TabKAN: Advancing Tabular Data Analysis using Kolmogorov-Arnold Network
Tabular data analysis presents unique challenges that arise from heterogeneous feature types, missing values, and complex feature interactions. While traditional machine learning methods like gradient boosting often outperform deep learning, recent advancements in neural architectures offer promising alternatives. In this study, we introduce TabKAN, a novel framework for tabular data modeling based on Kolmogorov-Arnold Networks (KANs). Unlike conventional deep learning models, KANs use learnable activation functions on edges, which improves both interpretability and training efficiency. TabKAN incorporates modular KAN-based architectures designed for tabular analysis and proposes a transfer learning framework for knowledge transfer across domains. Furthermore, we develop a model-specific interpretability approach that reduces reliance on post hoc explanations. Extensive experiments on public datasets show that TabKAN achieves superior performance in supervised learning and significantly outperforms classical and Transformer-based models in binary and multi-class classification. The results demonstrate the potential of KAN-based architectures to bridge the gap between traditional machine learning and deep learning for structured data.
