealing key insights into their VI-CoT capability. Our proposed benchmark is publicly open at Huggingface.

  • 9 authors
·
May 20

Understand, Think, and Answer: Advancing Visual Reasoning with Large Multimodal Models

Large Multimodal Models (LMMs) have recently demonstrated remarkable visual understanding performance on both vision-language and vision-centric tasks. However, they often fall short in integrating advanced, task-specific capabilities for compositional reasoning, which hinders their progress toward truly competent general vision models. To address this, we present a unified visual reasoning mechanism that enables LMMs to solve complicated compositional problems by leveraging their intrinsic capabilities (e.g. grounding and visual understanding capabilities). Different from the previous shortcut learning mechanism, our approach introduces a human-like understanding-thinking-answering process, allowing the model to complete all steps in a single pass forwarding without the need for multiple inferences or external tools. This design bridges the gap between foundational visual capabilities and general question answering, encouraging LMMs to generate faithful and traceable responses for complex visual reasoning. Meanwhile, we curate 334K visual instruction samples covering both general scenes and text-rich scenes and involving multiple foundational visual capabilities. Our trained model, Griffon-R, has the ability of end-to-end automatic understanding, self-thinking, and reasoning answers. Comprehensive experiments show that Griffon-R not only achieves advancing performance on complex visual reasoning benchmarks including VSR and CLEVR, but also enhances multimodal capabilities across various benchmarks like MMBench and ScienceQA. Data, models, and codes will be release at https://github.com/jefferyZhan/Griffon/tree/master/Griffon-R soon.

  • 7 authors
·
May 27

We-Math: Does Your Large Multimodal Model Achieve Human-like Mathematical Reasoning?

Visual mathematical reasoning, as a fundamental visual reasoning ability, has received widespread attention from the Large Multimodal Models (LMMs) community. Existing benchmarks, such as MathVista and MathVerse, focus more on the result-oriented performance but neglect the underlying principles in knowledge acquisition and generalization. Inspired by human-like mathematical reasoning, we introduce WE-MATH, the first benchmark specifically designed to explore the problem-solving principles beyond end-to-end performance. We meticulously collect and categorize 6.5K visual math problems, spanning 67 hierarchical knowledge concepts and five layers of knowledge granularity. We decompose composite problems into sub-problems according to the required knowledge concepts and introduce a novel four-dimensional metric, namely Insufficient Knowledge (IK), Inadequate Generalization (IG), Complete Mastery (CM), and Rote Memorization (RM), to hierarchically assess inherent issues in LMMs' reasoning process. With WE-MATH, we conduct a thorough evaluation of existing LMMs in visual mathematical reasoning and reveal a negative correlation between solving steps and problem-specific performance. We confirm the IK issue of LMMs can be effectively improved via knowledge augmentation strategies. More notably, the primary challenge of GPT-4o has significantly transitioned from IK to IG, establishing it as the first LMM advancing towards the knowledge generalization stage. In contrast, other LMMs exhibit a marked inclination towards Rote Memorization - they correctly solve composite problems involving multiple knowledge concepts yet fail to answer sub-problems. We anticipate that WE-MATH will open new pathways for advancements in visual mathematical reasoning for LMMs. The WE-MATH data and evaluation code are available at https://github.com/We-Math/We-Math.

  • 18 authors
·
Jul 1, 2024 9

Guiding the Inner Eye: A Framework for Hierarchical and Flexible Visual Grounded Reasoning

Models capable of "thinking with images" by dynamically grounding their reasoning in visual evidence represent a major leap in multimodal AI. However, replicating and advancing this ability is non-trivial, with current methods often trapped between the instability of end-to-end reinforcement learning (RL) and the rigidity of supervised fine-tuning (SFT). This leads to models that either struggle to learn or lack the cognitive flexibility required for complex, real-world scenes. To navigate this dilemma, we introduce GRiP (Guided Reasoning and Perception), a novel two-stage training framework that cultivates robust and flexible visual grounded reasoning by explicitly guiding the model's perceptual focus and logical pathways. GRiP's core lies in its cognitive-enhanced RL stage, which features two key innovations: (1) a Salience-Weighted IoU Reward that incentivizes the model to prioritize the localization of mission-critical objects over trivial distractors, and (2) a Multi-Heuristic Reward that encourages cognitive flexibility by rewarding diverse yet logically valid reasoning pathways. Initialized from the Qwen2.5-VL-7B model, GRiP demonstrates significant performance gains across multiple challenging benchmarks. It achieves state-of-the-art results among open-source models on the highly challenging TreeBench and V* Bench, proving its effectiveness in complex visual reasoning. Our work demonstrates that moving beyond simplistic rewards and instead guiding models with cognitively-inspired signals for what to see and how to think is crucial for unlocking the next level of multimodal intelligence. The code will be made publicly available.

  • 4 authors
·
Nov 27

Bongard-RWR+: Real-World Representations of Fine-Grained Concepts in Bongard Problems

Bongard Problems (BPs) provide a challenging testbed for abstract visual reasoning (AVR), requiring models to identify visual concepts fromjust a few examples and describe them in natural language. Early BP benchmarks featured synthetic black-and-white drawings, which might not fully capture the complexity of real-world scenes. Subsequent BP datasets employed real-world images, albeit the represented concepts are identifiable from high-level image features, reducing the task complexity. Differently, the recently released Bongard-RWR dataset aimed at representing abstract concepts formulated in the original BPs using fine-grained real-world images. Its manual construction, however, limited the dataset size to just 60 instances, constraining evaluation robustness. In this work, we introduce Bongard-RWR+, a BP dataset composed of 5,400 instances that represent original BP abstract concepts using real-world-like images generated via a vision language model (VLM) pipeline. Building on Bongard-RWR, we employ Pixtral-12B to describe manually curated images and generate new descriptions aligned with the underlying concepts, use Flux.1-dev to synthesize images from these descriptions, and manually verify that the generated images faithfully reflect the intended concepts. We evaluate state-of-the-art VLMs across diverse BP formulations, including binary and multiclass classification, as well as textual answer generation. Our findings reveal that while VLMs can recognize coarse-grained visual concepts, they consistently struggle with discerning fine-grained concepts, highlighting limitations in their reasoning capabilities.

  • 3 authors
·
Aug 16

The Jumping Reasoning Curve? Tracking the Evolution of Reasoning Performance in GPT-[n] and o-[n] Models on Multimodal Puzzles

The releases of OpenAI's o1 and o3 mark a significant paradigm shift in Large Language Models towards advanced reasoning capabilities. Notably, o3 outperformed humans in novel problem-solving and skill acquisition on the Abstraction and Reasoning Corpus for Artificial General Intelligence (ARC-AGI). However, this benchmark is limited to symbolic patterns, whereas humans often perceive and reason about multimodal scenarios involving both vision and language data. Thus, there is an urgent need to investigate advanced reasoning capabilities in multimodal tasks. To this end, we track the evolution of the GPT-[n] and o-[n] series models on challenging multimodal puzzles, requiring fine-grained visual perception with abstract or algorithmic reasoning. The superior performance of o1 comes at nearly 750 times the computational cost of GPT-4o, raising concerns about its efficiency. Our results reveal a clear upward trend in reasoning capabilities across model iterations, with notable performance jumps across GPT-series models and subsequently to o1. Nonetheless, we observe that the o1 model still struggles with simple multimodal puzzles requiring abstract reasoning. Furthermore, its performance in algorithmic puzzles remains poor. We plan to continuously track new models in the series and update our results in this paper accordingly. All resources used in this evaluation are openly available https://github.com/declare-lab/LLM-PuzzleTest.

Chain-of-Visual-Thought: Teaching VLMs to See and Think Better with Continuous Visual Tokens

Vision-Language Models (VLMs) excel at reasoning in linguistic space but struggle with perceptual understanding that requires dense visual perception, e.g., spatial reasoning and geometric awareness. This limitation stems from the fact that current VLMs have limited mechanisms to capture dense visual information across spatial dimensions. We introduce Chain-of-Visual-Thought (COVT), a framework that enables VLMs to reason not only in words but also through continuous visual tokens-compact latent representations that encode rich perceptual cues. Within a small budget of roughly 20 tokens, COVT distills knowledge from lightweight vision experts, capturing complementary properties such as 2D appearance, 3D geometry, spatial layout, and edge structure. During training, the VLM with COVT autoregressively predicts these visual tokens to reconstruct dense supervision signals (e.g., depth, segmentation, edges, and DINO features). At inference, the model reasons directly in the continuous visual token space, preserving efficiency while optionally decoding dense predictions for interpretability. Evaluated across more than ten diverse perception benchmarks, including CV-Bench, MMVP, RealWorldQA, MMStar, WorldMedQA, and HRBench, integrating COVT into strong VLMs such as Qwen2.5-VL and LLaVA consistently improves performance by 3% to 16% and demonstrates that compact continuous visual thinking enables more precise, grounded, and interpretable multimodal intelligence.

Reasoning in Computer Vision: Taxonomy, Models, Tasks, and Methodologies

Visual reasoning is critical for a wide range of computer vision tasks that go beyond surface-level object detection and classification. Despite notable advances in relational, symbolic, temporal, causal, and commonsense reasoning, existing surveys often address these directions in isolation, lacking a unified analysis and comparison across reasoning types, methodologies, and evaluation protocols. This survey aims to address this gap by categorizing visual reasoning into five major types (relational, symbolic, temporal, causal, and commonsense) and systematically examining their implementation through architectures such as graph-based models, memory networks, attention mechanisms, and neuro-symbolic systems. We review evaluation protocols designed to assess functional correctness, structural consistency, and causal validity, and critically analyze their limitations in terms of generalizability, reproducibility, and explanatory power. Beyond evaluation, we identify key open challenges in visual reasoning, including scalability to complex scenes, deeper integration of symbolic and neural paradigms, the lack of comprehensive benchmark datasets, and reasoning under weak supervision. Finally, we outline a forward-looking research agenda for next-generation vision systems, emphasizing that bridging perception and reasoning is essential for building transparent, trustworthy, and cross-domain adaptive AI systems, particularly in critical domains such as autonomous driving and medical diagnostics.

  • 3 authors
·
Aug 14

VR-Thinker: Boosting Video Reward Models through Thinking-with-Image Reasoning

Recent advancements in multimodal reward models (RMs) have substantially improved post-training for visual generative models. However, current RMs face inherent limitations: (1) visual inputs consume large context budgets, forcing fewer frames and causing loss of fine-grained details; and (2) all visual information is packed into the initial prompt, exacerbating hallucination and forgetting during chain-of-thought reasoning. To overcome these issues, we introduce VideoReward Thinker (VR-Thinker), a thinking-with-image framework that equips the RM with visual reasoning operations (e.g., select frame) and a configurable visual memory window. This allows the RM to actively acquire and update visual evidence within context limits, improving reasoning fidelity and reliability. We activate visual reasoning via a reinforcement fine-tuning pipeline: (i) Cold Start with curated visual chain-of-thought data to distill basic reasoning skills and operation formatting; (ii) select samples whose per-dimension and overall judgments are all correct, then conduct Rejection sampling Fine-Tuning on these high-quality traces to further enhance reasoning; and (iii) apply Group Relative Policy Optimization (GRPO) to strengthen reasoning. Our approach delivers state-of-the-art accuracy among open-source models on video preference benchmarks, especially for longer videos: a 7B VR-Thinker achieves 80.5% on VideoGen Reward, 82.3% on GenAI-Bench, and 75.6% on MJ-Bench-Video. These results validate the effectiveness and promise of thinking-with-image multimodal reward modeling.

NJU-LINK NJU-LINK Lab
·
Oct 12 2

Image Content Generation with Causal Reasoning

The emergence of ChatGPT has once again sparked research in generative artificial intelligence (GAI). While people have been amazed by the generated results, they have also noticed the reasoning potential reflected in the generated textual content. However, this current ability for causal reasoning is primarily limited to the domain of language generation, such as in models like GPT-3. In visual modality, there is currently no equivalent research. Considering causal reasoning in visual content generation is significant. This is because visual information contains infinite granularity. Particularly, images can provide more intuitive and specific demonstrations for certain reasoning tasks, especially when compared to coarse-grained text. Hence, we propose a new image generation task called visual question answering with image (VQAI) and establish a dataset of the same name based on the classic Tom and Jerry animated series. Additionally, we develop a new paradigm for image generation to tackle the challenges of this task. Finally, we perform extensive experiments and analyses, including visualizations of the generated content and discussions on the potentials and limitations. The code and data are publicly available under the license of CC BY-NC-SA 4.0 for academic and non-commercial usage. The code and dataset are publicly available at: https://github.com/IEIT-AGI/MIX-Shannon/blob/main/projects/VQAI/lgd_vqai.md.

  • 8 authors
·
Dec 12, 2023

Beyond Textual CoT: Interleaved Text-Image Chains with Deep Confidence Reasoning for Image Editing

Image editing with natural language has gained significant popularity, yet existing methods struggle with intricate object intersections and fine-grained spatial relationships due to the lack of an explicit reasoning process. While Chain-of-Thought (CoT) has been explored to enhance reasoning, purely textual CoT or CoT augmented with coordinate information is fundamentally limited in its ability to represent intricate visual layouts and lacks the necessary visual cues to guide the generation of fine-grained, pixel-level details. To address these challenges, we propose Multimodal Reasoning Edit (MURE), a novel framework that shifts the visual editing process from purely text-based reasoning to a series of interleaved textual and visual rationales. Our framework performs image editing using a natively multimodal, interleaved text-image CoT. This approach generates a step-by-step chain of reasoning where a textual description is followed by a corresponding visual cue, such as a positional mask that defined intended edited regions or a representation of new content. Furthermore, to mitigate the hallucination phenomenon of large language models, we introduce Multimodal Deep Confidence (MMDC) reasoning paradigm. This paradigm explores a tree of visual reasoning paths at each step. By pruning low-quality branches using a deep confidence score from a reward model, it ensures the model consistently follows a high-quality trajectory towards the final edited result. The proposed method decomposes complex editing tasks into interdependent sub-tasks, achieving greater precision at each stage and yielding high-fidelity edited results. We define the formulation for interleaved text-image chains and release the first CoT-Edit-14K dataset, comprising 14K high-quality editing examples. Extensive experiments show that our method yields significant improvements across three image editing benchmarks.

  • 12 authors
·
Oct 9

Do Vision-Language Models Really Understand Visual Language?

Visual language is a system of communication that conveys information through symbols, shapes, and spatial arrangements. Diagrams are a typical example of a visual language depicting complex concepts and their relationships in the form of an image. The symbolic nature of diagrams presents significant challenges for building models capable of understanding them. Yet, recent studies seem to suggest that Large Vision-Language Models (LVLMs) can even tackle complex reasoning tasks involving diagrams. In this paper, we investigate this phenomenon by developing a comprehensive test suite to evaluate the diagram comprehension capability of LVLMs. Our test suite uses a variety of questions focused on concept entities and their relationships over a set of synthetic as well as real diagrams across several domains to evaluate the recognition and reasoning abilities of models. Our evaluation of three LVLMs (GPT-4V, GPT-4o, and Gemini) shows that while these models can accurately identify and reason about entities, their ability to understand relationships is notably limited. Further testing reveals that the decent performance on diagram understanding largely stems from leveraging their background knowledge as shortcuts to identify and reason about the relational information. Thus, we conclude that LVLMs have a limited capability for genuine diagram understanding, and their impressive performance in diagram reasoning is an illusion emanating from other confounding factors, such as the background knowledge in the models.

  • 4 authors
·
Sep 30, 2024

Unfolding Spatial Cognition: Evaluating Multimodal Models on Visual Simulations

Spatial cognition is essential for human intelligence, enabling problem-solving through visual simulations rather than solely relying on verbal reasoning. However, existing AI benchmarks primarily assess verbal reasoning, neglecting the complexities of non-verbal, multi-step visual simulation. We introduce STARE(Spatial Transformations and Reasoning Evaluation), a benchmark designed to rigorously evaluate multimodal large language models on tasks better solved through multi-step visual simulation. STARE features 4K tasks spanning foundational geometric transformations (2D and 3D), integrated spatial reasoning (cube net folding and tangram puzzles), and real-world spatial reasoning (perspective and temporal reasoning), reflecting practical cognitive challenges like object assembly, mechanical diagram interpretation, and everyday spatial navigation. Our evaluations show that models excel at reasoning over simpler 2D transformations, but perform close to random chance on more complex tasks like 3D cube net folding and tangram puzzles that require multi-step visual simulations. Humans achieve near-perfect accuracy but take considerable time (up to 28.9s) on complex tasks, significantly speeding up (down by 7.5 seconds on average) with intermediate visual simulations. In contrast, models exhibit inconsistent performance gains from visual simulations, improving on most tasks but declining in specific cases like tangram puzzles (GPT-4o, o1) and cube net folding (Claude-3.5, Gemini-2.0 Flash), indicating that models may not know how to effectively leverage intermediate visual information.

  • 8 authors
·
Jun 5 1

ERGO: Efficient High-Resolution Visual Understanding for Vision-Language Models

Efficient processing of high-resolution images is crucial for real-world vision-language applications. However, existing Large Vision-Language Models (LVLMs) incur substantial computational overhead due to the large number of vision tokens. With the advent of "thinking with images" models, reasoning now extends beyond text to the visual domain. This capability motivates our two-stage "coarse-to-fine" reasoning pipeline: first, a downsampled image is analyzed to identify task-relevant regions; then, only these regions are cropped at full resolution and processed in a subsequent reasoning stage. This approach reduces computational cost while preserving fine-grained visual details where necessary. A major challenge lies in inferring which regions are truly relevant to a given query. Recent related methods often fail in the first stage after input-image downsampling, due to perception-driven reasoning, where clear visual information is required for effective reasoning. To address this issue, we propose ERGO (Efficient Reasoning & Guided Observation) that performs reasoning-driven perception-leveraging multimodal context to determine where to focus. Our model can account for perceptual uncertainty, expanding the cropped region to cover visually ambiguous areas for answering questions. To this end, we develop simple yet effective reward components in a reinforcement learning framework for coarse-to-fine perception. Across multiple datasets, our approach delivers higher accuracy than the original model and competitive methods, with greater efficiency. For instance, ERGO surpasses Qwen2.5-VL-7B on the V* benchmark by 4.7 points while using only 23% of the vision tokens, achieving a 3x inference speedup. The code and models can be found at: https://github.com/nota-github/ERGO.

  • 8 authors
·
Sep 26 2

SFT or RL? An Early Investigation into Training R1-Like Reasoning Large Vision-Language Models

This work revisits the dominant supervised fine-tuning (SFT) then reinforcement learning (RL) paradigm for training Large Vision-Language Models (LVLMs), and reveals a key finding: SFT can significantly undermine subsequent RL by inducing ``pseudo reasoning paths'' imitated from expert models. While these paths may resemble the native reasoning paths of RL models, they often involve prolonged, hesitant, less informative steps, and incorrect reasoning. To systematically study this effect, we introduce VLAA-Thinking, a new multimodal dataset designed to support reasoning in LVLMs. Constructed via a six-step pipeline involving captioning, reasoning distillation, answer rewrite and verification, VLAA-Thinking comprises high-quality, step-by-step visual reasoning traces for SFT, along with a more challenging RL split from the same data source. Using this dataset, we conduct extensive experiments comparing SFT, RL and their combinations. Results show that while SFT helps models learn reasoning formats, it often locks aligned models into imitative, rigid reasoning modes that impede further learning. In contrast, building on the Group Relative Policy Optimization (GRPO) with a novel mixed reward module integrating both perception and cognition signals, our RL approach fosters more genuine, adaptive reasoning behavior. Notably, our model VLAA-Thinker, based on Qwen2.5VL 3B, achieves top-1 performance on Open LMM Reasoning Leaderboard (https://huggingface.co/spaces/opencompass/Open_LMM_Reasoning_Leaderboard) among 4B scale LVLMs, surpassing the previous state-of-the-art by 1.8%. We hope our findings provide valuable insights in developing reasoning-capable LVLMs and can inform future research in this area.

  • 8 authors
·
Apr 10 2

OpenThinkIMG: Learning to Think with Images via Visual Tool Reinforcement Learning

While humans can flexibly leverage interactive visual cognition for complex problem-solving, enabling Large Vision-Language Models (LVLMs) to learn similarly adaptive behaviors with visual tools remains challenging. A significant hurdle is the current lack of standardized infrastructure, which hinders integrating diverse tools, generating rich interaction data, and training robust agents effectively. To address these gaps, we introduce OpenThinkIMG, the first open-source, comprehensive end-to-end framework for tool-augmented LVLMs. It features standardized vision tool interfaces, scalable trajectory generation for policy initialization, and a flexible training environment. Furthermore, considering supervised fine-tuning (SFT) on static demonstrations offers limited policy generalization for dynamic tool invocation, we propose a novel reinforcement learning (RL) framework V-ToolRL to train LVLMs to learn adaptive policies for invoking external vision tools. V-ToolRL enables LVLMs to autonomously discover optimal tool-usage strategies by directly optimizing for task success using feedback from tool interactions. We empirically validate V-ToolRL on challenging chart reasoning tasks. Our RL-trained agent, built upon a Qwen2-VL-2B, significantly outperforms its SFT-initialized counterpart (+28.83 points) and surpasses established supervised tool-learning baselines like Taco and CogCom by an average of +12.7 points. Notably, it also surpasses prominent closed-source models like GPT-4.1 by +8.68 accuracy points. We hope OpenThinkIMG can serve as a foundational framework for advancing dynamic, tool-augmented visual reasoning, helping the community develop AI agents that can genuinely "think with images".

  • 11 authors
·
May 13 3

Autonomous Imagination: Closed-Loop Decomposition of Visual-to-Textual Conversion in Visual Reasoning for Multimodal Large Language Models

Under pure textual modality, Large Language Models (LLMs) have demonstrated remarkable success in complex reasoning tasks by decomposing them into simpler sub-problems. However, Multimodal Large Language Models (MLLMs) still struggle with some seemingly straightforward visual tasks, such as counting and solving jigsaw puzzles. We argue that these tasks challenge the ability of visual-to-textual conversion, where MLLMs convert visual information perceived from the input scene, to textual information for further reasoning and generating the answer. If the complexity of the visual input is beyond the perceptual capability of the MLLMs, without decomposing this conversion process, simply scaling inference-time reasoning cannot solve the task because it repeatedly encounters the same perceptual bottleneck. We propose an approach, autonomous imagination, to enable MLLMs to iteratively modify visual inputs (e.g. isolating objects, rearranging puzzle pieces) into intermediate visual states, decomposing visual-to-textual conversion into closed-loop visual modification steps. We show that, without any retraining, MLLMs can now solve tasks initially beyond their perceptual capability, highlighting that closed-loop visual modification can be an effective way of decomposing the visual reasoning task into solvable substeps. Our code and data are released at https://future-item.github.io/autoimagine-site/.

  • 8 authors
·
Nov 27, 2024

MME-CC: A Challenging Multi-Modal Evaluation Benchmark of Cognitive Capacity

As reasoning models scale rapidly, the essential role of multimodality in human cognition has come into sharp relief, driving a growing need to probe vision-centric cognitive behaviors. Yet, existing multimodal benchmarks either overemphasize textual reasoning or fall short of systematically capturing vision-centric cognitive behaviors, leaving the cognitive capacity of MLLMs insufficiently assessed. To address this limitation, we introduce MME-CC (Multi-Modal Evaluation benchmark of Cognitive Capacity), a vision-grounded benchmark that organizes 11 representative reasoning tasks into three fundamental categories of visual information: spatial, geometric, and knowledge-based reasoning, and provides fine-grained analyses of MLLMs' cognitive capacity across these dimensions. Based on MME-CC, we conduct extensive experiments over 16 representative MLLMs. Our study reveals that closed-source models currently lead overall (e.g., 42.66 for Gemini-2.5-Pro vs. 30.45 for GLM-4.5V), while spatial and geometric reasoning remain broadly weak (less than or equal to 30%). We further identify common error patterns, including orientation mistakes, fragile cross-view identity persistence, and poor adherence to counterfactual instructions, and observe that Chain-of-Thought typically follows a three-stage process (extract -> reason -> verify) with heavy reliance on visual extraction. We hope this work catalyzes a shift toward treating the cognitive capacity of MLLMs as central to both evaluation and model design.

Reinforcing Spatial Reasoning in Vision-Language Models with Interwoven Thinking and Visual Drawing

As textual reasoning with large language models (LLMs) has advanced significantly, there has been growing interest in enhancing the multimodal reasoning capabilities of large vision-language models (LVLMs). However, existing methods primarily approach multimodal reasoning in a straightforward, text-centric manner, where both reasoning and answer derivation are conducted purely through text, with the only difference being the presence of multimodal input. As a result, these methods often encounter fundamental limitations in spatial reasoning tasks that demand precise geometric understanding and continuous spatial tracking-capabilities that humans achieve through mental visualization and manipulation. To address the limitations, we propose drawing to reason in space, a novel paradigm that enables LVLMs to reason through elementary drawing operations in the visual space. By equipping models with basic drawing operations, including annotating bounding boxes and drawing auxiliary lines, we empower them to express and analyze spatial relationships through direct visual manipulation, meanwhile avoiding the performance ceiling imposed by specialized perception tools in previous tool-integrated reasoning approaches. To cultivate this capability, we develop a three-stage training framework: cold-start training with synthetic data to establish basic drawing abilities, reflective rejection sampling to enhance self-reflection behaviors, and reinforcement learning to directly optimize for target rewards. Extensive experiments demonstrate that our model, named VILASR, consistently outperforms existing methods across diverse spatial reasoning benchmarks, involving maze navigation, static spatial reasoning, video-based reasoning, and multi-view-based reasoning tasks, with an average improvement of 18.4%.

  • 8 authors
·
Jun 11

Can World Simulators Reason? Gen-ViRe: A Generative Visual Reasoning Benchmark

While Chain-of-Thought (CoT) prompting enables sophisticated symbolic reasoning in LLMs, it remains confined to discrete text and cannot simulate the continuous, physics-governed dynamics of the real world. Recent video generation models have emerged as potential world simulators through Chain-of-Frames (CoF) reasoning -- materializing thought as frame-by-frame visual sequences, with each frame representing a physically-grounded reasoning step. Despite compelling demonstrations, a challenge persists: existing benchmarks, focusing on fidelity or alignment, do not assess CoF reasoning and thus cannot measure core cognitive abilities in multi-step planning, algorithmic logic, or abstract pattern extrapolation. This evaluation void prevents systematic understanding of model capabilities and principled guidance for improvement. We introduce Gen-ViRe (Generative Visual Reasoning Benchmark), a framework grounded in cognitive science and real-world AI applications, which decomposes CoF reasoning into six cognitive dimensions -- from perceptual logic to abstract planning -- and 24 subtasks. Through multi-source data curation, minimal prompting protocols, and hybrid VLM-assisted evaluation with detailed criteria, Gen-ViRe delivers the first quantitative assessment of video models as reasoners. Our experiments on SOTA systems reveal substantial discrepancies between impressive visual quality and actual reasoning depth, establishing baselines and diagnostic tools to advance genuine world simulators.

  • 5 authors
·
Nov 17 3

CodePlot-CoT: Mathematical Visual Reasoning by Thinking with Code-Driven Images

Recent advances in Large Language Models (LLMs) and Vision Language Models (VLMs) have shown significant progress in mathematical reasoning, yet they still face a critical bottleneck with problems requiring visual assistance, such as drawing auxiliary lines or plotting functions to solve the problems. Most LLMs and VLMs are constrained to text-only reasoning chains, while multimodal unified models that can generate interleaved text and images lack the necessary precision and controllability for such tasks. To address this, we propose CodePlot-CoT, a code-driven Chain-of-Thought paradigm for "thinking with images" in mathematics. Our approach leverages the VLM to generate text reasoning as well as executable plotting code, which is then rendered into images as "visual thought", to solve mathematical problems. To achieve this, we first construct Math-VR, the first large-scale, bilingual dataset and benchmark for Mathematics problems with Visual Reasoning, comprising 178K samples. Second, to create high-quality training data, we develop a state-of-the-art image-to-code converter specialized for parsing complex mathematical figures into codes. Finally, using these training data, we train the CodePlot-CoT model for solving mathematical problems. Experimental results show that our model achieves up to 21% increase over base model on our new benchmark, fully validating the efficacy of our proposed code-driven reasoning paradigm. Our work opens a new direction for multimodal mathematical reasoning and provides the community with the first large-scale dataset, comprehensive benchmark, and strong approach for such problems. To facilitate future research, we make our datasets, code, and pretrained models publicly available at https://github.com/HKU-MMLab/Math-VR-CodePlot-CoT.

SridBench: Benchmark of Scientific Research Illustration Drawing of Image Generation Model

Recent years have seen rapid advances in AI-driven image generation. Early diffusion models emphasized perceptual quality, while newer multimodal models like GPT-4o-image integrate high-level reasoning, improving semantic understanding and structural composition. Scientific illustration generation exemplifies this evolution: unlike general image synthesis, it demands accurate interpretation of technical content and transformation of abstract ideas into clear, standardized visuals. This task is significantly more knowledge-intensive and laborious, often requiring hours of manual work and specialized tools. Automating it in a controllable, intelligent manner would provide substantial practical value. Yet, no benchmark currently exists to evaluate AI on this front. To fill this gap, we introduce SridBench, the first benchmark for scientific figure generation. It comprises 1,120 instances curated from leading scientific papers across 13 natural and computer science disciplines, collected via human experts and MLLMs. Each sample is evaluated along six dimensions, including semantic fidelity and structural accuracy. Experimental results reveal that even top-tier models like GPT-4o-image lag behind human performance, with common issues in text/visual clarity and scientific correctness. These findings highlight the need for more advanced reasoning-driven visual generation capabilities.

  • 7 authors
·
May 28 2

ROVER: Benchmarking Reciprocal Cross-Modal Reasoning for Omnimodal Generation

Unified multimodal models (UMMs) have emerged as a powerful paradigm for seamlessly unifying text and image understanding and generation. However, prevailing evaluations treat these abilities in isolation, such that tasks with multimodal inputs and outputs are scored primarily through unimodal reasoning, i.e., textual benchmarks emphasize language-based reasoning, while visual benchmarks emphasize reasoning outcomes manifested in the pixels. We introduce ROVER to address this pressing need to test reciprocal cross-modal reasoning, the use of one modality to guide, verify, or refine outputs in the other, an ability central to the vision of unified multimodal intelligence. ROVER is a human-annotated benchmark that explicitly targets reciprocal cross-modal reasoning, which contains 1312 tasks grounded in 1876 images, spanning two complementary settings. Verbally-augmented reasoning for visual generation evaluates whether models can use verbal prompts and reasoning chains to guide faithful image synthesis. Visually-augmented reasoning for verbal generation evaluates whether models can generate intermediate visualizations that strengthen their own reasoning processes for question answering. Experiments on 17 unified models reveal two key findings: (i) Cross-modal reasoning determines visual generation quality, with interleaved models significantly outperforming non-interleaved ones; notably, combining strong unimodal models fails to achieve comparable reasoning. (ii) Models show dissociation between physical and symbolic reasoning: they succeed at interpreting perceptual concepts literally but fail to construct visual abstractions for symbolic tasks, where faulty reasoning harms performance. These results highlight reciprocal cross-modal reasoning as a critical frontier for enabling true omnimodal generation.

Artemis: Structured Visual Reasoning for Perception Policy Learning

Recent reinforcement-learning frameworks for visual perception policy have begun to incorporate intermediate reasoning chains expressed in natural language. Empirical observations indicate that such purely linguistic intermediate reasoning often reduces performance on perception tasks. We argue that the core issue lies not in reasoning per se but in the form of reasoning: while these chains perform semantic reasoning in an unstructured linguistic space, visual perception requires reasoning in a spatial and object-centric space. In response, we introduce Artemis, a perception-policy learning framework that performs structured proposal-based reasoning, where each intermediate step is represented as a (label, bounding-box) pair capturing a verifiable visual state. This design enables explicit tracking of intermediate states, direct supervision for proposal quality, and avoids ambiguity introduced by language-based reasoning. Artemis is built on Qwen2.5-VL-3B, achieves strong performance on grounding and detection task and exhibits substantial generalization to counting and geometric-perception tasks. The consistent improvements across these diverse settings confirm that aligning reasoning with spatial representations enhances perception-policy learning. Owing to its strengthened visual reasoning, Artemis also achieves competitive performance on general MLLM benchmarks, illustrating that spatially grounded reasoning provides a principled route toward scalable and general perception policies.

  • 8 authors
·
Dec 1 2

VisualPuzzles: Decoupling Multimodal Reasoning Evaluation from Domain Knowledge

Current multimodal benchmarks often conflate reasoning with domain-specific knowledge, making it difficult to isolate and evaluate general reasoning abilities in non-expert settings. To address this, we introduce VisualPuzzles, a benchmark that targets visual reasoning while deliberately minimizing reliance on specialized knowledge. VisualPuzzles consists of diverse questions spanning five categories: algorithmic, analogical, deductive, inductive, and spatial reasoning. One major source of our questions is manually translated logical reasoning questions from the Chinese Civil Service Examination. Experiments show that VisualPuzzles requires significantly less intensive domain-specific knowledge and more complex reasoning compared to benchmarks like MMMU, enabling us to better evaluate genuine multimodal reasoning. Evaluations show that state-of-the-art multimodal large language models consistently lag behind human performance on VisualPuzzles, and that strong performance on knowledge-intensive benchmarks does not necessarily translate to success on reasoning-focused, knowledge-light tasks. Additionally, reasoning enhancements such as scaling up inference compute (with "thinking" modes) yield inconsistent gains across models and task types, and we observe no clear correlation between model size and performance. We also found that models exhibit different reasoning and answering patterns on VisualPuzzles compared to benchmarks with heavier emphasis on knowledge. VisualPuzzles offers a clearer lens through which to evaluate reasoning capabilities beyond factual recall and domain knowledge.

  • 6 authors
·
Apr 14 2

Fast or Slow? Integrating Fast Intuition and Deliberate Thinking for Enhancing Visual Question Answering

Multimodal large language models (MLLMs) still struggle with complex reasoning tasks in Visual Question Answering (VQA). While current methods have advanced by incorporating visual prompts, our study uncovers critical limitations: these approaches indiscriminately annotate all detected objects for every visual question, generating excessive visual markers that degrade task performance. This issue stems primarily from a lack of focus on key visual elements, raising two important questions: Are all objects equally important, and do all questions require visual prompts? Motivated by Dual Process Theory, which distinguishes between instinctive and deliberate cognitive modes in human reasoning, we propose FOCUS, a plug-and-play approach that dynamically adapts to the complexity of questions, combining fast intuitive judgments with deliberate analytical reasoning to enhance the vision-language reasoning capability of the MLLM. For straightforward questions, FOCUS supports efficient zero-shot reasoning. For more complex tasks, it employs the conceptualizing before observation strategy to highlight critical elements. Extensive experiments on four benchmarks, ScienceQA, TextQA, VizWiz, and MME, demonstrate that FOCUS consistently improves the performance of both open-source and black-box MLLMs, achieving significant gains across all datasets. Ablation studies further validate the importance of combining diverse cognitive strategies with refined visual information for superior performance. Code will be released.

  • 5 authors
·
May 31

GThinker: Towards General Multimodal Reasoning via Cue-Guided Rethinking

Despite notable advancements in multimodal reasoning, leading Multimodal Large Language Models (MLLMs) still underperform on vision-centric multimodal reasoning tasks in general scenarios. This shortfall stems from their predominant reliance on logic- and knowledge-based slow thinking strategies, while effective for domains like math and science, fail to integrate visual information effectively during reasoning. Consequently, these models often fail to adequately ground visual cues, resulting in suboptimal performance in tasks that require multiple plausible visual interpretations and inferences. To address this, we present GThinker (General Thinker), a novel reasoning MLLM excelling in multimodal reasoning across general scenarios, mathematics, and science. GThinker introduces Cue-Rethinking, a flexible reasoning pattern that grounds inferences in visual cues and iteratively reinterprets these cues to resolve inconsistencies. Building on this pattern, we further propose a two-stage training pipeline, including pattern-guided cold start and incentive reinforcement learning, designed to enable multimodal reasoning capabilities across domains. Furthermore, to support the training, we construct GThinker-11K, comprising 7K high-quality, iteratively-annotated reasoning paths and 4K curated reinforcement learning samples, filling the data gap toward general multimodal reasoning. Extensive experiments demonstrate that GThinker achieves 81.5% on the challenging comprehensive multimodal reasoning benchmark M^3CoT, surpassing the latest O4-mini model. It also shows an average improvement of 2.1% on general scenario multimodal reasoning benchmarks, while maintaining on-par performance in mathematical reasoning compared to counterpart advanced reasoning models. The code, model, and data will be released soon at https://github.com/jefferyZhan/GThinker.

  • 13 authors
·
Jun 1

A Comprehensive Evaluation of GPT-4V on Knowledge-Intensive Visual Question Answering

The emergence of multimodal large models (MLMs) has significantly advanced the field of visual understanding, offering remarkable capabilities in the realm of visual question answering (VQA). Yet, the true challenge lies in the domain of knowledge-intensive VQA tasks, which necessitate not just recognition of visual elements, but also a deep comprehension of the visual information in conjunction with a vast repository of learned knowledge. To uncover such capabilities of MLMs, particularly the newly introduced GPT-4V and Gemini, we provide an in-depth evaluation from three perspectives: 1) Commonsense Knowledge, which assesses how well models can understand visual cues and connect to general knowledge; 2) Fine-grained World Knowledge, which tests the model's skill in reasoning out specific knowledge from images, showcasing their proficiency across various specialized fields; 3) Comprehensive Knowledge with Decision-making Rationales, which examines model's capability to provide logical explanations for its inference, facilitating a deeper analysis from the interpretability perspective. Additionally, we utilize a visual knowledge-enhanced training strategy and multimodal retrieval-augmented generation approach to enhance MLMs, highlighting the future need for advancements in this research direction. Extensive experiments indicate that: a) GPT-4V demonstrates enhanced explanation generation when using composite images as few-shots; b) GPT-4V and other MLMs produce severe hallucinations when dealing with world knowledge; c) Visual knowledge enhanced training and prompting technicals present potential to improve performance. Codes: https://github.com/HITsz-TMG/Cognitive-Visual-Language-Mapper

  • 8 authors
·
Nov 13, 2023

Visionary-R1: Mitigating Shortcuts in Visual Reasoning with Reinforcement Learning

Learning general-purpose reasoning capabilities has long been a challenging problem in AI. Recent research in large language models (LLMs), such as DeepSeek-R1, has shown that reinforcement learning techniques like GRPO can enable pre-trained LLMs to develop reasoning capabilities using simple question-answer pairs. In this paper, we aim to train visual language models (VLMs) to perform reasoning on image data through reinforcement learning and visual question-answer pairs, without any explicit chain-of-thought (CoT) supervision. Our findings indicate that simply applying reinforcement learning to a VLM -- by prompting the model to produce a reasoning chain before providing an answer -- can lead the model to develop shortcuts from easy questions, thereby reducing its ability to generalize across unseen data distributions. We argue that the key to mitigating shortcut learning is to encourage the model to interpret images prior to reasoning. Therefore, we train the model to adhere to a caption-reason-answer output format: initially generating a detailed caption for an image, followed by constructing an extensive reasoning chain. When trained on 273K CoT-free visual question-answer pairs and using only reinforcement learning, our model, named Visionary-R1, outperforms strong multimodal models, such as GPT-4o, Claude3.5-Sonnet, and Gemini-1.5-Pro, on multiple visual reasoning benchmarks.

  • 5 authors
·
May 20 2

Multimodal Self-Instruct: Synthetic Abstract Image and Visual Reasoning Instruction Using Language Model

Although most current large multimodal models (LMMs) can already understand photos of natural scenes and portraits, their understanding of abstract images, e.g., charts, maps, or layouts, and visual reasoning capabilities remains quite rudimentary. They often struggle with simple daily tasks, such as reading time from a clock, understanding a flowchart, or planning a route using a road map. In light of this, we design a multi-modal self-instruct, utilizing large language models and their code capabilities to synthesize massive abstract images and visual reasoning instructions across daily scenarios. Our strategy effortlessly creates a multimodal benchmark with 11,193 instructions for eight visual scenarios: charts, tables, simulated maps, dashboards, flowcharts, relation graphs, floor plans, and visual puzzles. This benchmark, constructed with simple lines and geometric elements, exposes the shortcomings of most advanced LMMs like Claude-3.5-Sonnet and GPT-4o in abstract image understanding, spatial relations reasoning, and visual element induction. Besides, to verify the quality of our synthetic data, we fine-tune an LMM using 62,476 synthetic chart, table and road map instructions. The results demonstrate improved chart understanding and map navigation performance, and also demonstrate potential benefits for other visual reasoning tasks. Our code is available at: https://github.com/zwq2018/Multi-modal-Self-instruct.

  • 11 authors
·
Jul 9, 2024 3

Pixel Reasoner: Incentivizing Pixel-Space Reasoning with Curiosity-Driven Reinforcement Learning

Chain-of-thought reasoning has significantly improved the performance of Large Language Models (LLMs) across various domains. However, this reasoning process has been confined exclusively to textual space, limiting its effectiveness in visually intensive tasks. To address this limitation, we introduce the concept of reasoning in the pixel-space. Within this novel framework, Vision-Language Models (VLMs) are equipped with a suite of visual reasoning operations, such as zoom-in and select-frame. These operations enable VLMs to directly inspect, interrogate, and infer from visual evidences, thereby enhancing reasoning fidelity for visual tasks. Cultivating such pixel-space reasoning capabilities in VLMs presents notable challenges, including the model's initially imbalanced competence and its reluctance to adopt the newly introduced pixel-space operations. We address these challenges through a two-phase training approach. The first phase employs instruction tuning on synthesized reasoning traces to familiarize the model with the novel visual operations. Following this, a reinforcement learning (RL) phase leverages a curiosity-driven reward scheme to balance exploration between pixel-space reasoning and textual reasoning. With these visual operations, VLMs can interact with complex visual inputs, such as information-rich images or videos to proactively gather necessary information. We demonstrate that this approach significantly improves VLM performance across diverse visual reasoning benchmarks. Our 7B model, \model, achieves 84\% on V* bench, 74\% on TallyQA-Complex, and 84\% on InfographicsVQA, marking the highest accuracy achieved by any open-source model to date. These results highlight the importance of pixel-space reasoning and the effectiveness of our framework.

  • 5 authors
·
May 21 2

VGR: Visual Grounded Reasoning

In the field of multimodal chain-of-thought (CoT) reasoning, existing approaches predominantly rely on reasoning on pure language space, which inherently suffers from language bias and is largely confined to math or science domains. This narrow focus limits their ability to handle complex visual reasoning tasks that demand comprehensive understanding of image details. To address these limitations, this paper introduces VGR, a novel reasoning multimodal large language model (MLLM) with enhanced fine-grained visual perception capabilities. Unlike traditional MLLMs that answer the question or reasoning solely on the language space, our VGR first detects relevant regions that may help to solve problems, and then provides precise answers based on replayed image regions. To achieve this, we conduct a large-scale SFT dataset called VGR -SFT that contains reasoning data with mixed vision grounding and language deduction. The inference pipeline of VGR allows the model to choose bounding boxes for visual reference and a replay stage is introduced to integrates the corresponding regions into the reasoning process, enhancing multimodel comprehension. Experiments on the LLaVA-NeXT-7B baseline show that VGR achieves superior performance on multi-modal benchmarks requiring comprehensive image detail understanding. Compared to the baseline, VGR uses only 30\% of the image token count while delivering scores of +4.1 on MMStar, +7.1 on AI2D, and a +12.9 improvement on ChartQA.

  • 11 authors
·
Jun 13 2