--- library_name: transformers language: - tg license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - whisper-event - generated_from_trainer datasets: - fleurs metrics: - wer model-index: - name: Whisper Tajik results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: CUSTOM type: fleurs config: tg_tj split: None args: 'config: tg, split: test' metrics: - name: Wer type: wer value: 18.951830443159924 --- # Whisper Tajik This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the CUSTOM dataset. It achieves the following results on the evaluation set: - Loss: 0.4538 - Wer: 18.9518 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0245 | 6.2893 | 1000 | 0.3726 | 20.9634 | | 0.0043 | 12.5786 | 2000 | 0.4167 | 20.5318 | | 0.0003 | 18.8679 | 3000 | 0.4431 | 19.2062 | | 0.0002 | 25.1572 | 4000 | 0.4538 | 18.9518 | ### Framework versions - Transformers 4.49.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0