Evaluating the Robustness of Large Language Model Safety Guardrails Against Adversarial Attacks
Abstract
Guardrail models for LLMs exhibit significant performance degradation on novel adversarial attacks, with generalization ability being a critical metric for evaluation.
Large Language Model (LLM) safety guardrail models have emerged as a primary defense mechanism against harmful content generation, yet their robustness against sophisticated adversarial attacks remains poorly characterized. This study evaluated ten publicly available guardrail models from Meta, Google, IBM, NVIDIA, Alibaba, and Allen AI across 1,445 test prompts spanning 21 attack categories. While Qwen3Guard-8B achieved the highest overall accuracy (85.3%, 95% CI: 83.4-87.1%), a critical finding emerged when separating public benchmark prompts from novel attacks: all models showed substantial performance degradation on unseen prompts, with Qwen3Guard dropping from 91.0% to 33.8% (a 57.2 percentage point gap). In contrast, Granite-Guardian-3.2-5B showed the best generalization with only a 6.5% gap. A "helpful mode" jailbreak was also discovered where two guardrail models (Nemotron-Safety-8B, Granite-Guardian-3.2-5B) generated harmful content instead of blocking it, representing a novel failure mode. These findings suggest that benchmark performance may be misleading due to training data contamination, and that generalization ability, not overall accuracy, should be the primary metric for guardrail evaluation.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper