1 The ObjectFolder Benchmark: Multisensory Learning with Neural and Real Objects We introduce the ObjectFolder Benchmark, a benchmark suite of 10 tasks for multisensory object-centric learning, centered around object recognition, reconstruction, and manipulation with sight, sound, and touch. We also introduce the ObjectFolder Real dataset, including the multisensory measurements for 100 real-world household objects, building upon a newly designed pipeline for collecting the 3D meshes, videos, impact sounds, and tactile readings of real-world objects. We conduct systematic benchmarking on both the 1,000 multisensory neural objects from ObjectFolder, and the real multisensory data from ObjectFolder Real. Our results demonstrate the importance of multisensory perception and reveal the respective roles of vision, audio, and touch for different object-centric learning tasks. By publicly releasing our dataset and benchmark suite, we hope to catalyze and enable new research in multisensory object-centric learning in computer vision, robotics, and beyond. Project page: https://objectfolder.stanford.edu 8 authors · Jun 1, 2023
- SonicGauss: Position-Aware Physical Sound Synthesis for 3D Gaussian Representations While 3D Gaussian representations (3DGS) have proven effective for modeling the geometry and appearance of objects, their potential for capturing other physical attributes-such as sound-remains largely unexplored. In this paper, we present a novel framework dubbed SonicGauss for synthesizing impact sounds from 3DGS representations by leveraging their inherent geometric and material properties. Specifically, we integrate a diffusion-based sound synthesis model with a PointTransformer-based feature extractor to infer material characteristics and spatial-acoustic correlations directly from Gaussian ellipsoids. Our approach supports spatially varying sound responses conditioned on impact locations and generalizes across a wide range of object categories. Experiments on the ObjectFolder dataset and real-world recordings demonstrate that our method produces realistic, position-aware auditory feedback. The results highlight the framework's robustness and generalization ability, offering a promising step toward bridging 3D visual representations and interactive sound synthesis. Project page: https://chunshi.wang/SonicGauss 3 authors · Jul 26