Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeA Survey of Data Agents: Emerging Paradigm or Overstated Hype?
The rapid advancement of large language models (LLMs) has spurred the emergence of data agents--autonomous systems designed to orchestrate Data + AI ecosystems for tackling complex data-related tasks. However, the term "data agent" currently suffers from terminological ambiguity and inconsistent adoption, conflating simple query responders with sophisticated autonomous architectures. This terminological ambiguity fosters mismatched user expectations, accountability challenges, and barriers to industry growth. Inspired by the SAE J3016 standard for driving automation, this survey introduces the first systematic hierarchical taxonomy for data agents, comprising six levels that delineate and trace progressive shifts in autonomy, from manual operations (L0) to a vision of generative, fully autonomous data agents (L5), thereby clarifying capability boundaries and responsibility allocation. Through this lens, we offer a structured review of existing research arranged by increasing autonomy, encompassing specialized data agents for data management, preparation, and analysis, alongside emerging efforts toward versatile, comprehensive systems with enhanced autonomy. We further analyze critical evolutionary leaps and technical gaps for advancing data agents, especially the ongoing L2-to-L3 transition, where data agents evolve from procedural execution to autonomous orchestration. Finally, we conclude with a forward-looking roadmap, envisioning the advent of proactive, generative data agents.
AI-Enhanced Virtual Reality in Medicine: A Comprehensive Survey
With the rapid advance of computer graphics and artificial intelligence technologies, the ways we interact with the world have undergone a transformative shift. Virtual Reality (VR) technology, aided by artificial intelligence (AI), has emerged as a dominant interaction media in multiple application areas, thanks to its advantage of providing users with immersive experiences. Among those applications, medicine is considered one of the most promising areas. In this paper, we present a comprehensive examination of the burgeoning field of AI-enhanced VR applications in medical care and services. By introducing a systematic taxonomy, we meticulously classify the pertinent techniques and applications into three well-defined categories based on different phases of medical diagnosis and treatment: Visualization Enhancement, VR-related Medical Data Processing, and VR-assisted Intervention. This categorization enables a structured exploration of the diverse roles that AI-powered VR plays in the medical domain, providing a framework for a more comprehensive understanding and evaluation of these technologies. To our best knowledge, this is the first systematic survey of AI-powered VR systems in medical settings, laying a foundation for future research in this interdisciplinary domain.
MRI Super-Resolution with Deep Learning: A Comprehensive Survey
High-resolution (HR) magnetic resonance imaging (MRI) is crucial for many clinical and research applications. However, achieving it remains costly and constrained by technical trade-offs and experimental limitations. Super-resolution (SR) presents a promising computational approach to overcome these challenges by generating HR images from more affordable low-resolution (LR) scans, potentially improving diagnostic accuracy and efficiency without requiring additional hardware. This survey reviews recent advances in MRI SR techniques, with a focus on deep learning (DL) approaches. It examines DL-based MRI SR methods from the perspectives of computer vision, computational imaging, inverse problems, and MR physics, covering theoretical foundations, architectural designs, learning strategies, benchmark datasets, and performance metrics. We propose a systematic taxonomy to categorize these methods and present an in-depth study of both established and emerging SR techniques applicable to MRI, considering unique challenges in clinical and research contexts. We also highlight open challenges and directions that the community needs to address. Additionally, we provide a collection of essential open-access resources, tools, and tutorials, available on our GitHub: https://github.com/mkhateri/Awesome-MRI-Super-Resolution. IEEE keywords: MRI, Super-Resolution, Deep Learning, Computational Imaging, Inverse Problem, Survey.
Diffusion Models for Medical Image Analysis: A Comprehensive Survey
Denoising diffusion models, a class of generative models, have garnered immense interest lately in various deep-learning problems. A diffusion probabilistic model defines a forward diffusion stage where the input data is gradually perturbed over several steps by adding Gaussian noise and then learns to reverse the diffusion process to retrieve the desired noise-free data from noisy data samples. Diffusion models are widely appreciated for their strong mode coverage and quality of the generated samples despite their known computational burdens. Capitalizing on the advances in computer vision, the field of medical imaging has also observed a growing interest in diffusion models. To help the researcher navigate this profusion, this survey intends to provide a comprehensive overview of diffusion models in the discipline of medical image analysis. Specifically, we introduce the solid theoretical foundation and fundamental concepts behind diffusion models and the three generic diffusion modelling frameworks: diffusion probabilistic models, noise-conditioned score networks, and stochastic differential equations. Then, we provide a systematic taxonomy of diffusion models in the medical domain and propose a multi-perspective categorization based on their application, imaging modality, organ of interest, and algorithms. To this end, we cover extensive applications of diffusion models in the medical domain. Furthermore, we emphasize the practical use case of some selected approaches, and then we discuss the limitations of the diffusion models in the medical domain and propose several directions to fulfill the demands of this field. Finally, we gather the overviewed studies with their available open-source implementations at https://github.com/amirhossein-kz/Awesome-Diffusion-Models-in-Medical-Imaging.
WildScore: Benchmarking MLLMs in-the-Wild Symbolic Music Reasoning
Recent advances in Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities across various vision-language tasks. However, their reasoning abilities in the multimodal symbolic music domain remain largely unexplored. We introduce WildScore, the first in-the-wild multimodal symbolic music reasoning and analysis benchmark, designed to evaluate MLLMs' capacity to interpret real-world music scores and answer complex musicological queries. Each instance in WildScore is sourced from genuine musical compositions and accompanied by authentic user-generated questions and discussions, capturing the intricacies of practical music analysis. To facilitate systematic evaluation, we propose a systematic taxonomy, comprising both high-level and fine-grained musicological ontologies. Furthermore, we frame complex music reasoning as multiple-choice question answering, enabling controlled and scalable assessment of MLLMs' symbolic music understanding. Empirical benchmarking of state-of-the-art MLLMs on WildScore reveals intriguing patterns in their visual-symbolic reasoning, uncovering both promising directions and persistent challenges for MLLMs in symbolic music reasoning and analysis. We release the dataset and code.
Toward Embodied AGI: A Review of Embodied AI and the Road Ahead
Artificial General Intelligence (AGI) is often envisioned as inherently embodied. With recent advances in robotics and foundational AI models, we stand at the threshold of a new era-one marked by increasingly generalized embodied AI systems. This paper contributes to the discourse by introducing a systematic taxonomy of Embodied AGI spanning five levels (L1-L5). We review existing research and challenges at the foundational stages (L1-L2) and outline the key components required to achieve higher-level capabilities (L3-L5). Building on these insights and existing technologies, we propose a conceptual framework for an L3+ robotic brain, offering both a technical outlook and a foundation for future exploration.
Domain Specialization as the Key to Make Large Language Models Disruptive: A Comprehensive Survey
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). Domain specification techniques are key to make large language models disruptive in many applications. Specifically, to solve these hurdles, there has been a notable increase in research and practices conducted in recent years on the domain specialization of LLMs. This emerging field of study, with its substantial potential for impact, necessitates a comprehensive and systematic review to better summarize and guide ongoing work in this area. In this article, we present a comprehensive survey on domain specification techniques for large language models, an emerging direction critical for large language model applications. First, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. Second, we present an extensive taxonomy of critical application domains that can benefit dramatically from specialized LLMs, discussing their practical significance and open challenges. Last, we offer our insights into the current research status and future trends in this area.
LLM-based Agentic Reasoning Frameworks: A Survey from Methods to Scenarios
Recent advances in the intrinsic reasoning capabilities of large language models (LLMs) have given rise to LLM-based agent systems that exhibit near-human performance on a variety of automated tasks. However, although these systems share similarities in terms of their use of LLMs, different reasoning frameworks of the agent system steer and organize the reasoning process in different ways. In this survey, we propose a systematic taxonomy that decomposes agentic reasoning frameworks and analyze how these frameworks dominate framework-level reasoning by comparing their applications across different scenarios. Specifically, we propose an unified formal language to further classify agentic reasoning systems into single-agent methods, tool-based methods, and multi-agent methods. After that, we provide a comprehensive review of their key application scenarios in scientific discovery, healthcare, software engineering, social simulation, and economics. We also analyze the characteristic features of each framework and summarize different evaluation strategies. Our survey aims to provide the research community with a panoramic view to facilitate understanding of the strengths, suitable scenarios, and evaluation practices of different agentic reasoning frameworks.
PromptEnhancer: A Simple Approach to Enhance Text-to-Image Models via Chain-of-Thought Prompt Rewriting
Recent advancements in text-to-image (T2I) diffusion models have demonstrated remarkable capabilities in generating high-fidelity images. However, these models often struggle to faithfully render complex user prompts, particularly in aspects like attribute binding, negation, and compositional relationships. This leads to a significant mismatch between user intent and the generated output. To address this challenge, we introduce PromptEnhancer, a novel and universal prompt rewriting framework that enhances any pretrained T2I model without requiring modifications to its weights. Unlike prior methods that rely on model-specific fine-tuning or implicit reward signals like image-reward scores, our framework decouples the rewriter from the generator. We achieve this by training a Chain-of-Thought (CoT) rewriter through reinforcement learning, guided by a dedicated reward model we term the AlignEvaluator. The AlignEvaluator is trained to provide explicit and fine-grained feedback based on a systematic taxonomy of 24 key points, which are derived from a comprehensive analysis of common T2I failure modes. By optimizing the CoT rewriter to maximize the reward from our AlignEvaluator, our framework learns to generate prompts that are more precisely interpreted by T2I models. Extensive experiments on the HunyuanImage 2.1 model demonstrate that PromptEnhancer significantly improves image-text alignment across a wide range of semantic and compositional challenges. Furthermore, we introduce a new, high-quality human preference benchmark to facilitate future research in this direction.
AI4Research: A Survey of Artificial Intelligence for Scientific Research
Recent advancements in artificial intelligence (AI), particularly in large language models (LLMs) such as OpenAI-o1 and DeepSeek-R1, have demonstrated remarkable capabilities in complex domains such as logical reasoning and experimental coding. Motivated by these advancements, numerous studies have explored the application of AI in the innovation process, particularly in the context of scientific research. These AI technologies primarily aim to develop systems that can autonomously conduct research processes across a wide range of scientific disciplines. Despite these significant strides, a comprehensive survey on AI for Research (AI4Research) remains absent, which hampers our understanding and impedes further development in this field. To address this gap, we present a comprehensive survey and offer a unified perspective on AI4Research. Specifically, the main contributions of our work are as follows: (1) Systematic taxonomy: We first introduce a systematic taxonomy to classify five mainstream tasks in AI4Research. (2) New frontiers: Then, we identify key research gaps and highlight promising future directions, focusing on the rigor and scalability of automated experiments, as well as the societal impact. (3) Abundant applications and resources: Finally, we compile a wealth of resources, including relevant multidisciplinary applications, data corpora, and tools. We hope our work will provide the research community with quick access to these resources and stimulate innovative breakthroughs in AI4Research.
Towards Holistic Evaluation of Large Audio-Language Models: A Comprehensive Survey
With advancements in large audio-language models (LALMs), which enhance large language models (LLMs) with auditory capabilities, these models are expected to demonstrate universal proficiency across various auditory tasks. While numerous benchmarks have emerged to assess LALMs' performance, they remain fragmented and lack a structured taxonomy. To bridge this gap, we conduct a comprehensive survey and propose a systematic taxonomy for LALM evaluations, categorizing them into four dimensions based on their objectives: (1) General Auditory Awareness and Processing, (2) Knowledge and Reasoning, (3) Dialogue-oriented Ability, and (4) Fairness, Safety, and Trustworthiness. We provide detailed overviews within each category and highlight challenges in this field, offering insights into promising future directions. To the best of our knowledge, this is the first survey specifically focused on the evaluations of LALMs, providing clear guidelines for the community. We will release the collection of the surveyed papers and actively maintain it to support ongoing advancements in the field.
Two Tales of Persona in LLMs: A Survey of Role-Playing and Personalization
The concept of persona, originally adopted in dialogue literature, has re-surged as a promising framework for tailoring large language models (LLMs) to specific context (e.g., personalized search, LLM-as-a-judge). However, the growing research on leveraging persona in LLMs is relatively disorganized and lacks a systematic taxonomy. To close the gap, we present a comprehensive survey to categorize the current state of the field. We identify two lines of research, namely (1) LLM Role-Playing, where personas are assigned to LLMs, and (2) LLM Personalization, where LLMs take care of user personas. Additionally, we introduce existing methods for LLM personality evaluation. To the best of our knowledge, we present the first survey for role-playing and personalization in LLMs under the unified view of persona. We continuously maintain a paper collection to foster future endeavors: https://github.com/MiuLab/PersonaLLM-Survey
Fairness Definitions in Language Models Explained
Language Models (LMs) have demonstrated exceptional performance across various Natural Language Processing (NLP) tasks. Despite these advancements, LMs can inherit and amplify societal biases related to sensitive attributes such as gender and race, limiting their adoption in real-world applications. Therefore, fairness has been extensively explored in LMs, leading to the proposal of various fairness notions. However, the lack of clear agreement on which fairness definition to apply in specific contexts (e.g., medium-sized LMs versus large-sized LMs) and the complexity of understanding the distinctions between these definitions can create confusion and impede further progress. To this end, this paper proposes a systematic survey that clarifies the definitions of fairness as they apply to LMs. Specifically, we begin with a brief introduction to LMs and fairness in LMs, followed by a comprehensive, up-to-date overview of existing fairness notions in LMs and the introduction of a novel taxonomy that categorizes these concepts based on their foundational principles and operational distinctions. We further illustrate each definition through experiments, showcasing their practical implications and outcomes. Finally, we discuss current research challenges and open questions, aiming to foster innovative ideas and advance the field. The implementation and additional resources are publicly available at https://github.com/LavinWong/Fairness-in-Large-Language-Models/tree/main/definitions.
A Survey on Transformers in Reinforcement Learning
Transformer has been considered the dominating neural architecture in NLP and CV, mostly under supervised settings. Recently, a similar surge of using Transformers has appeared in the domain of reinforcement learning (RL), but it is faced with unique design choices and challenges brought by the nature of RL. However, the evolution of Transformers in RL has not yet been well unraveled. In this paper, we seek to systematically review motivations and progress on using Transformers in RL, provide a taxonomy on existing works, discuss each sub-field, and summarize future prospects.
The Prompt Report: A Systematic Survey of Prompting Techniques
Generative Artificial Intelligence (GenAI) systems are being increasingly deployed across all parts of industry and research settings. Developers and end users interact with these systems through the use of prompting or prompt engineering. While prompting is a widespread and highly researched concept, there exists conflicting terminology and a poor ontological understanding of what constitutes a prompt due to the area's nascency. This paper establishes a structured understanding of prompts, by assembling a taxonomy of prompting techniques and analyzing their use. We present a comprehensive vocabulary of 33 vocabulary terms, a taxonomy of 58 text-only prompting techniques, and 40 techniques for other modalities. We further present a meta-analysis of the entire literature on natural language prefix-prompting.
A Taxonomy of Systemic Risks from General-Purpose AI
Through a systematic review of academic literature, we propose a taxonomy of systemic risks associated with artificial intelligence (AI), in particular general-purpose AI. Following the EU AI Act's definition, we consider systemic risks as large-scale threats that can affect entire societies or economies. Starting with an initial pool of 1,781 documents, we analyzed 86 selected papers to identify 13 categories of systemic risks and 50 contributing sources. Our findings reveal a complex landscape of potential threats, ranging from environmental harm and structural discrimination to governance failures and loss of control. Key sources of systemic risk emerge from knowledge gaps, challenges in recognizing harm, and the unpredictable trajectory of AI development. The taxonomy provides a snapshot of current academic literature on systemic risks. This paper contributes to AI safety research by providing a structured groundwork for understanding and addressing the potential large-scale negative societal impacts of general-purpose AI. The taxonomy can inform policymakers in risk prioritization and regulatory development.
Taxonomy-Adaptive Moderation Model with Robust Guardrails for Large Language Models
Large Language Models (LLMs) are typically aligned for safety during the post-training phase; however, they may still generate inappropriate outputs that could potentially pose risks to users. This challenge underscores the need for robust safeguards that operate across both model inputs and outputs. In this work, we introduce Roblox Guard 1.0, a state-of-the-art instruction fine-tuned LLM designed to enhance the safety of LLM systems through comprehensive input-output moderation, using a pipeline of LLMs to enhance moderation capability. Built on the Llama-3.1-8B-Instruct backbone, our model is instruction fine-tuned to generalize across previously unseen safety taxonomies and demonstrates strong performance on out-of-domain safety benchmarks. The instruction fine-tuning process uses a mix of synthetic and open-source safety datasets, augmented with chain-of-thought (CoT) rationales and input inversion to enhance contextual understanding and decision making. To support systematic evaluation, we also release RobloxGuard-Eval, a new benchmark featuring an extensible safety taxonomy to assess the effectiveness of LLM guardrails and moderation frameworks.
FinAuditing: A Financial Taxonomy-Structured Multi-Document Benchmark for Evaluating LLMs
The complexity of the Generally Accepted Accounting Principles (GAAP) and the hierarchical structure of eXtensible Business Reporting Language (XBRL) filings make financial auditing increasingly difficult to automate and verify. While large language models (LLMs) have demonstrated strong capabilities in unstructured text understanding, their ability to reason over structured, interdependent, and taxonomy-driven financial documents remains largely unexplored. To fill this gap, we introduce FinAuditing, the first taxonomy-aligned, structure-aware, multi-document benchmark for evaluating LLMs on financial auditing tasks. Built from real US-GAAP-compliant XBRL filings, FinAuditing defines three complementary subtasks, FinSM for semantic consistency, FinRE for relational consistency, and FinMR for numerical consistency, each targeting a distinct aspect of structured auditing reasoning. We further propose a unified evaluation framework integrating retrieval, classification, and reasoning metrics across these subtasks. Extensive zero-shot experiments on 13 state-of-the-art LLMs reveal that current models perform inconsistently across semantic, relational, and mathematical dimensions, with accuracy drops of up to 60-90% when reasoning over hierarchical multi-document structures. Our findings expose the systematic limitations of modern LLMs in taxonomy-grounded financial reasoning and establish FinAuditing as a foundation for developing trustworthy, structure-aware, and regulation-aligned financial intelligence systems. The benchmark dataset is available at Hugging Face.
Pitfalls in Language Models for Code Intelligence: A Taxonomy and Survey
Modern language models (LMs) have been successfully employed in source code generation and understanding, leading to a significant increase in research focused on learning-based code intelligence, such as automated bug repair, and test case generation. Despite their great potential, language models for code intelligence (LM4Code) are susceptible to potential pitfalls, which hinder realistic performance and further impact their reliability and applicability in real-world deployment. Such challenges drive the need for a comprehensive understanding - not just identifying these issues but delving into their possible implications and existing solutions to build more reliable language models tailored to code intelligence. Based on a well-defined systematic research approach, we conducted an extensive literature review to uncover the pitfalls inherent in LM4Code. Finally, 67 primary studies from top-tier venues have been identified. After carefully examining these studies, we designed a taxonomy of pitfalls in LM4Code research and conducted a systematic study to summarize the issues, implications, current solutions, and challenges of different pitfalls for LM4Code systems. We developed a comprehensive classification scheme that dissects pitfalls across four crucial aspects: data collection and labeling, system design and learning, performance evaluation, and deployment and maintenance. Through this study, we aim to provide a roadmap for researchers and practitioners, facilitating their understanding and utilization of LM4Code in reliable and trustworthy ways.
A Systematic Review on the Evaluation of Large Language Models in Theory of Mind Tasks
In recent years, evaluating the Theory of Mind (ToM) capabilities of large language models (LLMs) has received significant attention within the research community. As the field rapidly evolves, navigating the diverse approaches and methodologies has become increasingly complex. This systematic review synthesizes current efforts to assess LLMs' ability to perform ToM tasks, an essential aspect of human cognition involving the attribution of mental states to oneself and others. Despite notable advancements, the proficiency of LLMs in ToM remains a contentious issue. By categorizing benchmarks and tasks through a taxonomy rooted in cognitive science, this review critically examines evaluation techniques, prompting strategies, and the inherent limitations of LLMs in replicating human-like mental state reasoning. A recurring theme in the literature reveals that while LLMs demonstrate emerging competence in ToM tasks, significant gaps persist in their emulation of human cognitive abilities.
Synergizing RAG and Reasoning: A Systematic Review
Recent breakthroughs in large language models (LLMs), particularly in reasoning capabilities, have propelled Retrieval-Augmented Generation (RAG) to unprecedented levels. By synergizing retrieval mechanisms with advanced reasoning, LLMs can now tackle increasingly complex problems. This paper presents a systematic review of the collaborative interplay between RAG and reasoning, clearly defining "reasoning" within the RAG context. It construct a comprehensive taxonomy encompassing multi-dimensional collaborative objectives, representative paradigms, and technical implementations, and analyze the bidirectional synergy methods. Additionally, we critically evaluate current limitations in RAG assessment, including the absence of intermediate supervision for multi-step reasoning and practical challenges related to cost-risk trade-offs. To bridge theory and practice, we provide practical guidelines tailored to diverse real-world applications. Finally, we identify promising research directions, such as graph-based knowledge integration, hybrid model collaboration, and RL-driven optimization. Overall, this work presents a theoretical framework and practical foundation to advance RAG systems in academia and industry, fostering the next generation of RAG solutions.
Multilingual Large Language Models: A Systematic Survey
This paper provides a comprehensive survey of the latest research on multilingual large language models (MLLMs). MLLMs not only are able to understand and generate language across linguistic boundaries, but also represent an important advancement in artificial intelligence. We first discuss the architecture and pre-training objectives of MLLMs, highlighting the key components and methodologies that contribute to their multilingual capabilities. We then discuss the construction of multilingual pre-training and alignment datasets, underscoring the importance of data quality and diversity in enhancing MLLM performance. An important focus of this survey is on the evaluation of MLLMs. We present a detailed taxonomy and roadmap covering the assessment of MLLMs' cross-lingual knowledge, reasoning, alignment with human values, safety, interpretability and specialized applications. Specifically, we extensively discuss multilingual evaluation benchmarks and datasets, and explore the use of LLMs themselves as multilingual evaluators. To enhance MLLMs from black to white boxes, we also address the interpretability of multilingual capabilities, cross-lingual transfer and language bias within these models. Finally, we provide a comprehensive review of real-world applications of MLLMs across diverse domains, including biology, medicine, computer science, mathematics and law. We showcase how these models have driven innovation and improvements in these specialized fields while also highlighting the challenges and opportunities in deploying MLLMs within diverse language communities and application scenarios. We listed the paper related in this survey and publicly available at https://github.com/tjunlp-lab/Awesome-Multilingual-LLMs-Papers.
A Systematic Survey of Prompt Engineering in Large Language Models: Techniques and Applications
Prompt engineering has emerged as an indispensable technique for extending the capabilities of large language models (LLMs) and vision-language models (VLMs). This approach leverages task-specific instructions, known as prompts, to enhance model efficacy without modifying the core model parameters. Rather than updating the model parameters, prompts allow seamless integration of pre-trained models into downstream tasks by eliciting desired model behaviors solely based on the given prompt. Prompts can be natural language instructions that provide context to guide the model or learned vector representations that activate relevant knowledge. This burgeoning field has enabled success across various applications, from question-answering to commonsense reasoning. However, there remains a lack of systematic organization and understanding of the diverse prompt engineering methods and techniques. This survey paper addresses the gap by providing a structured overview of recent advancements in prompt engineering, categorized by application area. For each prompting approach, we provide a summary detailing the prompting methodology, its applications, the models involved, and the datasets utilized. We also delve into the strengths and limitations of each approach and include a taxonomy diagram and table summarizing datasets, models, and critical points of each prompting technique. This systematic analysis enables a better understanding of this rapidly developing field and facilitates future research by illuminating open challenges and opportunities for prompt engineering.
Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications
The proliferation of Large Language Models (LLMs) in medicine has enabled impressive capabilities, yet a critical gap remains in their ability to perform systematic, transparent, and verifiable reasoning, a cornerstone of clinical practice. This has catalyzed a shift from single-step answer generation to the development of LLMs explicitly designed for medical reasoning. This paper provides the first systematic review of this emerging field. We propose a taxonomy of reasoning enhancement techniques, categorized into training-time strategies (e.g., supervised fine-tuning, reinforcement learning) and test-time mechanisms (e.g., prompt engineering, multi-agent systems). We analyze how these techniques are applied across different data modalities (text, image, code) and in key clinical applications such as diagnosis, education, and treatment planning. Furthermore, we survey the evolution of evaluation benchmarks from simple accuracy metrics to sophisticated assessments of reasoning quality and visual interpretability. Based on an analysis of 60 seminal studies from 2022-2025, we conclude by identifying critical challenges, including the faithfulness-plausibility gap and the need for native multimodal reasoning, and outlining future directions toward building efficient, robust, and sociotechnically responsible medical AI.
Generative Multi-Agent Collaboration in Embodied AI: A Systematic Review
Embodied multi-agent systems (EMAS) have attracted growing attention for their potential to address complex, real-world challenges in areas such as logistics and robotics. Recent advances in foundation models pave the way for generative agents capable of richer communication and adaptive problem-solving. This survey provides a systematic examination of how EMAS can benefit from these generative capabilities. We propose a taxonomy that categorizes EMAS by system architectures and embodiment modalities, emphasizing how collaboration spans both physical and virtual contexts. Central building blocks, perception, planning, communication, and feedback, are then analyzed to illustrate how generative techniques bolster system robustness and flexibility. Through concrete examples, we demonstrate the transformative effects of integrating foundation models into embodied, multi-agent frameworks. Finally, we discuss challenges and future directions, underlining the significant promise of EMAS to reshape the landscape of AI-driven collaboration.
VecCity: A Taxonomy-guided Library for Map Entity Representation Learning
Electronic maps consist of diverse entities, such as points of interest (POIs), road networks, and land parcels, playing a vital role in applications like ITS and LBS. Map entity representation learning (MapRL) generates versatile and reusable data representations, providing essential tools for efficiently managing and utilizing map entity data. Despite the progress in MapRL, two key challenges constrain further development. First, existing research is fragmented, with models classified by the type of map entity, limiting the reusability of techniques across different tasks. Second, the lack of unified benchmarks makes systematic evaluation and comparison of models difficult. To address these challenges, we propose a novel taxonomy for MapRL that organizes models based on functional module-such as encoders, pre-training tasks, and downstream tasks-rather than by entity type. Building on this taxonomy, we present a taxonomy-driven library, VecCity, which offers easy-to-use interfaces for encoding, pre-training, fine-tuning, and evaluation. The library integrates datasets from nine cities and reproduces 21 mainstream MapRL models, establishing the first standardized benchmarks for the field. VecCity also allows users to modify and extend models through modular components, facilitating seamless experimentation. Our comprehensive experiments cover multiple types of map entities and evaluate 21 VecCity pre-built models across various downstream tasks. Experimental results demonstrate the effectiveness of VecCity in streamlining model development and provide insights into the impact of various components on performance. By promoting modular design and reusability, VecCity offers a unified framework to advance research and innovation in MapRL. The code is available at https://github.com/Bigscity-VecCity/VecCity.
Deep Research Agents: A Systematic Examination And Roadmap
The rapid progress of Large Language Models (LLMs) has given rise to a new category of autonomous AI systems, referred to as Deep Research (DR) agents. These agents are designed to tackle complex, multi-turn informational research tasks by leveraging a combination of dynamic reasoning, adaptive long-horizon planning, multi-hop information retrieval, iterative tool use, and the generation of structured analytical reports. In this paper, we conduct a detailed analysis of the foundational technologies and architectural components that constitute Deep Research agents. We begin by reviewing information acquisition strategies, contrasting API-based retrieval methods with browser-based exploration. We then examine modular tool-use frameworks, including code execution, multimodal input processing, and the integration of Model Context Protocols (MCPs) to support extensibility and ecosystem development. To systematize existing approaches, we propose a taxonomy that differentiates between static and dynamic workflows, and we classify agent architectures based on planning strategies and agent composition, including single-agent and multi-agent configurations. We also provide a critical evaluation of current benchmarks, highlighting key limitations such as restricted access to external knowledge, sequential execution inefficiencies, and misalignment between evaluation metrics and the practical objectives of DR agents. Finally, we outline open challenges and promising directions for future research. A curated and continuously updated repository of DR agent research is available at: {https://github.com/ai-agents-2030/awesome-deep-research-agent}.
SoK: Taxonomy and Evaluation of Prompt Security in Large Language Models
Large Language Models (LLMs) have rapidly become integral to real-world applications, powering services across diverse sectors. However, their widespread deployment has exposed critical security risks, particularly through jailbreak prompts that can bypass model alignment and induce harmful outputs. Despite intense research into both attack and defense techniques, the field remains fragmented: definitions, threat models, and evaluation criteria vary widely, impeding systematic progress and fair comparison. In this Systematization of Knowledge (SoK), we address these challenges by (1) proposing a holistic, multi-level taxonomy that organizes attacks, defenses, and vulnerabilities in LLM prompt security; (2) formalizing threat models and cost assumptions into machine-readable profiles for reproducible evaluation; (3) introducing an open-source evaluation toolkit for standardized, auditable comparison of attacks and defenses; (4) releasing JAILBREAKDB, the largest annotated dataset of jailbreak and benign prompts to date; and (5) presenting a comprehensive evaluation and leaderboard of state-of-the-art methods. Our work unifies fragmented research, provides rigorous foundations for future studies, and supports the development of robust, trustworthy LLMs suitable for high-stakes deployment.
STORI: A Benchmark and Taxonomy for Stochastic Environments
Reinforcement learning (RL) techniques have achieved impressive performance on simulated benchmarks such as Atari100k, yet recent advances remain largely confined to simulation and show limited transfer to real-world domains. A central obstacle is environmental stochasticity, as real systems involve noisy observations, unpredictable dynamics, and non-stationary conditions that undermine the stability of current methods. Existing benchmarks rarely capture these uncertainties and favor simplified settings where algorithms can be tuned to succeed. The absence of a well-defined taxonomy of stochasticity further complicates evaluation, as robustness to one type of stochastic perturbation, such as sticky actions, does not guarantee robustness to other forms of uncertainty. To address this critical gap, we introduce STORI (STOchastic-ataRI), a benchmark that systematically incorporates diverse stochastic effects and enables rigorous evaluation of RL techniques under different forms of uncertainty. We propose a comprehensive five-type taxonomy of environmental stochasticity and demonstrate systematic vulnerabilities in state-of-the-art model-based RL algorithms through targeted evaluation of DreamerV3 and STORM. Our findings reveal that world models dramatically underestimate environmental variance, struggle with action corruption, and exhibit unreliable dynamics under partial observability. We release the code and benchmark publicly at https://github.com/ARY2260/stori, providing a unified framework for developing more robust RL systems.
PromptPrism: A Linguistically-Inspired Taxonomy for Prompts
Prompts are the interface for eliciting the capabilities of large language models (LLMs). Understanding their structure and components is critical for analyzing LLM behavior and optimizing performance. However, the field lacks a comprehensive framework for systematic prompt analysis and understanding. We introduce PromptPrism, a linguistically-inspired taxonomy that enables prompt analysis across three hierarchical levels: functional structure, semantic component, and syntactic pattern. We show the practical utility of PromptPrism by applying it to three applications: (1) a taxonomy-guided prompt refinement approach that automatically improves prompt quality and enhances model performance across a range of tasks; (2) a multi-dimensional dataset profiling method that extracts and aggregates structural, semantic, and syntactic characteristics from prompt datasets, enabling comprehensive analysis of prompt distributions and patterns; (3) a controlled experimental framework for prompt sensitivity analysis by quantifying the impact of semantic reordering and delimiter modifications on LLM performance. Our experimental results validate the effectiveness of our taxonomy across these applications, demonstrating that PromptPrism provides a foundation for refining, profiling, and analyzing prompts.
Can LLMs Identify Critical Limitations within Scientific Research? A Systematic Evaluation on AI Research Papers
Peer review is fundamental to scientific research, but the growing volume of publications has intensified the challenges of this expertise-intensive process. While LLMs show promise in various scientific tasks, their potential to assist with peer review, particularly in identifying paper limitations, remains understudied. We first present a comprehensive taxonomy of limitation types in scientific research, with a focus on AI. Guided by this taxonomy, for studying limitations, we present LimitGen, the first comprehensive benchmark for evaluating LLMs' capability to support early-stage feedback and complement human peer review. Our benchmark consists of two subsets: LimitGen-Syn, a synthetic dataset carefully created through controlled perturbations of high-quality papers, and LimitGen-Human, a collection of real human-written limitations. To improve the ability of LLM systems to identify limitations, we augment them with literature retrieval, which is essential for grounding identifying limitations in prior scientific findings. Our approach enhances the capabilities of LLM systems to generate limitations in research papers, enabling them to provide more concrete and constructive feedback.
Towards Systematic Monolingual NLP Surveys: GenA of Greek NLP
Natural Language Processing (NLP) research has traditionally been predominantly focused on English, driven by the availability of resources, the size of the research community, and market demands. Recently, there has been a noticeable shift towards multilingualism in NLP, recognizing the need for inclusivity and effectiveness across diverse languages and cultures. Monolingual surveys have the potential to complement the broader trend towards multilingualism in NLP by providing foundational insights and resources, necessary for effectively addressing the linguistic diversity of global communication. However, monolingual NLP surveys are extremely rare in the literature. This study introduces a generalizable methodology for creating systematic and comprehensive monolingual NLP surveys, aimed at optimizing the process of constructing such surveys and thoroughly addressing a language's NLP support. Our approach integrates a structured search protocol to avoid selection bias and ensure reproducibility, an NLP task taxonomy to organize the surveyed material coherently, and language resources (LRs) taxonomies to identify potential benchmarks and highlight opportunities for improving resource availability (e.g., through better maintenance or licensing). We apply this methodology to Greek NLP (2012-2023), providing a comprehensive overview of its current state and challenges. We discuss the progress of Greek NLP and outline the Greek LRs found, classified by availability and usability, assessing language support per NLP task. The presented systematic literature review of Greek NLP serves as an application of our method that showcases the benefits of monolingual NLP surveys more broadly. Similar applications could be considered for the myriads of languages whose progress in NLP lags behind that of well-supported languages.
Faithfulness in Natural Language Generation: A Systematic Survey of Analysis, Evaluation and Optimization Methods
Natural Language Generation (NLG) has made great progress in recent years due to the development of deep learning techniques such as pre-trained language models. This advancement has resulted in more fluent, coherent and even properties controllable (e.g. stylistic, sentiment, length etc.) generation, naturally leading to development in downstream tasks such as abstractive summarization, dialogue generation, machine translation, and data-to-text generation. However, the faithfulness problem that the generated text usually contains unfaithful or non-factual information has become the biggest challenge, which makes the performance of text generation unsatisfactory for practical applications in many real-world scenarios. Many studies on analysis, evaluation, and optimization methods for faithfulness problems have been proposed for various tasks, but have not been organized, compared and discussed in a combined manner. In this survey, we provide a systematic overview of the research progress on the faithfulness problem of NLG, including problem analysis, evaluation metrics and optimization methods. We organize the evaluation and optimization methods for different tasks into a unified taxonomy to facilitate comparison and learning across tasks. Several research trends are discussed further.
Towards Controllable Speech Synthesis in the Era of Large Language Models: A Systematic Survey
Text-to-speech (TTS) has advanced from generating natural-sounding speech to enabling fine-grained control over attributes like emotion, timbre, and style. Driven by rising industrial demand and breakthroughs in deep learning, e.g., diffusion and large language models (LLMs), controllable TTS has become a rapidly growing research area. This survey provides the first comprehensive review of controllable TTS methods, from traditional control techniques to emerging approaches using natural language prompts. We categorize model architectures, control strategies, and feature representations, while also summarizing challenges, datasets, and evaluations in controllable TTS. This survey aims to guide researchers and practitioners by offering a clear taxonomy and highlighting future directions in this fast-evolving field. One can visit https://github.com/imxtx/awesome-controllabe-speech-synthesis for a comprehensive paper list and updates.
Sociotechnical Harms of Algorithmic Systems: Scoping a Taxonomy for Harm Reduction
Understanding the landscape of potential harms from algorithmic systems enables practitioners to better anticipate consequences of the systems they build. It also supports the prospect of incorporating controls to help minimize harms that emerge from the interplay of technologies and social and cultural dynamics. A growing body of scholarship has identified a wide range of harms across different algorithmic technologies. However, computing research and practitioners lack a high level and synthesized overview of harms from algorithmic systems. Based on a scoping review of computing research (n=172), we present an applied taxonomy of sociotechnical harms to support a more systematic surfacing of potential harms in algorithmic systems. The final taxonomy builds on and refers to existing taxonomies, classifications, and terminologies. Five major themes related to sociotechnical harms - representational, allocative, quality-of-service, interpersonal harms, and social system/societal harms - and sub-themes are presented along with a description of these categories. We conclude with a discussion of challenges and opportunities for future research.
Pre-trained Language Models in Biomedical Domain: A Systematic Survey
Pre-trained language models (PLMs) have been the de facto paradigm for most natural language processing (NLP) tasks. This also benefits biomedical domain: researchers from informatics, medicine, and computer science (CS) communities propose various PLMs trained on biomedical datasets, e.g., biomedical text, electronic health records, protein, and DNA sequences for various biomedical tasks. However, the cross-discipline characteristics of biomedical PLMs hinder their spreading among communities; some existing works are isolated from each other without comprehensive comparison and discussions. It expects a survey that not only systematically reviews recent advances of biomedical PLMs and their applications but also standardizes terminology and benchmarks. In this paper, we summarize the recent progress of pre-trained language models in the biomedical domain and their applications in biomedical downstream tasks. Particularly, we discuss the motivations and propose a taxonomy of existing biomedical PLMs. Their applications in biomedical downstream tasks are exhaustively discussed. At last, we illustrate various limitations and future trends, which we hope can provide inspiration for the future research of the research community.
Achieving Peak Performance for Large Language Models: A Systematic Review
In recent years, large language models (LLMs) have achieved remarkable success in natural language processing (NLP). LLMs require an extreme amount of parameters to attain high performance. As models grow into the trillion-parameter range, computational and memory costs increase significantly. This makes it difficult for many researchers to access the resources needed to train or apply these models. Optimizing LLM performance involves two main approaches: fine-tuning pre-trained models for specific tasks to achieve state-of-the-art performance, and reducing costs or improving training time while maintaining similar performance. This paper presents a systematic literature review (SLR) following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. We reviewed 65 publications out of 983 from 2017 to December 2023, retrieved from 5 databases. The study presents methods to optimize and accelerate LLMs while achieving cutting-edge results without sacrificing accuracy. We begin with an overview of the development of language modeling, followed by a detailed explanation of commonly used frameworks and libraries, and a taxonomy for improving and speeding up LLMs based on three classes: LLM training, LLM inference, and system serving. We then delve into recent optimization and acceleration strategies such as training optimization, hardware optimization, scalability and reliability, accompanied by the taxonomy and categorization of these strategies. Finally, we provide an in-depth comparison of each class and strategy, with two case studies on optimizing model training and enhancing inference efficiency. These case studies showcase practical approaches to address LLM resource limitations while maintaining performance.
Key, Value, Compress: A Systematic Exploration of KV Cache Compression Techniques
Large language models (LLMs) have demonstrated exceptional capabilities in generating text, images, and video content. However, as context length grows, the computational cost of attention increases quadratically with the number of tokens, presenting significant efficiency challenges. This paper presents an analysis of various Key-Value (KV) cache compression strategies, offering a comprehensive taxonomy that categorizes these methods by their underlying principles and implementation techniques. Furthermore, we evaluate their impact on performance and inference latency, providing critical insights into their effectiveness. Our findings highlight the trade-offs involved in KV cache compression and its influence on handling long-context scenarios, paving the way for more efficient LLM implementations.
AgentOps: Enabling Observability of LLM Agents
Large language model (LLM) agents have demonstrated remarkable capabilities across various domains, gaining extensive attention from academia and industry. However, these agents raise significant concerns on AI safety due to their autonomous and non-deterministic behavior, as well as continuous evolving nature . From a DevOps perspective, enabling observability in agents is necessary to ensuring AI safety, as stakeholders can gain insights into the agents' inner workings, allowing them to proactively understand the agents, detect anomalies, and prevent potential failures. Therefore, in this paper, we present a comprehensive taxonomy of AgentOps, identifying the artifacts and associated data that should be traced throughout the entire lifecycle of agents to achieve effective observability. The taxonomy is developed based on a systematic mapping study of existing AgentOps tools. Our taxonomy serves as a reference template for developers to design and implement AgentOps infrastructure that supports monitoring, logging, and analytics. thereby ensuring AI safety.
Attribution, Citation, and Quotation: A Survey of Evidence-based Text Generation with Large Language Models
The increasing adoption of large language models (LLMs) has been accompanied by growing concerns regarding their reliability and trustworthiness. As a result, a growing body of research focuses on evidence-based text generation with LLMs, aiming to link model outputs to supporting evidence to ensure traceability and verifiability. However, the field is fragmented due to inconsistent terminology, isolated evaluation practices, and a lack of unified benchmarks. To bridge this gap, we systematically analyze 134 papers, introduce a unified taxonomy of evidence-based text generation with LLMs, and investigate 300 evaluation metrics across seven key dimensions. Thereby, we focus on approaches that use citations, attribution, or quotations for evidence-based text generation. Building on this, we examine the distinctive characteristics and representative methods in the field. Finally, we highlight open challenges and outline promising directions for future work.
Discrete Audio Tokens: More Than a Survey!
Discrete audio tokens are compact representations that aim to preserve perceptual quality, phonetic content, and speaker characteristics while enabling efficient storage and inference, as well as competitive performance across diverse downstream tasks.They provide a practical alternative to continuous features, enabling the integration of speech and audio into modern large language models (LLMs). As interest in token-based audio processing grows, various tokenization methods have emerged, and several surveys have reviewed the latest progress in the field. However, existing studies often focus on specific domains or tasks and lack a unified comparison across various benchmarks. This paper presents a systematic review and benchmark of discrete audio tokenizers, covering three domains: speech, music, and general audio. We propose a taxonomy of tokenization approaches based on encoder-decoder, quantization techniques, training paradigm, streamability, and application domains. We evaluate tokenizers on multiple benchmarks for reconstruction, downstream performance, and acoustic language modeling, and analyze trade-offs through controlled ablation studies. Our findings highlight key limitations, practical considerations, and open challenges, providing insight and guidance for future research in this rapidly evolving area. For more information, including our main results and tokenizer database, please refer to our website: https://poonehmousavi.github.io/dates-website/.
Large VLM-based Vision-Language-Action Models for Robotic Manipulation: A Survey
Robotic manipulation, a key frontier in robotics and embodied AI, requires precise motor control and multimodal understanding, yet traditional rule-based methods fail to scale or generalize in unstructured, novel environments. In recent years, Vision-Language-Action (VLA) models, built upon Large Vision-Language Models (VLMs) pretrained on vast image-text datasets, have emerged as a transformative paradigm. This survey provides the first systematic, taxonomy-oriented review of large VLM-based VLA models for robotic manipulation. We begin by clearly defining large VLM-based VLA models and delineating two principal architectural paradigms: (1) monolithic models, encompassing single-system and dual-system designs with differing levels of integration; and (2) hierarchical models, which explicitly decouple planning from execution via interpretable intermediate representations. Building on this foundation, we present an in-depth examination of large VLM-based VLA models: (1) integration with advanced domains, including reinforcement learning, training-free optimization, learning from human videos, and world model integration; (2) synthesis of distinctive characteristics, consolidating architectural traits, operational strengths, and the datasets and benchmarks that support their development; (3) identification of promising directions, including memory mechanisms, 4D perception, efficient adaptation, multi-agent cooperation, and other emerging capabilities. This survey consolidates recent advances to resolve inconsistencies in existing taxonomies, mitigate research fragmentation, and fill a critical gap through the systematic integration of studies at the intersection of large VLMs and robotic manipulation. We provide a regularly updated project page to document ongoing progress: https://github.com/JiuTian-VL/Large-VLM-based-VLA-for-Robotic-Manipulation
Benchmarking and Analyzing Point Cloud Classification under Corruptions
3D perception, especially point cloud classification, has achieved substantial progress. However, in real-world deployment, point cloud corruptions are inevitable due to the scene complexity, sensor inaccuracy, and processing imprecision. In this work, we aim to rigorously benchmark and analyze point cloud classification under corruptions. To conduct a systematic investigation, we first provide a taxonomy of common 3D corruptions and identify the atomic corruptions. Then, we perform a comprehensive evaluation on a wide range of representative point cloud models to understand their robustness and generalizability. Our benchmark results show that although point cloud classification performance improves over time, the state-of-the-art methods are on the verge of being less robust. Based on the obtained observations, we propose several effective techniques to enhance point cloud classifier robustness. We hope our comprehensive benchmark, in-depth analysis, and proposed techniques could spark future research in robust 3D perception.
Loss Functions in the Era of Semantic Segmentation: A Survey and Outlook
Semantic image segmentation, the process of classifying each pixel in an image into a particular class, plays an important role in many visual understanding systems. As the predominant criterion for evaluating the performance of statistical models, loss functions are crucial for shaping the development of deep learning-based segmentation algorithms and improving their overall performance. To aid researchers in identifying the optimal loss function for their particular application, this survey provides a comprehensive and unified review of 25 loss functions utilized in image segmentation. We provide a novel taxonomy and thorough review of how these loss functions are customized and leveraged in image segmentation, with a systematic categorization emphasizing their significant features and applications. Furthermore, to evaluate the efficacy of these methods in real-world scenarios, we propose unbiased evaluations of some distinct and renowned loss functions on established medical and natural image datasets. We conclude this review by identifying current challenges and unveiling future research opportunities. Finally, we have compiled the reviewed studies that have open-source implementations on our GitHub page.
Synthetic Data (Almost) from Scratch: Generalized Instruction Tuning for Language Models
We introduce Generalized Instruction Tuning (called GLAN), a general and scalable method for instruction tuning of Large Language Models (LLMs). Unlike prior work that relies on seed examples or existing datasets to construct instruction tuning data, GLAN exclusively utilizes a pre-curated taxonomy of human knowledge and capabilities as input and generates large-scale synthetic instruction data across all disciplines. Specifically, inspired by the systematic structure in human education system, we build the taxonomy by decomposing human knowledge and capabilities to various fields, sub-fields and ultimately, distinct disciplines semi-automatically, facilitated by LLMs. Subsequently, we generate a comprehensive list of subjects for every discipline and proceed to design a syllabus tailored to each subject, again utilizing LLMs. With the fine-grained key concepts detailed in every class session of the syllabus, we are able to generate diverse instructions with a broad coverage across the entire spectrum of human knowledge and skills. Extensive experiments on large language models (e.g., Mistral) demonstrate that GLAN excels in multiple dimensions from mathematical reasoning, coding, academic exams, logical reasoning to general instruction following without using task-specific training data of these tasks. In addition, GLAN allows for easy customization and new fields or skills can be added by simply incorporating a new node into our taxonomy.
Visual Instruction Tuning towards General-Purpose Multimodal Model: A Survey
Traditional computer vision generally solves each single task independently by a dedicated model with the task instruction implicitly designed in the model architecture, arising two limitations: (1) it leads to task-specific models, which require multiple models for different tasks and restrict the potential synergies from diverse tasks; (2) it leads to a pre-defined and fixed model interface that has limited interactivity and adaptability in following user' task instructions. To address them, Visual Instruction Tuning (VIT) has been intensively studied recently, which finetunes a large vision model with language as task instructions, aiming to learn from a wide range of vision tasks described by language instructions a general-purpose multimodal model that can follow arbitrary instructions and thus solve arbitrary tasks specified by the user. This work aims to provide a systematic review of visual instruction tuning, covering (1) the background that presents computer vision task paradigms and the development of VIT; (2) the foundations of VIT that introduce commonly used network architectures, visual instruction tuning frameworks and objectives, and evaluation setups and tasks; (3) the commonly used datasets in visual instruction tuning and evaluation; (4) the review of existing VIT methods that categorizes them with a taxonomy according to both the studied vision task and the method design and highlights the major contributions, strengths, and shortcomings of them; (5) the comparison and discussion of VIT methods over various instruction-following benchmarks; (6) several challenges, open directions and possible future works in visual instruction tuning research.
Dancing with Still Images: Video Distillation via Static-Dynamic Disentanglement
Recently, dataset distillation has paved the way towards efficient machine learning, especially for image datasets. However, the distillation for videos, characterized by an exclusive temporal dimension, remains an underexplored domain. In this work, we provide the first systematic study of video distillation and introduce a taxonomy to categorize temporal compression. Our investigation reveals that the temporal information is usually not well learned during distillation, and the temporal dimension of synthetic data contributes little. The observations motivate our unified framework of disentangling the dynamic and static information in the videos. It first distills the videos into still images as static memory and then compensates the dynamic and motion information with a learnable dynamic memory block. Our method achieves state-of-the-art on video datasets at different scales, with a notably smaller memory storage budget. Our code is available at https://github.com/yuz1wan/video_distillation.
Unifying Tree Search Algorithm and Reward Design for LLM Reasoning: A Survey
Deliberative tree search is a cornerstone of modern Large Language Model (LLM) research, driving the pivot from brute-force scaling toward algorithmic efficiency. This single paradigm unifies two critical frontiers: Test-Time Scaling (TTS), which deploys on-demand computation to solve hard problems, and Self-Improvement, which uses search-generated data to durably enhance model parameters. However, this burgeoning field is fragmented and lacks a common formalism, particularly concerning the ambiguous role of the reward signal -- is it a transient heuristic or a durable learning target? This paper resolves this ambiguity by introducing a unified framework that deconstructs search algorithms into three core components: the Search Mechanism, Reward Formulation, and Transition Function. We establish a formal distinction between transient Search Guidance for TTS and durable Parametric Reward Modeling for Self-Improvement. Building on this formalism, we introduce a component-centric taxonomy, synthesize the state-of-the-art, and chart a research roadmap toward more systematic progress in creating autonomous, self-improving agents.
RealCQA: Scientific Chart Question Answering as a Test-bed for First-Order Logic
We present a comprehensive study of chart visual question-answering(QA) task, to address the challenges faced in comprehending and extracting data from chart visualizations within documents. Despite efforts to tackle this problem using synthetic charts, solutions are limited by the shortage of annotated real-world data. To fill this gap, we introduce a benchmark and dataset for chart visual QA on real-world charts, offering a systematic analysis of the task and a novel taxonomy for template-based chart question creation. Our contribution includes the introduction of a new answer type, 'list', with both ranked and unranked variations. Our study is conducted on a real-world chart dataset from scientific literature, showcasing higher visual complexity compared to other works. Our focus is on template-based QA and how it can serve as a standard for evaluating the first-order logic capabilities of models. The results of our experiments, conducted on a real-world out-of-distribution dataset, provide a robust evaluation of large-scale pre-trained models and advance the field of chart visual QA and formal logic verification for neural networks in general.
Vector Quantization for Recommender Systems: A Review and Outlook
Vector quantization, renowned for its unparalleled feature compression capabilities, has been a prominent topic in signal processing and machine learning research for several decades and remains widely utilized today. With the emergence of large models and generative AI, vector quantization has gained popularity in recommender systems, establishing itself as a preferred solution. This paper starts with a comprehensive review of vector quantization techniques. It then explores systematic taxonomies of vector quantization methods for recommender systems (VQ4Rec), examining their applications from multiple perspectives. Further, it provides a thorough introduction to research efforts in diverse recommendation scenarios, including efficiency-oriented approaches and quality-oriented approaches. Finally, the survey analyzes the remaining challenges and anticipates future trends in VQ4Rec, including the challenges associated with the training of vector quantization, the opportunities presented by large language models, and emerging trends in multimodal recommender systems. We hope this survey can pave the way for future researchers in the recommendation community and accelerate their exploration in this promising field.
Personalization of Large Language Models: A Survey
Personalization of Large Language Models (LLMs) has recently become increasingly important with a wide range of applications. Despite the importance and recent progress, most existing works on personalized LLMs have focused either entirely on (a) personalized text generation or (b) leveraging LLMs for personalization-related downstream applications, such as recommendation systems. In this work, we bridge the gap between these two separate main directions for the first time by introducing a taxonomy for personalized LLM usage and summarizing the key differences and challenges. We provide a formalization of the foundations of personalized LLMs that consolidates and expands notions of personalization of LLMs, defining and discussing novel facets of personalization, usage, and desiderata of personalized LLMs. We then unify the literature across these diverse fields and usage scenarios by proposing systematic taxonomies for the granularity of personalization, personalization techniques, datasets, evaluation methods, and applications of personalized LLMs. Finally, we highlight challenges and important open problems that remain to be addressed. By unifying and surveying recent research using the proposed taxonomies, we aim to provide a clear guide to the existing literature and different facets of personalization in LLMs, empowering both researchers and practitioners.
A Step Towards Worldwide Biodiversity Assessment: The BIOSCAN-1M Insect Dataset
In an effort to catalog insect biodiversity, we propose a new large dataset of hand-labelled insect images, the BIOSCAN-Insect Dataset. Each record is taxonomically classified by an expert, and also has associated genetic information including raw nucleotide barcode sequences and assigned barcode index numbers, which are genetically-based proxies for species classification. This paper presents a curated million-image dataset, primarily to train computer-vision models capable of providing image-based taxonomic assessment, however, the dataset also presents compelling characteristics, the study of which would be of interest to the broader machine learning community. Driven by the biological nature inherent to the dataset, a characteristic long-tailed class-imbalance distribution is exhibited. Furthermore, taxonomic labelling is a hierarchical classification scheme, presenting a highly fine-grained classification problem at lower levels. Beyond spurring interest in biodiversity research within the machine learning community, progress on creating an image-based taxonomic classifier will also further the ultimate goal of all BIOSCAN research: to lay the foundation for a comprehensive survey of global biodiversity. This paper introduces the dataset and explores the classification task through the implementation and analysis of a baseline classifier.
Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning
This paper presents a systematic overview and comparison of parameter-efficient fine-tuning methods covering over 40 papers published between February 2019 and February 2023. These methods aim to resolve the infeasibility and impracticality of fine-tuning large language models by only training a small set of parameters. We provide a taxonomy that covers a broad range of methods and present a detailed method comparison with a specific focus on real-life efficiency and fine-tuning multibillion-scale language models.
TaxoAdapt: Aligning LLM-Based Multidimensional Taxonomy Construction to Evolving Research Corpora
The rapid evolution of scientific fields introduces challenges in organizing and retrieving scientific literature. While expert-curated taxonomies have traditionally addressed this need, the process is time-consuming and expensive. Furthermore, recent automatic taxonomy construction methods either (1) over-rely on a specific corpus, sacrificing generalizability, or (2) depend heavily on the general knowledge of large language models (LLMs) contained within their pre-training datasets, often overlooking the dynamic nature of evolving scientific domains. Additionally, these approaches fail to account for the multi-faceted nature of scientific literature, where a single research paper may contribute to multiple dimensions (e.g., methodology, new tasks, evaluation metrics, benchmarks). To address these gaps, we propose TaxoAdapt, a framework that dynamically adapts an LLM-generated taxonomy to a given corpus across multiple dimensions. TaxoAdapt performs iterative hierarchical classification, expanding both the taxonomy width and depth based on corpus' topical distribution. We demonstrate its state-of-the-art performance across a diverse set of computer science conferences over the years to showcase its ability to structure and capture the evolution of scientific fields. As a multidimensional method, TaxoAdapt generates taxonomies that are 26.51% more granularity-preserving and 50.41% more coherent than the most competitive baselines judged by LLMs.
FoodTaxo: Generating Food Taxonomies with Large Language Models
We investigate the utility of Large Language Models for automated taxonomy generation and completion specifically applied to taxonomies from the food technology industry. We explore the extent to which taxonomies can be completed from a seed taxonomy or generated without a seed from a set of known concepts, in an iterative fashion using recent prompting techniques. Experiments on five taxonomies using an open-source LLM (Llama-3), while promising, point to the difficulty of correctly placing inner nodes.
Efficient Large Language Models: A Survey
Large Language Models (LLMs) have demonstrated remarkable capabilities in important tasks such as natural language understanding, language generation, and complex reasoning and have the potential to make a substantial impact on our society. Such capabilities, however, come with the considerable resources they demand, highlighting the strong need to develop effective techniques for addressing their efficiency challenges. In this survey, we provide a systematic and comprehensive review of efficient LLMs research. We organize the literature in a taxonomy consisting of three main categories, covering distinct yet interconnected efficient LLMs topics from model-centric, data-centric, and framework-centric perspective, respectively. We have also created a GitHub repository where we compile the papers featured in this survey at https://github.com/AIoT-MLSys-Lab/EfficientLLMs, and will actively maintain this repository and incorporate new research as it emerges. We hope our survey can serve as a valuable resource to help researchers and practitioners gain a systematic understanding of the research developments in efficient LLMs and inspire them to contribute to this important and exciting field.
Enquire One's Parent and Child Before Decision: Fully Exploit Hierarchical Structure for Self-Supervised Taxonomy Expansion
Taxonomy is a hierarchically structured knowledge graph that plays a crucial role in machine intelligence. The taxonomy expansion task aims to find a position for a new term in an existing taxonomy to capture the emerging knowledge in the world and keep the taxonomy dynamically updated. Previous taxonomy expansion solutions neglect valuable information brought by the hierarchical structure and evaluate the correctness of merely an added edge, which downgrade the problem to node-pair scoring or mini-path classification. In this paper, we propose the Hierarchy Expansion Framework (HEF), which fully exploits the hierarchical structure's properties to maximize the coherence of expanded taxonomy. HEF makes use of taxonomy's hierarchical structure in multiple aspects: i) HEF utilizes subtrees containing most relevant nodes as self-supervision data for a complete comparison of parental and sibling relations; ii) HEF adopts a coherence modeling module to evaluate the coherence of a taxonomy's subtree by integrating hypernymy relation detection and several tree-exclusive features; iii) HEF introduces the Fitting Score for position selection, which explicitly evaluates both path and level selections and takes full advantage of parental relations to interchange information for disambiguation and self-correction. Extensive experiments show that by better exploiting the hierarchical structure and optimizing taxonomy's coherence, HEF vastly surpasses the prior state-of-the-art on three benchmark datasets by an average improvement of 46.7% in accuracy and 32.3% in mean reciprocal rank.
A Functional Taxonomy of Music Generation Systems
Digital advances have transformed the face of automatic music generation since its beginnings at the dawn of computing. Despite the many breakthroughs, issues such as the musical tasks targeted by different machines and the degree to which they succeed remain open questions. We present a functional taxonomy for music generation systems with reference to existing systems. The taxonomy organizes systems according to the purposes for which they were designed. It also reveals the inter-relatedness amongst the systems. This design-centered approach contrasts with predominant methods-based surveys and facilitates the identification of grand challenges to set the stage for new breakthroughs.
Using Zero-shot Prompting in the Automatic Creation and Expansion of Topic Taxonomies for Tagging Retail Banking Transactions
This work presents an unsupervised method for automatically constructing and expanding topic taxonomies by using instruction-based fine-tuned LLMs (Large Language Models). We apply topic modeling and keyword extraction techniques to create initial topic taxonomies and LLMs to post-process the resulting terms and create a hierarchy. To expand an existing taxonomy with new terms, we use zero-shot prompting to find out where to add new nodes, which, to our knowledge, is the first work to present such an approach to taxonomy tasks. We use the resulting taxonomies to assign tags that characterize merchants from a retail bank dataset. To evaluate our work, we asked 12 volunteers to answer a two-part form in which we first assessed the quality of the taxonomies created and then the tags assigned to merchants based on that taxonomy. The evaluation revealed a coherence rate exceeding 90% for the chosen taxonomies, while the average coherence for merchant tagging surpassed 80%.
TELeR: A General Taxonomy of LLM Prompts for Benchmarking Complex Tasks
While LLMs have shown great success in understanding and generating text in traditional conversational settings, their potential for performing ill-defined complex tasks is largely under-studied. Indeed, we are yet to conduct comprehensive benchmarking studies with multiple LLMs that are exclusively focused on a complex task. However, conducting such benchmarking studies is challenging because of the large variations in LLMs' performance when different prompt types/styles are used and different degrees of detail are provided in the prompts. To address this issue, the paper proposes a general taxonomy that can be used to design prompts with specific properties in order to perform a wide range of complex tasks. This taxonomy will allow future benchmarking studies to report the specific categories of prompts used as part of the study, enabling meaningful comparisons across different studies. Also, by establishing a common standard through this taxonomy, researchers will be able to draw more accurate conclusions about LLMs' performance on a specific complex task.
MeSH Term Suggestion for Systematic Review Literature Search
High-quality medical systematic reviews require comprehensive literature searches to ensure the recommendations and outcomes are sufficiently reliable. Indeed, searching for relevant medical literature is a key phase in constructing systematic reviews and often involves domain (medical researchers) and search (information specialists) experts in developing the search queries. Queries in this context are highly complex, based on Boolean logic, include free-text terms and index terms from standardised terminologies (e.g., MeSH), and are difficult and time-consuming to build. The use of MeSH terms, in particular, has been shown to improve the quality of the search results. However, identifying the correct MeSH terms to include in a query is difficult: information experts are often unfamiliar with the MeSH database and unsure about the appropriateness of MeSH terms for a query. Naturally, the full value of the MeSH terminology is often not fully exploited. This paper investigates methods to suggest MeSH terms based on an initial Boolean query that includes only free-text terms. These methods promise to automatically identify highly effective MeSH terms for inclusion in a systematic review query. Our study contributes an empirical evaluation of several MeSH term suggestion methods. We perform an extensive analysis of the retrieval, ranking, and refinement of MeSH term suggestions for each method and how these suggestions impact the effectiveness of Boolean queries.
Do I look like a `cat.n.01` to you? A Taxonomy Image Generation Benchmark
This paper explores the feasibility of using text-to-image models in a zero-shot setup to generate images for taxonomy concepts. While text-based methods for taxonomy enrichment are well-established, the potential of the visual dimension remains unexplored. To address this, we propose a comprehensive benchmark for Taxonomy Image Generation that assesses models' abilities to understand taxonomy concepts and generate relevant, high-quality images. The benchmark includes common-sense and randomly sampled WordNet concepts, alongside the LLM generated predictions. The 12 models are evaluated using 9 novel taxonomy-related text-to-image metrics and human feedback. Moreover, we pioneer the use of pairwise evaluation with GPT-4 feedback for image generation. Experimental results show that the ranking of models differs significantly from standard T2I tasks. Playground-v2 and FLUX consistently outperform across metrics and subsets and the retrieval-based approach performs poorly. These findings highlight the potential for automating the curation of structured data resources.
MAFALDA: A Benchmark and Comprehensive Study of Fallacy Detection and Classification
We introduce MAFALDA, a benchmark for fallacy classification that merges and unites previous fallacy datasets. It comes with a taxonomy that aligns, refines, and unifies existing classifications of fallacies. We further provide a manual annotation of a part of the dataset together with manual explanations for each annotation. We propose a new annotation scheme tailored for subjective NLP tasks, and a new evaluation method designed to handle subjectivity. We then evaluate several language models under a zero-shot learning setting and human performances on MAFALDA to assess their capability to detect and classify fallacies.
Decoding the End-to-end Writing Trajectory in Scholarly Manuscripts
Scholarly writing presents a complex space that generally follows a methodical procedure to plan and produce both rationally sound and creative compositions. Recent works involving large language models (LLM) demonstrate considerable success in text generation and revision tasks; however, LLMs still struggle to provide structural and creative feedback on the document level that is crucial to academic writing. In this paper, we introduce a novel taxonomy that categorizes scholarly writing behaviors according to intention, writer actions, and the information types of the written data. We also provide ManuScript, an original dataset annotated with a simplified version of our taxonomy to show writer actions and the intentions behind them. Motivated by cognitive writing theory, our taxonomy for scientific papers includes three levels of categorization in order to trace the general writing flow and identify the distinct writer activities embedded within each higher-level process. ManuScript intends to provide a complete picture of the scholarly writing process by capturing the linearity and non-linearity of writing trajectory, such that writing assistants can provide stronger feedback and suggestions on an end-to-end level. The collected writing trajectories are viewed at https://minnesotanlp.github.io/REWARD_demo/
Science Hierarchography: Hierarchical Organization of Science Literature
Scientific knowledge is growing rapidly, making it challenging to track progress and high-level conceptual links across broad disciplines. While existing tools like citation networks and search engines make it easy to access a few related papers, they fundamentally lack the flexible abstraction needed to represent the density of activity in various scientific subfields. We motivate SCIENCE HIERARCHOGRAPHY, the goal of organizing scientific literature into a high-quality hierarchical structure that allows for the categorization of scientific work across varying levels of abstraction, from very broad fields to very specific studies. Such a representation can provide insights into which fields are well-explored and which are under-explored. To achieve the goals of SCIENCE HIERARCHOGRAPHY, we develop a range of algorithms. Our primary approach combines fast embedding-based clustering with LLM-based prompting to balance the computational efficiency of embedding methods with the semantic precision offered by LLM prompting. We demonstrate that this approach offers the best trade-off between quality and speed compared to methods that heavily rely on LLM prompting, such as iterative tree construction with LLMs. To better reflect the interdisciplinary and multifaceted nature of research papers, our hierarchy captures multiple dimensions of categorization beyond simple topic labels. We evaluate the utility of our framework by assessing how effectively an LLM-based agent can locate target papers using the hierarchy. Results show that this structured approach enhances interpretability, supports trend discovery, and offers an alternative pathway for exploring scientific literature beyond traditional search methods. Code, data and demo: https://github.com/JHU-CLSP/science-hierarchography{https://github.com/JHU-CLSP/science-hierarchography}
Evaluation Metrics for Text Data Augmentation in NLP
Recent surveys on data augmentation for natural language processing have reported different techniques and advancements in the field. Several frameworks, tools, and repositories promote the implementation of text data augmentation pipelines. However, a lack of evaluation criteria and standards for method comparison due to different tasks, metrics, datasets, architectures, and experimental settings makes comparisons meaningless. Also, a lack of methods unification exists and text data augmentation research would benefit from unified metrics to compare different augmentation methods. Thus, academics and the industry endeavor relevant evaluation metrics for text data augmentation techniques. The contribution of this work is to provide a taxonomy of evaluation metrics for text augmentation methods and serve as a direction for a unified benchmark. The proposed taxonomy organizes categories that include tools for implementation and metrics calculation. Finally, with this study, we intend to present opportunities to explore the unification and standardization of text data augmentation metrics.
An Extensible Multimodal Multi-task Object Dataset with Materials
We present EMMa, an Extensible, Multimodal dataset of Amazon product listings that contains rich Material annotations. It contains more than 2.8 million objects, each with image(s), listing text, mass, price, product ratings, and position in Amazon's product-category taxonomy. We also design a comprehensive taxonomy of 182 physical materials (e.g., Plastic rightarrow Thermoplastic rightarrow Acrylic). Objects are annotated with one or more materials from this taxonomy. With the numerous attributes available for each object, we develop a Smart Labeling framework to quickly add new binary labels to all objects with very little manual labeling effort, making the dataset extensible. Each object attribute in our dataset can be included in either the model inputs or outputs, leading to combinatorial possibilities in task configurations. For example, we can train a model to predict the object category from the listing text, or the mass and price from the product listing image. EMMa offers a new benchmark for multi-task learning in computer vision and NLP, and allows practitioners to efficiently add new tasks and object attributes at scale.
A Taxonomy of Schedulers -- Operating Systems, Clusters and Big Data Frameworks
This review analyzes deployed and actively used workload schedulers' solutions and presents a taxonomy in which those systems are divided into several hierarchical groups based on their architecture and design. While other taxonomies do exist, this review has focused on the key design factors that affect the throughput and scalability of a given solution, as well as the incremental improvements which bettered such an architecture. This review gives special attention to Google's Borg, which is one of the most advanced and published systems of this kind.
GeoPlant: Spatial Plant Species Prediction Dataset
The difficulty of monitoring biodiversity at fine scales and over large areas limits ecological knowledge and conservation efforts. To fill this gap, Species Distribution Models (SDMs) predict species across space from spatially explicit features. Yet, they face the challenge of integrating the rich but heterogeneous data made available over the past decade, notably millions of opportunistic species observations and standardized surveys, as well as multi-modal remote sensing data. In light of that, we have designed and developed a new European-scale dataset for SDMs at high spatial resolution (10-50 m), including more than 10k species (i.e., most of the European flora). The dataset comprises 5M heterogeneous Presence-Only records and 90k exhaustive Presence-Absence survey records, all accompanied by diverse environmental rasters (e.g., elevation, human footprint, and soil) that are traditionally used in SDMs. In addition, it provides Sentinel-2 RGB and NIR satellite images with 10 m resolution, a 20-year time-series of climatic variables, and satellite time-series from the Landsat program. In addition to the data, we provide an openly accessible SDM benchmark (hosted on Kaggle), which has already attracted an active community and a set of strong baselines for single predictor/modality and multimodal approaches. All resources, e.g., the dataset, pre-trained models, and baseline methods (in the form of notebooks), are available on Kaggle, allowing one to start with our dataset literally with two mouse clicks.
MeSH Suggester: A Library and System for MeSH Term Suggestion for Systematic Review Boolean Query Construction
Boolean query construction is often critical for medical systematic review literature search. To create an effective Boolean query, systematic review researchers typically spend weeks coming up with effective query terms and combinations. One challenge to creating an effective systematic review Boolean query is the selection of effective MeSH Terms to include in the query. In our previous work, we created neural MeSH term suggestion methods and compared them to state-of-the-art MeSH term suggestion methods. We found neural MeSH term suggestion methods to be highly effective. In this demonstration, we build upon our previous work by creating (1) a Web-based MeSH term suggestion prototype system that allows users to obtain suggestions from a number of underlying methods and (2) a Python library that implements ours and others' MeSH term suggestion methods and that is aimed at researchers who want to further investigate, create or deploy such type of methods. We describe the architecture of the web-based system and how to use it for the MeSH term suggestion task. For the Python library, we describe how the library can be used for advancing further research and experimentation, and we validate the results of the methods contained in the library on standard datasets. Our web-based prototype system is available at http://ielab-mesh-suggest.uqcloud.net, while our Python library is at https://github.com/ielab/meshsuggestlib.
BioCube: A Multimodal Dataset for Biodiversity Research
Biodiversity research requires complete and detailed information to study ecosystem dynamics at different scales. Employing data-driven methods like Machine Learning is getting traction in ecology and more specific biodiversity, offering alternative modelling pathways. For these methods to deliver accurate results there is the need for large, curated and multimodal datasets that offer granular spatial and temporal resolutions. In this work, we introduce BioCube, a multimodal, fine-grained global dataset for ecology and biodiversity research. BioCube incorporates species observations through images, audio recordings and descriptions, environmental DNA, vegetation indices, agricultural, forest, land indicators, and high-resolution climate variables. All observations are geospatially aligned under the WGS84 geodetic system, spanning from 2000 to 2020. The dataset will become available at https://huggingface.co/datasets/BioDT/BioCube while the acquisition and processing code base at https://github.com/BioDT/bfm-data.
Leveraging Large Language Models for Generating Research Topic Ontologies: A Multi-Disciplinary Study
Ontologies and taxonomies of research fields are critical for managing and organising scientific knowledge, as they facilitate efficient classification, dissemination and retrieval of information. However, the creation and maintenance of such ontologies are expensive and time-consuming tasks, usually requiring the coordinated effort of multiple domain experts. Consequently, ontologies in this space often exhibit uneven coverage across different disciplines, limited inter-domain connectivity, and infrequent updating cycles. In this study, we investigate the capability of several large language models to identify semantic relationships among research topics within three academic domains: biomedicine, physics, and engineering. The models were evaluated under three distinct conditions: zero-shot prompting, chain-of-thought prompting, and fine-tuning on existing ontologies. Additionally, we assessed the cross-domain transferability of fine-tuned models by measuring their performance when trained in one domain and subsequently applied to a different one. To support this analysis, we introduce PEM-Rel-8K, a novel dataset consisting of over 8,000 relationships extracted from the most widely adopted taxonomies in the three disciplines considered in this study: MeSH, PhySH, and IEEE. Our experiments demonstrate that fine-tuning LLMs on PEM-Rel-8K yields excellent performance across all disciplines.
A Meta-analytical Comparison of Naive Bayes and Random Forest for Software Defect Prediction
Is there a statistical difference between Naive Bayes and Random Forest in terms of recall, f-measure, and precision for predicting software defects? By utilizing systematic literature review and meta-analysis, we are answering this question. We conducted a systematic literature review by establishing criteria to search and choose papers, resulting in five studies. After that, using the meta-data and forest-plots of five chosen papers, we conducted a meta-analysis to compare the two models. The results have shown that there is no significant statistical evidence that Naive Bayes perform differently from Random Forest in terms of recall, f-measure, and precision.
The future of human-AI collaboration: a taxonomy of design knowledge for hybrid intelligence systems
Recent technological advances, especially in the field of machine learning, provide astonishing progress on the road towards artificial general intelligence. However, tasks in current real-world business applications cannot yet be solved by machines alone. We, therefore, identify the need for developing socio-technological ensembles of humans and machines. Such systems possess the ability to accomplish complex goals by combining human and artificial intelligence to collectively achieve superior results and continuously improve by learning from each other. Thus, the need for structured design knowledge for those systems arises. Following a taxonomy development method, this article provides three main contributions: First, we present a structured overview of interdisciplinary research on the role of humans in the machine learning pipeline. Second, we envision hybrid intelligence systems and conceptualize the relevant dimensions for system design for the first time. Finally, we offer useful guidance for system developers during the implementation of such applications.
Unleashing the Power of Data Tsunami: A Comprehensive Survey on Data Assessment and Selection for Instruction Tuning of Language Models
Instruction tuning plays a critical role in aligning large language models (LLMs) with human preference. Despite the vast amount of open instruction datasets, naively training a LLM on all existing instructions may not be optimal and practical. To pinpoint the most beneficial datapoints, data assessment and selection methods have been proposed in the fields of natural language processing (NLP) and deep learning. However, under the context of instruction tuning, there still exists a gap in knowledge on what kind of data evaluation metrics can be employed and how they can be integrated into the selection mechanism. To bridge this gap, we present a comprehensive review on existing literature of data assessment and selection especially for instruction tuning of LLMs. We systematically categorize all applicable methods into quality-based, diversity-based, and importance-based ones where a unified, fine-grained taxonomy is structured. For each category, representative methods are elaborated to describe the landscape of relevant research. In addition, comparison between latest methods is conducted on their officially reported results to provide in-depth discussions on their limitations. Finally, we summarize the open challenges and propose the promosing avenues for future studies. All related contents are available at https://github.com/yuleiqin/fantastic-data-engineering.
PRISMA-DFLLM: An Extension of PRISMA for Systematic Literature Reviews using Domain-specific Finetuned Large Language Models
With the proliferation of open-sourced Large Language Models (LLMs) and efficient finetuning techniques, we are on the cusp of the emergence of numerous domain-specific LLMs that have been finetuned for expertise across specialized fields and applications for which the current general-purpose LLMs are unsuitable. In academia, this technology has the potential to revolutionize the way we conduct systematic literature reviews (SLRs), access knowledge and generate new insights. This paper proposes an AI-enabled methodological framework that combines the power of LLMs with the rigorous reporting guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). By finetuning LLMs on domain-specific academic papers that have been selected as a result of a rigorous SLR process, the proposed PRISMA-DFLLM (for Domain-specific Finetuned LLMs) reporting guidelines offer the potential to achieve greater efficiency, reusability and scalability, while also opening the potential for conducting incremental living systematic reviews with the aid of LLMs. Additionally, the proposed approach for leveraging LLMs for SLRs enables the dissemination of finetuned models, empowering researchers to accelerate advancements and democratize cutting-edge research. This paper presents the case for the feasibility of finetuned LLMs to support rigorous SLRs and the technical requirements for realizing this. This work then proposes the extended PRISMA-DFLLM checklist of reporting guidelines as well as the advantages, challenges, and potential implications of implementing PRISMA-DFLLM. Finally, a future research roadmap to develop this line of AI-enabled SLRs is presented, paving the way for a new era of evidence synthesis and knowledge discovery.
NLP-KG: A System for Exploratory Search of Scientific Literature in Natural Language Processing
Scientific literature searches are often exploratory, whereby users are not yet familiar with a particular field or concept but are interested in learning more about it. However, existing systems for scientific literature search are typically tailored to keyword-based lookup searches, limiting the possibilities for exploration. We propose NLP-KG, a feature-rich system designed to support the exploration of research literature in unfamiliar natural language processing (NLP) fields. In addition to a semantic search, NLP-KG allows users to easily find survey papers that provide a quick introduction to a field of interest. Further, a Fields of Study hierarchy graph enables users to familiarize themselves with a field and its related areas. Finally, a chat interface allows users to ask questions about unfamiliar concepts or specific articles in NLP and obtain answers grounded in knowledge retrieved from scientific publications. Our system provides users with comprehensive exploration possibilities, supporting them in investigating the relationships between different fields, understanding unfamiliar concepts in NLP, and finding relevant research literature. Demo, video, and code are available at: https://github.com/NLP-Knowledge-Graph/NLP-KG-WebApp.
Don't Classify, Translate: Multi-Level E-Commerce Product Categorization Via Machine Translation
E-commerce platforms categorize their products into a multi-level taxonomy tree with thousands of leaf categories. Conventional methods for product categorization are typically based on machine learning classification algorithms. These algorithms take product information as input (e.g., titles and descriptions) to classify a product into a leaf category. In this paper, we propose a new paradigm based on machine translation. In our approach, we translate a product's natural language description into a sequence of tokens representing a root-to-leaf path in a product taxonomy. In our experiments on two large real-world datasets, we show that our approach achieves better predictive accuracy than a state-of-the-art classification system for product categorization. In addition, we demonstrate that our machine translation models can propose meaningful new paths between previously unconnected nodes in a taxonomy tree, thereby transforming the taxonomy into a directed acyclic graph (DAG). We discuss how the resultant taxonomy DAG promotes user-friendly navigation, and how it is more adaptable to new products.
Bringing Back the Context: Camera Trap Species Identification as Link Prediction on Multimodal Knowledge Graphs
Camera traps are valuable tools in animal ecology for biodiversity monitoring and conservation. However, challenges like poor generalization to deployment at new unseen locations limit their practical application. Images are naturally associated with heterogeneous forms of context possibly in different modalities. In this work, we leverage the structured context associated with the camera trap images to improve out-of-distribution generalization for the task of species identification in camera traps. For example, a photo of a wild animal may be associated with information about where and when it was taken, as well as structured biology knowledge about the animal species. While typically overlooked by existing work, bringing back such context offers several potential benefits for better image understanding, such as addressing data scarcity and enhancing generalization. However, effectively integrating such heterogeneous context into the visual domain is a challenging problem. To address this, we propose a novel framework that reformulates species classification as link prediction in a multimodal knowledge graph (KG). This framework seamlessly integrates various forms of multimodal context for visual recognition. We apply this framework for out-of-distribution species classification on the iWildCam2020-WILDS and Snapshot Mountain Zebra datasets and achieve competitive performance with state-of-the-art approaches. Furthermore, our framework successfully incorporates biological taxonomy for improved generalization and enhances sample efficiency for recognizing under-represented species.
YAGO 4.5: A Large and Clean Knowledge Base with a Rich Taxonomy
Knowledge Bases (KBs) find applications in many knowledge-intensive tasks and, most notably, in information retrieval. Wikidata is one of the largest public general-purpose KBs. Yet, its collaborative nature has led to a convoluted schema and taxonomy. The YAGO 4 KB cleaned up the taxonomy by incorporating the ontology of Schema.org, resulting in a cleaner structure amenable to automated reasoning. However, it also cut away large parts of the Wikidata taxonomy, which is essential for information retrieval. In this paper, we extend YAGO 4 with a large part of the Wikidata taxonomy - while respecting logical constraints and the distinction between classes and instances. This yields YAGO 4.5, a new, logically consistent version of YAGO that adds a rich layer of informative classes. An intrinsic and an extrinsic evaluation show the value of the new resource.
Next Token Prediction Towards Multimodal Intelligence: A Comprehensive Survey
Building on the foundations of language modeling in natural language processing, Next Token Prediction (NTP) has evolved into a versatile training objective for machine learning tasks across various modalities, achieving considerable success. As Large Language Models (LLMs) have advanced to unify understanding and generation tasks within the textual modality, recent research has shown that tasks from different modalities can also be effectively encapsulated within the NTP framework, transforming the multimodal information into tokens and predict the next one given the context. This survey introduces a comprehensive taxonomy that unifies both understanding and generation within multimodal learning through the lens of NTP. The proposed taxonomy covers five key aspects: Multimodal tokenization, MMNTP model architectures, unified task representation, datasets \& evaluation, and open challenges. This new taxonomy aims to aid researchers in their exploration of multimodal intelligence. An associated GitHub repository collecting the latest papers and repos is available at https://github.com/LMM101/Awesome-Multimodal-Next-Token-Prediction
BIOSCAN-5M: A Multimodal Dataset for Insect Biodiversity
As part of an ongoing worldwide effort to comprehend and monitor insect biodiversity, this paper presents the BIOSCAN-5M Insect dataset to the machine learning community and establish several benchmark tasks. BIOSCAN-5M is a comprehensive dataset containing multi-modal information for over 5 million insect specimens, and it significantly expands existing image-based biological datasets by including taxonomic labels, raw nucleotide barcode sequences, assigned barcode index numbers, and geographical information. We propose three benchmark experiments to demonstrate the impact of the multi-modal data types on the classification and clustering accuracy. First, we pretrain a masked language model on the DNA barcode sequences of the BIOSCAN-5M dataset, and demonstrate the impact of using this large reference library on species- and genus-level classification performance. Second, we propose a zero-shot transfer learning task applied to images and DNA barcodes to cluster feature embeddings obtained from self-supervised learning, to investigate whether meaningful clusters can be derived from these representation embeddings. Third, we benchmark multi-modality by performing contrastive learning on DNA barcodes, image data, and taxonomic information. This yields a general shared embedding space enabling taxonomic classification using multiple types of information and modalities. The code repository of the BIOSCAN-5M Insect dataset is available at {https://github.com/zahrag/BIOSCAN-5M}
What's In Your Field? Mapping Scientific Research with Knowledge Graphs and Large Language Models
The scientific literature's exponential growth makes it increasingly challenging to navigate and synthesize knowledge across disciplines. Large language models (LLMs) are powerful tools for understanding scientific text, but they fail to capture detailed relationships across large bodies of work. Unstructured approaches, like retrieval augmented generation, can sift through such corpora to recall relevant facts; however, when millions of facts influence the answer, unstructured approaches become cost prohibitive. Structured representations offer a natural complement -- enabling systematic analysis across the whole corpus. Recent work enhances LLMs with unstructured or semistructured representations of scientific concepts; to complement this, we try extracting structured representations using LLMs. By combining LLMs' semantic understanding with a schema of scientific concepts, we prototype a system that answers precise questions about the literature as a whole. Our schema applies across scientific fields and we extract concepts from it using only 20 manually annotated abstracts. To demonstrate the system, we extract concepts from 30,000 papers on arXiv spanning astrophysics, fluid dynamics, and evolutionary biology. The resulting database highlights emerging trends and, by visualizing the knowledge graph, offers new ways to explore the ever-growing landscape of scientific knowledge. Demo: abby101/surveyor-0 on HF Spaces. Code: https://github.com/chiral-carbon/kg-for-science.
How Do Large Language Models Capture the Ever-changing World Knowledge? A Review of Recent Advances
Although large language models (LLMs) are impressive in solving various tasks, they can quickly be outdated after deployment. Maintaining their up-to-date status is a pressing concern in the current era. This paper provides a comprehensive review of recent advances in aligning LLMs with the ever-changing world knowledge without re-training from scratch. We categorize research works systemically and provide in-depth comparisons and discussion. We also discuss existing challenges and highlight future directions to facilitate research in this field. We release the paper list at https://github.com/hyintell/awesome-refreshing-llms
Bio-SIEVE: Exploring Instruction Tuning Large Language Models for Systematic Review Automation
Medical systematic reviews can be very costly and resource intensive. We explore how Large Language Models (LLMs) can support and be trained to perform literature screening when provided with a detailed set of selection criteria. Specifically, we instruction tune LLaMA and Guanaco models to perform abstract screening for medical systematic reviews. Our best model, Bio-SIEVE, outperforms both ChatGPT and trained traditional approaches, and generalises better across medical domains. However, there remains the challenge of adapting the model to safety-first scenarios. We also explore the impact of multi-task training with Bio-SIEVE-Multi, including tasks such as PICO extraction and exclusion reasoning, but find that it is unable to match single-task Bio-SIEVE's performance. We see Bio-SIEVE as an important step towards specialising LLMs for the biomedical systematic review process and explore its future developmental opportunities. We release our models, code and a list of DOIs to reconstruct our dataset for reproducibility.
Exploring the Landscape of Natural Language Processing Research
As an efficient approach to understand, generate, and process natural language texts, research in natural language processing (NLP) has exhibited a rapid spread and wide adoption in recent years. Given the increasing research work in this area, several NLP-related approaches have been surveyed in the research community. However, a comprehensive study that categorizes established topics, identifies trends, and outlines areas for future research remains absent. Contributing to closing this gap, we have systematically classified and analyzed research papers in the ACL Anthology. As a result, we present a structured overview of the research landscape, provide a taxonomy of fields of study in NLP, analyze recent developments in NLP, summarize our findings, and highlight directions for future work.
Large Language Models for Combinatorial Optimization: A Systematic Review
This systematic review explores the application of Large Language Models (LLMs) in Combinatorial Optimization (CO). We report our findings using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We conduct a literature search via Scopus and Google Scholar, examining over 2,000 publications. We assess publications against four inclusion and four exclusion criteria related to their language, research focus, publication year, and type. Eventually, we select 103 studies. We classify these studies into semantic categories and topics to provide a comprehensive overview of the field, including the tasks performed by LLMs, the architectures of LLMs, the existing datasets specifically designed for evaluating LLMs in CO, and the field of application. Finally, we identify future directions for leveraging LLMs in this field.
GenericsKB: A Knowledge Base of Generic Statements
We present a new resource for the NLP community, namely a large (3.5M+ sentence) knowledge base of *generic statements*, e.g., "Trees remove carbon dioxide from the atmosphere", collected from multiple corpora. This is the first large resource to contain *naturally occurring* generic sentences, as opposed to extracted or crowdsourced triples, and thus is rich in high-quality, general, semantically complete statements. All GenericsKB sentences are annotated with their topical term, surrounding context (sentences), and a (learned) confidence. We also release GenericsKB-Best (1M+ sentences), containing the best-quality generics in GenericsKB augmented with selected, synthesized generics from WordNet and ConceptNet. In tests on two existing datasets requiring multihop reasoning (OBQA and QASC), we find using GenericsKB can result in higher scores and better explanations than using a much larger corpus. This demonstrates that GenericsKB can be a useful resource for NLP applications, as well as providing data for linguistic studies of generics and their semantics. GenericsKB is available at https://allenai.org/data/genericskb.
SurveyG: A Multi-Agent LLM Framework with Hierarchical Citation Graph for Automated Survey Generation
Large language models (LLMs) are increasingly adopted for automating survey paper generation wang2406autosurvey, liang2025surveyx, yan2025surveyforge,su2025benchmarking,wen2025interactivesurvey. Existing approaches typically extract content from a large collection of related papers and prompt LLMs to summarize them directly. However, such methods often overlook the structural relationships among papers, resulting in generated surveys that lack a coherent taxonomy and a deeper contextual understanding of research progress. To address these shortcomings, we propose SurveyG, an LLM-based agent framework that integrates hierarchical citation graph, where nodes denote research papers and edges capture both citation dependencies and semantic relatedness between their contents, thereby embedding structural and contextual knowledge into the survey generation process. The graph is organized into three layers: Foundation, Development, and Frontier, to capture the evolution of research from seminal works to incremental advances and emerging directions. By combining horizontal search within layers and vertical depth traversal across layers, the agent produces multi-level summaries, which are consolidated into a structured survey outline. A multi-agent validation stage then ensures consistency, coverage, and factual accuracy in generating the final survey. Experiments, including evaluations by human experts and LLM-as-a-judge, demonstrate that SurveyG outperforms state-of-the-art frameworks, producing surveys that are more comprehensive and better structured to the underlying knowledge taxonomy of a field.
CLIBD: Bridging Vision and Genomics for Biodiversity Monitoring at Scale
Measuring biodiversity is crucial for understanding ecosystem health. While prior works have developed machine learning models for taxonomic classification of photographic images and DNA separately, in this work, we introduce a multimodal approach combining both, using CLIP-style contrastive learning to align images, barcode DNA, and text-based representations of taxonomic labels in a unified embedding space. This allows for accurate classification of both known and unknown insect species without task-specific fine-tuning, leveraging contrastive learning for the first time to fuse DNA and image data. Our method surpasses previous single-modality approaches in accuracy by over 8% on zero-shot learning tasks, showcasing its effectiveness in biodiversity studies.
Pre-trained Models for Natural Language Processing: A Survey
Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.
On building machine learning pipelines for Android malware detection: a procedural survey of practices, challenges and opportunities
As the smartphone market leader, Android has been a prominent target for malware attacks. The number of malicious applications (apps) identified for it has increased continually over the past decade, creating an immense challenge for all parties involved. For market holders and researchers, in particular, the large number of samples has made manual malware detection unfeasible, leading to an influx of research that investigate Machine Learning (ML) approaches to automate this process. However, while some of the proposed approaches achieve high performance, rapidly evolving Android malware has made them unable to maintain their accuracy over time. This has created a need in the community to conduct further research, and build more flexible ML pipelines. Doing so, however, is currently hindered by a lack of systematic overview of the existing literature, to learn from and improve upon the existing solutions. Existing survey papers often focus only on parts of the ML process (e.g., data collection or model deployment), while omitting other important stages, such as model evaluation and explanation. In this paper, we address this problem with a review of 42 highly-cited papers, spanning a decade of research (from 2011 to 2021). We introduce a novel procedural taxonomy of the published literature, covering how they have used ML algorithms, what features they have engineered, which dimensionality reduction techniques they have employed, what datasets they have employed for training, and what their evaluation and explanation strategies are. Drawing from this taxonomy, we also identify gaps in knowledge and provide ideas for improvement and future work.
Introducing Three New Benchmark Datasets for Hierarchical Text Classification
Hierarchical Text Classification (HTC) is a natural language processing task with the objective to classify text documents into a set of classes from a structured class hierarchy. Many HTC approaches have been proposed which attempt to leverage the class hierarchy information in various ways to improve classification performance. Machine learning-based classification approaches require large amounts of training data and are most-commonly compared through three established benchmark datasets, which include the Web Of Science (WOS), Reuters Corpus Volume 1 Version 2 (RCV1-V2) and New York Times (NYT) datasets. However, apart from the RCV1-V2 dataset which is well-documented, these datasets are not accompanied with detailed description methodologies. In this paper, we introduce three new HTC benchmark datasets in the domain of research publications which comprise the titles and abstracts of papers from the Web of Science publication database. We first create two baseline datasets which use existing journal-and citation-based classification schemas. Due to the respective shortcomings of these two existing schemas, we propose an approach which combines their classifications to improve the reliability and robustness of the dataset. We evaluate the three created datasets with a clustering-based analysis and show that our proposed approach results in a higher quality dataset where documents that belong to the same class are semantically more similar compared to the other datasets. Finally, we provide the classification performance of four state-of-the-art HTC approaches on these three new datasets to provide baselines for future studies on machine learning-based techniques for scientific publication classification.
Diversity Aware Relevance Learning for Argument Search
In this work, we focus on the problem of retrieving relevant arguments for a query claim covering diverse aspects. State-of-the-art methods rely on explicit mappings between claims and premises, and thus are unable to utilize large available collections of premises without laborious and costly manual annotation. Their diversity approach relies on removing duplicates via clustering which does not directly ensure that the selected premises cover all aspects. This work introduces a new multi-step approach for the argument retrieval problem. Rather than relying on ground-truth assignments, our approach employs a machine learning model to capture semantic relationships between arguments. Beyond that, it aims to cover diverse facets of the query, instead of trying to identify duplicates explicitly. Our empirical evaluation demonstrates that our approach leads to a significant improvement in the argument retrieval task even though it requires less data.
CHIME: LLM-Assisted Hierarchical Organization of Scientific Studies for Literature Review Support
Literature review requires researchers to synthesize a large amount of information and is increasingly challenging as the scientific literature expands. In this work, we investigate the potential of LLMs for producing hierarchical organizations of scientific studies to assist researchers with literature review. We define hierarchical organizations as tree structures where nodes refer to topical categories and every node is linked to the studies assigned to that category. Our naive LLM-based pipeline for hierarchy generation from a set of studies produces promising yet imperfect hierarchies, motivating us to collect CHIME, an expert-curated dataset for this task focused on biomedicine. Given the challenging and time-consuming nature of building hierarchies from scratch, we use a human-in-the-loop process in which experts correct errors (both links between categories and study assignment) in LLM-generated hierarchies. CHIME contains 2,174 LLM-generated hierarchies covering 472 topics, and expert-corrected hierarchies for a subset of 100 topics. Expert corrections allow us to quantify LLM performance, and we find that while they are quite good at generating and organizing categories, their assignment of studies to categories could be improved. We attempt to train a corrector model with human feedback which improves study assignment by 12.6 F1 points. We release our dataset and models to encourage research on developing better assistive tools for literature review.
Benchmarking Clinical Decision Support Search
Finding relevant literature underpins the practice of evidence-based medicine. From 2014 to 2016, TREC conducted a clinical decision support track, wherein participants were tasked with finding articles relevant to clinical questions posed by physicians. In total, 87 teams have participated over the past three years, generating 395 runs. During this period, each team has trialled a variety of methods. While there was significant overlap in the methods employed by different teams, the results were varied. Due to the diversity of the platforms used, the results arising from the different techniques are not directly comparable, reducing the ability to build on previous work. By using a stable platform, we have been able to compare different document and query processing techniques, allowing us to experiment with different search parameters. We have used our system to reproduce leading teams runs, and compare the results obtained. By benchmarking our indexing and search techniques, we can statistically test a variety of hypotheses, paving the way for further research.
HiFi-KPI: A Dataset for Hierarchical KPI Extraction from Earnings Filings
The U.S. Securities and Exchange Commission (SEC) requires that public companies file financial reports tagging numbers with the machine readable inline eXtensible Business Reporting Language (iXBRL) standard. However, the highly complex and highly granular taxonomy defined by iXBRL limits label transferability across domains. In this paper, we introduce the Hierarchical Financial Key Performance Indicator (HiFi-KPI) dataset, designed to facilitate numerical KPI extraction at specified levels of granularity from unstructured financial text. Our approach organizes a 218,126-label hierarchy using a taxonomy based grouping method, investigating which taxonomy layer provides the most meaningful structure. HiFi-KPI comprises ~1.8M paragraphs and ~5M entities, each linked to a label in the iXBRL-specific calculation and presentation taxonomies. We provide baselines using encoder-based approaches and structured extraction using Large Language Models (LLMs). To simplify LLM inference and evaluation, we additionally release HiFi-KPI Lite, a manually curated subset with four expert-mapped labels. We publicly release all artifacts
AI Risk Categorization Decoded (AIR 2024): From Government Regulations to Corporate Policies
We present a comprehensive AI risk taxonomy derived from eight government policies from the European Union, United States, and China and 16 company policies worldwide, making a significant step towards establishing a unified language for generative AI safety evaluation. We identify 314 unique risk categories organized into a four-tiered taxonomy. At the highest level, this taxonomy encompasses System & Operational Risks, Content Safety Risks, Societal Risks, and Legal & Rights Risks. The taxonomy establishes connections between various descriptions and approaches to risk, highlighting the overlaps and discrepancies between public and private sector conceptions of risk. By providing this unified framework, we aim to advance AI safety through information sharing across sectors and the promotion of best practices in risk mitigation for generative AI models and systems.
Towards Lifelong Learning of Large Language Models: A Survey
As the applications of large language models (LLMs) expand across diverse fields, the ability of these models to adapt to ongoing changes in data, tasks, and user preferences becomes crucial. Traditional training methods, relying on static datasets, are increasingly inadequate for coping with the dynamic nature of real-world information. Lifelong learning, also known as continual or incremental learning, addresses this challenge by enabling LLMs to learn continuously and adaptively over their operational lifetime, integrating new knowledge while retaining previously learned information and preventing catastrophic forgetting. This survey delves into the sophisticated landscape of lifelong learning, categorizing strategies into two primary groups: Internal Knowledge and External Knowledge. Internal Knowledge includes continual pretraining and continual finetuning, each enhancing the adaptability of LLMs in various scenarios. External Knowledge encompasses retrieval-based and tool-based lifelong learning, leveraging external data sources and computational tools to extend the model's capabilities without modifying core parameters. The key contributions of our survey are: (1) Introducing a novel taxonomy categorizing the extensive literature of lifelong learning into 12 scenarios; (2) Identifying common techniques across all lifelong learning scenarios and classifying existing literature into various technique groups within each scenario; (3) Highlighting emerging techniques such as model expansion and data selection, which were less explored in the pre-LLM era. Through a detailed examination of these groups and their respective categories, this survey aims to enhance the adaptability, reliability, and overall performance of LLMs in real-world applications.
Heaps' law and Heaps functions in tagged texts: Evidences of their linguistic relevance
We study the relationship between vocabulary size and text length in a corpus of 75 literary works in English, authored by six writers, distinguishing between the contributions of three grammatical classes (or ``tags,'' namely, {\it nouns}, {\it verbs}, and {\it others}), and analyze the progressive appearance of new words of each tag along each individual text. While the power-law relation prescribed by Heaps' law is satisfactorily fulfilled by total vocabulary sizes and text lengths, the appearance of new words in each text is on the whole well described by the average of random shufflings of the text, which does not obey a power law. Deviations from this average, however, are statistically significant and show a systematic trend across the corpus. Specifically, they reveal that the appearance of new words along each text is predominantly retarded with respect to the average of random shufflings. Moreover, different tags are shown to add systematically distinct contributions to this tendency, with {\it verbs} and {\it others} being respectively more and less retarded than the mean trend, and {\it nouns} following instead this overall mean. These statistical systematicities are likely to point to the existence of linguistically relevant information stored in the different variants of Heaps' law, a feature that is still in need of extensive assessment.
Kompetencer: Fine-grained Skill Classification in Danish Job Postings via Distant Supervision and Transfer Learning
Skill Classification (SC) is the task of classifying job competences from job postings. This work is the first in SC applied to Danish job vacancy data. We release the first Danish job posting dataset: Kompetencer (en: competences), annotated for nested spans of competences. To improve upon coarse-grained annotations, we make use of The European Skills, Competences, Qualifications and Occupations (ESCO; le Vrang et al., 2014) taxonomy API to obtain fine-grained labels via distant supervision. We study two setups: The zero-shot and few-shot classification setting. We fine-tune English-based models and RemBERT (Chung et al., 2020) and compare them to in-language Danish models. Our results show RemBERT significantly outperforms all other models in both the zero-shot and the few-shot setting.
WikiHow: A Large Scale Text Summarization Dataset
Sequence-to-sequence models have recently gained the state of the art performance in summarization. However, not too many large-scale high-quality datasets are available and almost all the available ones are mainly news articles with specific writing style. Moreover, abstractive human-style systems involving description of the content at a deeper level require data with higher levels of abstraction. In this paper, we present WikiHow, a dataset of more than 230,000 article and summary pairs extracted and constructed from an online knowledge base written by different human authors. The articles span a wide range of topics and therefore represent high diversity styles. We evaluate the performance of the existing methods on WikiHow to present its challenges and set some baselines to further improve it.
A Survey of Scientific Large Language Models: From Data Foundations to Agent Frontiers
Scientific Large Language Models (Sci-LLMs) are transforming how knowledge is represented, integrated, and applied in scientific research, yet their progress is shaped by the complex nature of scientific data. This survey presents a comprehensive, data-centric synthesis that reframes the development of Sci-LLMs as a co-evolution between models and their underlying data substrate. We formulate a unified taxonomy of scientific data and a hierarchical model of scientific knowledge, emphasizing the multimodal, cross-scale, and domain-specific challenges that differentiate scientific corpora from general natural language processing datasets. We systematically review recent Sci-LLMs, from general-purpose foundations to specialized models across diverse scientific disciplines, alongside an extensive analysis of over 270 pre-/post-training datasets, showing why Sci-LLMs pose distinct demands -- heterogeneous, multi-scale, uncertainty-laden corpora that require representations preserving domain invariance and enabling cross-modal reasoning. On evaluation, we examine over 190 benchmark datasets and trace a shift from static exams toward process- and discovery-oriented assessments with advanced evaluation protocols. These data-centric analyses highlight persistent issues in scientific data development and discuss emerging solutions involving semi-automated annotation pipelines and expert validation. Finally, we outline a paradigm shift toward closed-loop systems where autonomous agents based on Sci-LLMs actively experiment, validate, and contribute to a living, evolving knowledge base. Collectively, this work provides a roadmap for building trustworthy, continually evolving artificial intelligence (AI) systems that function as a true partner in accelerating scientific discovery.
A Comprehensive Survey of Deep Research: Systems, Methodologies, and Applications
This survey examines the rapidly evolving field of Deep Research systems -- AI-powered applications that automate complex research workflows through the integration of large language models, advanced information retrieval, and autonomous reasoning capabilities. We analyze more than 80 commercial and non-commercial implementations that have emerged since 2023, including OpenAI/Deep Research, Gemini/Deep Research, Perplexity/Deep Research, and numerous open-source alternatives. Through comprehensive examination, we propose a novel hierarchical taxonomy that categorizes systems according to four fundamental technical dimensions: foundation models and reasoning engines, tool utilization and environmental interaction, task planning and execution control, and knowledge synthesis and output generation. We explore the architectural patterns, implementation approaches, and domain-specific adaptations that characterize these systems across academic, scientific, business, and educational applications. Our analysis reveals both the significant capabilities of current implementations and the technical and ethical challenges they present regarding information accuracy, privacy, intellectual property, and accessibility. The survey concludes by identifying promising research directions in advanced reasoning architectures, multimodal integration, domain specialization, human-AI collaboration, and ecosystem standardization that will likely shape the future evolution of this transformative technology. By providing a comprehensive framework for understanding Deep Research systems, this survey contributes to both the theoretical understanding of AI-augmented knowledge work and the practical development of more capable, responsible, and accessible research technologies. The paper resources can be viewed at https://github.com/scienceaix/deepresearch.
Taxonomy and Survey on Remote Human Input Systems for Driving Automation Systems
Corner cases for driving automation systems can often be detected by the system itself and subsequently resolved by remote humans. There exists a wide variety of technical approaches on how remote humans can resolve such issues. Over multiple domains, no common taxonomy on those approaches has developed yet, though. As the scaling of automated driving systems continues to increase, a uniform taxonomy is desirable to improve communication within the scientific community, but also beyond to policymakers and the general public. In this paper, we provide a survey on recent terminologies and propose a taxonomy for remote human input systems, classifying the different approaches based on their complexity.
A Survey of Large Language Models for Text-Guided Molecular Discovery: from Molecule Generation to Optimization
Large language models (LLMs) are introducing a paradigm shift in molecular discovery by enabling text-guided interaction with chemical spaces through natural language, symbolic notations, with emerging extensions to incorporate multi-modal inputs. To advance the new field of LLM for molecular discovery, this survey provides an up-to-date and forward-looking review of the emerging use of LLMs for two central tasks: molecule generation and molecule optimization. Based on our proposed taxonomy for both problems, we analyze representative techniques in each category, highlighting how LLM capabilities are leveraged across different learning settings. In addition, we include the commonly used datasets and evaluation protocols. We conclude by discussing key challenges and future directions, positioning this survey as a resource for researchers working at the intersection of LLMs and molecular science. A continuously updated reading list is available at https://github.com/REAL-Lab-NU/Awesome-LLM-Centric-Molecular-Discovery.
Artificial intelligence in cyber physical systems
This article conducts a literature review of current and future challenges in the use of artificial intelligence (AI) in cyber physical systems. The literature review is focused on identifying a conceptual framework for increasing resilience with AI through automation supporting both, a technical and human level. The methodology applied resembled a literature review and taxonomic analysis of complex internet of things (IoT) interconnected and coupled cyber physical systems. There is an increased attention on propositions on models, infrastructures and frameworks of IoT in both academic and technical papers. These reports and publications frequently represent a juxtaposition of other related systems and technologies (e.g. Industrial Internet of Things, Cyber Physical Systems, Industry 4.0 etc.). We review academic and industry papers published between 2010 and 2020. The results determine a new hierarchical cascading conceptual framework for analysing the evolution of AI decision-making in cyber physical systems. We argue that such evolution is inevitable and autonomous because of the increased integration of connected devices (IoT) in cyber physical systems. To support this argument, taxonomic methodology is adapted and applied for transparency and justifications of concepts selection decisions through building summary maps that are applied for designing the hierarchical cascading conceptual framework.
Arboretum: A Large Multimodal Dataset Enabling AI for Biodiversity
We introduce Arboretum, the largest publicly accessible dataset designed to advance AI for biodiversity applications. This dataset, curated from the iNaturalist community science platform and vetted by domain experts to ensure accuracy, includes 134.6 million images, surpassing existing datasets in scale by an order of magnitude. The dataset encompasses image-language paired data for a diverse set of species from birds (Aves), spiders/ticks/mites (Arachnida), insects (Insecta), plants (Plantae), fungus/mushrooms (Fungi), snails (Mollusca), and snakes/lizards (Reptilia), making it a valuable resource for multimodal vision-language AI models for biodiversity assessment and agriculture research. Each image is annotated with scientific names, taxonomic details, and common names, enhancing the robustness of AI model training. We showcase the value of Arboretum by releasing a suite of CLIP models trained using a subset of 40 million captioned images. We introduce several new benchmarks for rigorous assessment, report accuracy for zero-shot learning, and evaluations across life stages, rare species, confounding species, and various levels of the taxonomic hierarchy. We anticipate that Arboretum will spur the development of AI models that can enable a variety of digital tools ranging from pest control strategies, crop monitoring, and worldwide biodiversity assessment and environmental conservation. These advancements are critical for ensuring food security, preserving ecosystems, and mitigating the impacts of climate change. Arboretum is publicly available, easily accessible, and ready for immediate use. Please see the https://baskargroup.github.io/Arboretum/{project website} for links to our data, models, and code.
CSMeD: Bridging the Dataset Gap in Automated Citation Screening for Systematic Literature Reviews
Systematic literature reviews (SLRs) play an essential role in summarising, synthesising and validating scientific evidence. In recent years, there has been a growing interest in using machine learning techniques to automate the identification of relevant studies for SLRs. However, the lack of standardised evaluation datasets makes comparing the performance of such automated literature screening systems difficult. In this paper, we analyse the citation screening evaluation datasets, revealing that many of the available datasets are either too small, suffer from data leakage or have limited applicability to systems treating automated literature screening as a classification task, as opposed to, for example, a retrieval or question-answering task. To address these challenges, we introduce CSMeD, a meta-dataset consolidating nine publicly released collections, providing unified access to 325 SLRs from the fields of medicine and computer science. CSMeD serves as a comprehensive resource for training and evaluating the performance of automated citation screening models. Additionally, we introduce CSMeD-FT, a new dataset designed explicitly for evaluating the full text publication screening task. To demonstrate the utility of CSMeD, we conduct experiments and establish baselines on new datasets.
AI Exchange Platforms
The rapid integration of Artificial Intelligence (AI) into organizational technology frameworks has transformed how organizations engage with AI-driven models, influencing both operational performance and strategic innovation. With the advent of foundation models, the importance of structured platforms for AI model exchange has become paramount for organizational efficacy and adaptability. However, a comprehensive framework to categorize and understand these platforms remains underexplored. To address this gap, our taxonomy provides a structured approach to categorize AI exchange platforms, examining key dimensions and characteristics, as well as revealing interesting interaction patterns between public research institutions and organizations: Some platforms leverage peer review as a mechanism for quality control, and provide mechanisms for online testing, deploying, and customization of models. Our paper is beneficial to practitioners seeking to understand challenges and opportunities that arise from AI exchange platforms. For academics, the taxonomy serves as a foundation for further research into the evolution, impact, and best practices associated with AI model sharing and utilization in different contexts. Additionally, our study provides insights into the evolving role of AI in various industries, highlighting the importance of adaptability and innovation in platform design. This paper serves as a critical resource for understanding the dynamic interplay between technology, business models, and user engagement in the rapidly growing domain of AI model exchanges pointing also towards possible future evolution.
Tree-of-Debate: Multi-Persona Debate Trees Elicit Critical Thinking for Scientific Comparative Analysis
With the exponential growth of research facilitated by modern technology and improved accessibility, scientific discoveries have become increasingly fragmented within and across fields. This makes it challenging to assess the significance, novelty, incremental findings, and equivalent ideas between related works, particularly those from different research communities. Large language models (LLMs) have recently demonstrated strong quantitative and qualitative reasoning abilities, and multi-agent LLM debates have shown promise in handling complex reasoning tasks by exploring diverse perspectives and reasoning paths. Inspired by this, we introduce Tree-of-Debate (ToD), a framework which converts scientific papers into LLM personas that debate their respective novelties. To emphasize structured, critical reasoning rather than focusing solely on outcomes, ToD dynamically constructs a debate tree, enabling fine-grained analysis of independent novelty arguments within scholarly articles. Through experiments on scientific literature across various domains, evaluated by expert researchers, we demonstrate that ToD generates informative arguments, effectively contrasts papers, and supports researchers in their literature review.
Knowledge Navigator: LLM-guided Browsing Framework for Exploratory Search in Scientific Literature
The exponential growth of scientific literature necessitates advanced tools for effective knowledge exploration. We present Knowledge Navigator, a system designed to enhance exploratory search abilities by organizing and structuring the retrieved documents from broad topical queries into a navigable, two-level hierarchy of named and descriptive scientific topics and subtopics. This structured organization provides an overall view of the research themes in a domain, while also enabling iterative search and deeper knowledge discovery within specific subtopics by allowing users to refine their focus and retrieve additional relevant documents. Knowledge Navigator combines LLM capabilities with cluster-based methods to enable an effective browsing method. We demonstrate our approach's effectiveness through automatic and manual evaluations on two novel benchmarks, CLUSTREC-COVID and SCITOC. Our code, prompts, and benchmarks are made publicly available.
Every child should have parents: a taxonomy refinement algorithm based on hyperbolic term embeddings
We introduce the use of Poincar\'e embeddings to improve existing state-of-the-art approaches to domain-specific taxonomy induction from text as a signal for both relocating wrong hyponym terms within a (pre-induced) taxonomy as well as for attaching disconnected terms in a taxonomy. This method substantially improves previous state-of-the-art results on the SemEval-2016 Task 13 on taxonomy extraction. We demonstrate the superiority of Poincar\'e embeddings over distributional semantic representations, supporting the hypothesis that they can better capture hierarchical lexical-semantic relationships than embeddings in the Euclidean space.
M2Lingual: Enhancing Multilingual, Multi-Turn Instruction Alignment in Large Language Models
Instruction finetuning (IFT) is critical for aligning Large Language Models (LLMs) to follow instructions. Numerous effective IFT datasets have been proposed in the recent past, but most focus on high resource languages such as English. In this work, we propose a fully synthetic, novel taxonomy (Evol) guided Multilingual, Multi-turn instruction finetuning dataset, called M2Lingual, to better align LLMs on a diverse set of languages and tasks. M2Lingual contains a total of 182K IFT pairs that are built upon diverse seeds, covering 70 languages, 17 NLP tasks and general instruction-response pairs. LLMs finetuned with M2Lingual substantially outperform the majority of existing multilingual IFT datasets. Importantly, LLMs trained with M2Lingual consistently achieve competitive results across a wide variety of evaluation benchmarks compared to existing multilingual IFT datasets. Specifically, LLMs finetuned with M2Lingual achieve strong performance on our translated multilingual, multi-turn evaluation benchmark as well as a wide variety of multilingual tasks. Thus we contribute, and the 2 step Evol taxonomy used for its creation. M2Lingual repository - https://huggingface.co/datasets/ServiceNow-AI/M2Lingual
A Systematic Literature Review of Automated ICD Coding and Classification Systems using Discharge Summaries
Codification of free-text clinical narratives have long been recognised to be beneficial for secondary uses such as funding, insurance claim processing and research. The current scenario of assigning codes is a manual process which is very expensive, time-consuming and error prone. In recent years, many researchers have studied the use of Natural Language Processing (NLP), related Machine Learning (ML) and Deep Learning (DL) methods and techniques to resolve the problem of manual coding of clinical narratives and to assist human coders to assign clinical codes more accurately and efficiently. This systematic literature review provides a comprehensive overview of automated clinical coding systems that utilises appropriate NLP, ML and DL methods and techniques to assign ICD codes to discharge summaries. We have followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA) guidelines and conducted a comprehensive search of publications from January, 2010 to December 2020 in four academic databases- PubMed, ScienceDirect, Association for Computing Machinery(ACM) Digital Library, and the Association for Computational Linguistics(ACL) Anthology. We reviewed 7,556 publications; 38 met the inclusion criteria. This review identified: datasets having discharge summaries; NLP techniques along with some other data extraction processes, different feature extraction and embedding techniques. To measure the performance of classification methods, different evaluation metrics are used. Lastly, future research directions are provided to scholars who are interested in automated ICD code assignment. Efforts are still required to improve ICD code prediction accuracy, availability of large-scale de-identified clinical corpora with the latest version of the classification system. This can be a platform to guide and share knowledge with the less experienced coders and researchers.
Large Language Model Agent: A Survey on Methodology, Applications and Challenges
The era of intelligent agents is upon us, driven by revolutionary advancements in large language models. Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence. This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy, linking architectural foundations, collaboration mechanisms, and evolutionary pathways. We unify fragmented research threads by revealing fundamental connections between agent design principles and their emergent behaviors in complex environments. Our work provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time, while also addressing evaluation methodologies, tool applications, practical challenges, and diverse application domains. By surveying the latest developments in this rapidly evolving field, we offer researchers a structured taxonomy for understanding LLM agents and identify promising directions for future research. The collection is available at https://github.com/luo-junyu/Awesome-Agent-Papers.
New Methods for Metadata Extraction from Scientific Literature
Within the past few decades we have witnessed digital revolution, which moved scholarly communication to electronic media and also resulted in a substantial increase in its volume. Nowadays keeping track with the latest scientific achievements poses a major challenge for the researchers. Scientific information overload is a severe problem that slows down scholarly communication and knowledge propagation across the academia. Modern research infrastructures facilitate studying scientific literature by providing intelligent search tools, proposing similar and related documents, visualizing citation and author networks, assessing the quality and impact of the articles, and so on. In order to provide such high quality services the system requires the access not only to the text content of stored documents, but also to their machine-readable metadata. Since in practice good quality metadata is not always available, there is a strong demand for a reliable automatic method of extracting machine-readable metadata directly from source documents. This research addresses these problems by proposing an automatic, accurate and flexible algorithm for extracting wide range of metadata directly from scientific articles in born-digital form. Extracted information includes basic document metadata, structured full text and bibliography section. Designed as a universal solution, proposed algorithm is able to handle a vast variety of publication layouts with high precision and thus is well-suited for analyzing heterogeneous document collections. This was achieved by employing supervised and unsupervised machine-learning algorithms trained on large, diverse datasets. The evaluation we conducted showed good performance of proposed metadata extraction algorithm. The comparison with other similar solutions also proved our algorithm performs better than competition for most metadata types.
AutoML for Deep Recommender Systems: A Survey
Recommender systems play a significant role in information filtering and have been utilized in different scenarios, such as e-commerce and social media. With the prosperity of deep learning, deep recommender systems show superior performance by capturing non-linear information and item-user relationships. However, the design of deep recommender systems heavily relies on human experiences and expert knowledge. To tackle this problem, Automated Machine Learning (AutoML) is introduced to automatically search for the proper candidates for different parts of deep recommender systems. This survey performs a comprehensive review of the literature in this field. Firstly, we propose an abstract concept for AutoML for deep recommender systems (AutoRecSys) that describes its building blocks and distinguishes it from conventional AutoML techniques and recommender systems. Secondly, we present a taxonomy as a classification framework containing feature selection search, embedding dimension search, feature interaction search, model architecture search, and other components search. Furthermore, we put a particular emphasis on the search space and search strategy, as they are the common thread to connect all methods within each category and enable practitioners to analyze and compare various approaches. Finally, we propose four future promising research directions that will lead this line of research.
Towards Next-Generation LLM-based Recommender Systems: A Survey and Beyond
Large language models (LLMs) have not only revolutionized the field of natural language processing (NLP) but also have the potential to bring a paradigm shift in many other fields due to their remarkable abilities of language understanding, as well as impressive generalization capabilities and reasoning skills. As a result, recent studies have actively attempted to harness the power of LLMs to improve recommender systems, and it is imperative to thoroughly review the recent advances and challenges of LLM-based recommender systems. Unlike existing work, this survey does not merely analyze the classifications of LLM-based recommendation systems according to the technical framework of LLMs. Instead, it investigates how LLMs can better serve recommendation tasks from the perspective of the recommender system community, thus enhancing the integration of large language models into the research of recommender system and its practical application. In addition, the long-standing gap between academic research and industrial applications related to recommender systems has not been well discussed, especially in the era of large language models. In this review, we introduce a novel taxonomy that originates from the intrinsic essence of recommendation, delving into the application of large language model-based recommendation systems and their industrial implementation. Specifically, we propose a three-tier structure that more accurately reflects the developmental progression of recommendation systems from research to practical implementation, including representing and understanding, scheming and utilizing, and industrial deployment. Furthermore, we discuss critical challenges and opportunities in this emerging field. A more up-to-date version of the papers is maintained at: https://github.com/jindongli-Ai/Next-Generation-LLM-based-Recommender-Systems-Survey.
