Upload 9 files
Browse files- __init__.py +0 -0
- chat_template.jinja +11 -0
- config.json +113 -0
- configuration_neuroblast_jax.py +322 -0
- model.safetensors +3 -0
- modeling_neuroblast_jax.py +691 -0
- special_tokens_map.json +77 -0
- tokenizer.json +0 -0
- tokenizer_config.json +474 -0
__init__.py
ADDED
|
File without changes
|
chat_template.jinja
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{% for message in messages %}
|
| 2 |
+
{% if message['role'] == 'assistant' %}
|
| 3 |
+
{{ '<|im_start|>assistant\n' }}
|
| 4 |
+
{% generation %}
|
| 5 |
+
{{ message['content'] }}
|
| 6 |
+
{% endgeneration %}
|
| 7 |
+
{{ '<|im_end|>' }}
|
| 8 |
+
{% else %}
|
| 9 |
+
{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>'}}
|
| 10 |
+
{% endif %}
|
| 11 |
+
{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}
|
config.json
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"NeuroBLASTForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoConfig": "configuration_neuroblast.NeuroBLASTConfig",
|
| 7 |
+
"AutoModelForCausalLM": "modeling_neuroblast.NeuroBLASTForCausalLM"
|
| 8 |
+
},
|
| 9 |
+
"attention_bias": false,
|
| 10 |
+
"attention_dropout": 0.0,
|
| 11 |
+
"attention_every": 0,
|
| 12 |
+
"dropout": 0.0,
|
| 13 |
+
"dtype": "float32",
|
| 14 |
+
"hidden_act": "silu",
|
| 15 |
+
"hidden_size": 512,
|
| 16 |
+
"initializer_range": 0.02,
|
| 17 |
+
"intermediate_size": 3072,
|
| 18 |
+
"kernel_size": 5,
|
| 19 |
+
"layer_types": [
|
| 20 |
+
"full_attention",
|
| 21 |
+
"full_attention",
|
| 22 |
+
"full_attention",
|
| 23 |
+
"full_attention",
|
| 24 |
+
"full_attention",
|
| 25 |
+
"full_attention",
|
| 26 |
+
"full_attention",
|
| 27 |
+
"full_attention",
|
| 28 |
+
"full_attention",
|
| 29 |
+
"full_attention",
|
| 30 |
+
"full_attention",
|
| 31 |
+
"full_attention",
|
| 32 |
+
"full_attention",
|
| 33 |
+
"full_attention",
|
| 34 |
+
"full_attention",
|
| 35 |
+
"full_attention",
|
| 36 |
+
"full_attention",
|
| 37 |
+
"full_attention",
|
| 38 |
+
"full_attention",
|
| 39 |
+
"full_attention",
|
| 40 |
+
"full_attention",
|
| 41 |
+
"full_attention",
|
| 42 |
+
"full_attention",
|
| 43 |
+
"full_attention",
|
| 44 |
+
"full_attention",
|
| 45 |
+
"full_attention",
|
| 46 |
+
"full_attention",
|
| 47 |
+
"full_attention",
|
| 48 |
+
"full_attention",
|
| 49 |
+
"full_attention",
|
| 50 |
+
"full_attention",
|
| 51 |
+
"full_attention",
|
| 52 |
+
"full_attention",
|
| 53 |
+
"full_attention",
|
| 54 |
+
"full_attention",
|
| 55 |
+
"full_attention",
|
| 56 |
+
"full_attention",
|
| 57 |
+
"full_attention",
|
| 58 |
+
"full_attention",
|
| 59 |
+
"full_attention",
|
| 60 |
+
"full_attention",
|
| 61 |
+
"full_attention",
|
| 62 |
+
"full_attention",
|
| 63 |
+
"full_attention",
|
| 64 |
+
"full_attention",
|
| 65 |
+
"full_attention",
|
| 66 |
+
"full_attention",
|
| 67 |
+
"full_attention",
|
| 68 |
+
"full_attention",
|
| 69 |
+
"full_attention",
|
| 70 |
+
"full_attention",
|
| 71 |
+
"full_attention",
|
| 72 |
+
"full_attention",
|
| 73 |
+
"full_attention",
|
| 74 |
+
"full_attention",
|
| 75 |
+
"full_attention",
|
| 76 |
+
"full_attention",
|
| 77 |
+
"full_attention",
|
| 78 |
+
"full_attention",
|
| 79 |
+
"full_attention",
|
| 80 |
+
"full_attention",
|
| 81 |
+
"full_attention",
|
| 82 |
+
"full_attention",
|
| 83 |
+
"full_attention",
|
| 84 |
+
"full_attention",
|
| 85 |
+
"full_attention",
|
| 86 |
+
"full_attention",
|
| 87 |
+
"full_attention",
|
| 88 |
+
"full_attention",
|
| 89 |
+
"full_attention",
|
| 90 |
+
"full_attention",
|
| 91 |
+
"full_attention"
|
| 92 |
+
],
|
| 93 |
+
"max_position_embeddings": 32768,
|
| 94 |
+
"model_type": "neuroblast",
|
| 95 |
+
"num_associative_layers": 32,
|
| 96 |
+
"num_attention_heads": 16,
|
| 97 |
+
"num_hidden_layers": 72,
|
| 98 |
+
"num_key_value_heads": 8,
|
| 99 |
+
"num_motor_layers": 16,
|
| 100 |
+
"num_sensory_layers": 24,
|
| 101 |
+
"pad_token_id": 65537,
|
| 102 |
+
"rms_norm_eps": 1e-06,
|
| 103 |
+
"rope_scaling": null,
|
| 104 |
+
"rope_theta": 10000.0,
|
| 105 |
+
"scale": 1.0,
|
| 106 |
+
"sliding_window": null,
|
| 107 |
+
"temporal_kernel_size": 5,
|
| 108 |
+
"tie_word_embeddings": false,
|
| 109 |
+
"transformers_version": "4.57.1",
|
| 110 |
+
"use_cache": true,
|
| 111 |
+
"use_sliding_window": false,
|
| 112 |
+
"vocab_size": 65538
|
| 113 |
+
}
|
configuration_neuroblast_jax.py
ADDED
|
@@ -0,0 +1,322 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""NeuroBLASTConfig model configuration"""
|
| 16 |
+
|
| 17 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 18 |
+
from transformers.utils import logging
|
| 19 |
+
|
| 20 |
+
logger = logging.get_logger(__name__)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class NeuroBLASTConfig(PretrainedConfig):
|
| 24 |
+
r"""
|
| 25 |
+
This is the configuration class to store the configuration of a [`Qwen3Model`]. It is used to instantiate a
|
| 26 |
+
Qwen3 model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
| 27 |
+
with the defaults will yield a similar configuration to that of
|
| 28 |
+
Qwen3-8B [Qwen/Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B).
|
| 29 |
+
|
| 30 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 31 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
Args:
|
| 35 |
+
vocab_size (`int`, *optional*, defaults to 151936):
|
| 36 |
+
Vocabulary size of the Qwen3 model. Defines the number of different tokens that can be represented by the
|
| 37 |
+
`inputs_ids` passed when calling [`Qwen3Model`]
|
| 38 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
| 39 |
+
Dimension of the hidden representations.
|
| 40 |
+
intermediate_size (`int`, *optional*, defaults to 22016):
|
| 41 |
+
Dimension of the MLP representations.
|
| 42 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 43 |
+
Number of hidden layers in the Transformer encoder.
|
| 44 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 45 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 46 |
+
num_key_value_heads (`int`, *optional*, defaults to 32):
|
| 47 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 48 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 49 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 50 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 51 |
+
by meanpooling all the original heads within that group. For more details, check out [this
|
| 52 |
+
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `32`.
|
| 53 |
+
head_dim (`int`, *optional*, defaults to 128):
|
| 54 |
+
The attention head dimension.
|
| 55 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 56 |
+
The non-linear activation function (function or string) in the decoder.
|
| 57 |
+
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
| 58 |
+
The maximum sequence length that this model might ever be used with.
|
| 59 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 60 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 61 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
| 62 |
+
The epsilon used by the rms normalization layers.
|
| 63 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 64 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 65 |
+
relevant if `config.is_decoder=True`.
|
| 66 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 67 |
+
Whether the model's input and output word embeddings should be tied.
|
| 68 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 69 |
+
The base period of the RoPE embeddings.
|
| 70 |
+
rope_scaling (`Dict`, *optional*):
|
| 71 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
| 72 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
| 73 |
+
accordingly.
|
| 74 |
+
Expected contents:
|
| 75 |
+
`rope_type` (`str`):
|
| 76 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
| 77 |
+
'llama3'], with 'default' being the original RoPE implementation.
|
| 78 |
+
`factor` (`float`, *optional*):
|
| 79 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
| 80 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
| 81 |
+
original maximum pre-trained length.
|
| 82 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
| 83 |
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
| 84 |
+
pretraining.
|
| 85 |
+
`attention_factor` (`float`, *optional*):
|
| 86 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
| 87 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
| 88 |
+
`factor` field to infer the suggested value.
|
| 89 |
+
`beta_fast` (`float`, *optional*):
|
| 90 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
| 91 |
+
ramp function. If unspecified, it defaults to 32.
|
| 92 |
+
`beta_slow` (`float`, *optional*):
|
| 93 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
| 94 |
+
ramp function. If unspecified, it defaults to 1.
|
| 95 |
+
`short_factor` (`list[float]`, *optional*):
|
| 96 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
| 97 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
| 98 |
+
size divided by the number of attention heads divided by 2
|
| 99 |
+
`long_factor` (`list[float]`, *optional*):
|
| 100 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
| 101 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
| 102 |
+
size divided by the number of attention heads divided by 2
|
| 103 |
+
`low_freq_factor` (`float`, *optional*):
|
| 104 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
| 105 |
+
`high_freq_factor` (`float`, *optional*):
|
| 106 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
| 107 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
| 108 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
| 109 |
+
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
| 110 |
+
Whether to use sliding window attention.
|
| 111 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
| 112 |
+
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
| 113 |
+
max_window_layers (`int`, *optional*, defaults to 28):
|
| 114 |
+
The number of layers using full attention. The first `max_window_layers` layers will use full attention, while any
|
| 115 |
+
additional layer afterwards will use SWA (Sliding Window Attention).
|
| 116 |
+
layer_types (`list`, *optional*):
|
| 117 |
+
Attention pattern for each layer.
|
| 118 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 119 |
+
The dropout ratio for the attention probabilities.
|
| 120 |
+
|
| 121 |
+
```python
|
| 122 |
+
>>> from transformers import Qwen3Model, Qwen3Config
|
| 123 |
+
|
| 124 |
+
>>> # Initializing a Qwen3 style configuration
|
| 125 |
+
>>> configuration = Qwen3Config()
|
| 126 |
+
|
| 127 |
+
>>> # Initializing a model from the Qwen3-8B style configuration
|
| 128 |
+
>>> model = Qwen3Model(configuration)
|
| 129 |
+
|
| 130 |
+
>>> # Accessing the model configuration
|
| 131 |
+
>>> configuration = model.config
|
| 132 |
+
```"""
|
| 133 |
+
|
| 134 |
+
model_type = "frankqwenstein"
|
| 135 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 136 |
+
|
| 137 |
+
# Default tensor parallel plan for base model `Qwen3`
|
| 138 |
+
base_model_tp_plan = {
|
| 139 |
+
"layers.*.self_attn.q_proj": "colwise",
|
| 140 |
+
"layers.*.self_attn.k_proj": "colwise",
|
| 141 |
+
"layers.*.self_attn.v_proj": "colwise",
|
| 142 |
+
"layers.*.self_attn.o_proj": "rowwise",
|
| 143 |
+
"layers.*.mlp.gate_proj": "colwise",
|
| 144 |
+
"layers.*.mlp.up_proj": "colwise",
|
| 145 |
+
"layers.*.mlp.down_proj": "rowwise",
|
| 146 |
+
}
|
| 147 |
+
base_model_pp_plan = {
|
| 148 |
+
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
| 149 |
+
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
| 150 |
+
"norm": (["hidden_states"], ["hidden_states"]),
|
| 151 |
+
}
|
| 152 |
+
|
| 153 |
+
def __init__(
|
| 154 |
+
self,
|
| 155 |
+
vocab_size=151936,
|
| 156 |
+
hidden_size=4096,
|
| 157 |
+
energy_dim=128,
|
| 158 |
+
intermediate_size=22016,
|
| 159 |
+
num_hidden_layers=32,
|
| 160 |
+
num_associative_layers=16,
|
| 161 |
+
num_sensory_layers=8,
|
| 162 |
+
num_motor_layers=8,
|
| 163 |
+
num_attention_heads=32,
|
| 164 |
+
num_key_value_heads=32,
|
| 165 |
+
head_dim=128,
|
| 166 |
+
hidden_act="silu",
|
| 167 |
+
max_position_embeddings=32768,
|
| 168 |
+
initializer_range=0.02,
|
| 169 |
+
rms_norm_eps=1e-6,
|
| 170 |
+
use_cache=True,
|
| 171 |
+
tie_word_embeddings=False,
|
| 172 |
+
rope_theta=10000.0,
|
| 173 |
+
rope_scaling=None,
|
| 174 |
+
attention_bias=False,
|
| 175 |
+
use_sliding_window=False,
|
| 176 |
+
sliding_window=4096,
|
| 177 |
+
max_window_layers=28,
|
| 178 |
+
layer_types=None,
|
| 179 |
+
attention_dropout=0.0,
|
| 180 |
+
attention_every=0,
|
| 181 |
+
moe_topk=1,
|
| 182 |
+
moe_experts=1,
|
| 183 |
+
scale=1.0,
|
| 184 |
+
chunk_height=1,
|
| 185 |
+
chunk_top_k=2,
|
| 186 |
+
kernel_size=5,
|
| 187 |
+
temporal_kernel_size=5, # New parameter for temporal convolution kernel size
|
| 188 |
+
dropout=0.0,
|
| 189 |
+
attn_dropout=0.0,
|
| 190 |
+
num_blocks=3,
|
| 191 |
+
conv_stride=1, # New parameter for convolution stride
|
| 192 |
+
yarn_original_max_position_embeddings=8192, # Original max position for YaRN
|
| 193 |
+
yarn_extrapolation_factor=1.0, # YaRN extrapolation factor
|
| 194 |
+
yarn_attention_factor=1.0, # YaRN attention factor
|
| 195 |
+
yarn_beta_fast=32, # YaRN beta fast parameter
|
| 196 |
+
yarn_beta_slow=1, # YaRN beta slow parameter
|
| 197 |
+
bidirectional_training=False, # Enable bidirectional token prediction training
|
| 198 |
+
# Standard MoE parameters
|
| 199 |
+
use_moe=False,
|
| 200 |
+
num_experts=8,
|
| 201 |
+
num_experts_per_tok=2,
|
| 202 |
+
moe_intermediate_size=2048,
|
| 203 |
+
norm_topk_prob=True,
|
| 204 |
+
# Optimization parameters
|
| 205 |
+
capacity_factor=1.25,
|
| 206 |
+
eval_capacity_factor=2.0,
|
| 207 |
+
load_balancing_loss_coef=0.01,
|
| 208 |
+
expert_dropout=0.1,
|
| 209 |
+
routing_noise_std=0.1,
|
| 210 |
+
# Advanced features
|
| 211 |
+
num_gate_heads=1,
|
| 212 |
+
gating_strategy="standard",
|
| 213 |
+
expert_parallel=False,
|
| 214 |
+
track_expert_usage=True,
|
| 215 |
+
# Hierarchical MoE
|
| 216 |
+
num_expert_groups=4,
|
| 217 |
+
use_silu_after_blocks=False,
|
| 218 |
+
query_feature_map: str = "relu_squared",
|
| 219 |
+
kv_feature_map: str = "softplus",
|
| 220 |
+
**kwargs,
|
| 221 |
+
):
|
| 222 |
+
self.vocab_size = vocab_size
|
| 223 |
+
self.max_position_embeddings = max_position_embeddings
|
| 224 |
+
self.hidden_size = hidden_size
|
| 225 |
+
self.energy_dim = energy_dim
|
| 226 |
+
self.intermediate_size = intermediate_size
|
| 227 |
+
self.num_hidden_layers = num_hidden_layers
|
| 228 |
+
|
| 229 |
+
self.num_associative_layers = num_associative_layers
|
| 230 |
+
self.num_sensory_layers = num_sensory_layers
|
| 231 |
+
|
| 232 |
+
self.num_motor_layers = num_motor_layers
|
| 233 |
+
|
| 234 |
+
if (
|
| 235 |
+
num_hidden_layers
|
| 236 |
+
!= num_associative_layers + num_sensory_layers + num_motor_layers
|
| 237 |
+
):
|
| 238 |
+
self.num_hidden_layers = (
|
| 239 |
+
num_associative_layers + num_sensory_layers + num_motor_layers
|
| 240 |
+
)
|
| 241 |
+
self.num_attention_heads = num_attention_heads
|
| 242 |
+
self.use_sliding_window = use_sliding_window
|
| 243 |
+
self.sliding_window = sliding_window if self.use_sliding_window else None
|
| 244 |
+
self.max_window_layers = max_window_layers
|
| 245 |
+
|
| 246 |
+
# for backward compatibility
|
| 247 |
+
if num_key_value_heads is None:
|
| 248 |
+
num_key_value_heads = num_attention_heads
|
| 249 |
+
|
| 250 |
+
self.num_key_value_heads = num_key_value_heads
|
| 251 |
+
self.head_dim = head_dim
|
| 252 |
+
self.hidden_act = hidden_act
|
| 253 |
+
self.initializer_range = initializer_range
|
| 254 |
+
self.rms_norm_eps = rms_norm_eps
|
| 255 |
+
self.use_cache = use_cache
|
| 256 |
+
self.rope_theta = rope_theta
|
| 257 |
+
self.rope_scaling = rope_scaling
|
| 258 |
+
self.attention_bias = attention_bias
|
| 259 |
+
self.attention_dropout = attention_dropout
|
| 260 |
+
self.attention_every = attention_every
|
| 261 |
+
self.scale = scale
|
| 262 |
+
self.chunk_height = chunk_height
|
| 263 |
+
self.chunk_top_k = chunk_top_k
|
| 264 |
+
self.kernel_size = kernel_size
|
| 265 |
+
self.temporal_kernel_size = temporal_kernel_size
|
| 266 |
+
self.num_blocks = num_blocks
|
| 267 |
+
self.dropout = dropout
|
| 268 |
+
self.attn_dropout = attn_dropout
|
| 269 |
+
self.conv_stride = conv_stride
|
| 270 |
+
self.yarn_original_max_position_embeddings = (
|
| 271 |
+
yarn_original_max_position_embeddings
|
| 272 |
+
)
|
| 273 |
+
self.yarn_extrapolation_factor = yarn_extrapolation_factor
|
| 274 |
+
self.yarn_attention_factor = yarn_attention_factor
|
| 275 |
+
self.yarn_beta_fast = yarn_beta_fast
|
| 276 |
+
self.yarn_beta_slow = yarn_beta_slow
|
| 277 |
+
self.bidirectional_training = bidirectional_training
|
| 278 |
+
self.moe_topk = moe_topk
|
| 279 |
+
self.moe_experts = moe_experts
|
| 280 |
+
|
| 281 |
+
self.use_moe = use_moe
|
| 282 |
+
self.num_experts = num_experts
|
| 283 |
+
self.num_experts_per_tok = num_experts_per_tok
|
| 284 |
+
self.moe_intermediate_size = moe_intermediate_size
|
| 285 |
+
self.norm_topk_prob = norm_topk_prob
|
| 286 |
+
|
| 287 |
+
# Optimization parameters
|
| 288 |
+
self.capacity_factor = capacity_factor
|
| 289 |
+
self.eval_capacity_factor = eval_capacity_factor
|
| 290 |
+
self.load_balancing_loss_coef = load_balancing_loss_coef
|
| 291 |
+
self.expert_dropout = expert_dropout
|
| 292 |
+
self.routing_noise_std = routing_noise_std
|
| 293 |
+
|
| 294 |
+
# Advanced features
|
| 295 |
+
self.num_gate_heads = num_gate_heads
|
| 296 |
+
self.gating_strategy = gating_strategy
|
| 297 |
+
self.expert_parallel = expert_parallel
|
| 298 |
+
self.track_expert_usage = track_expert_usage
|
| 299 |
+
self.use_silu_after_blocks = use_silu_after_blocks
|
| 300 |
+
|
| 301 |
+
# Hierarchical MoE
|
| 302 |
+
self.num_expert_groups = num_expert_groups
|
| 303 |
+
|
| 304 |
+
# Linear Attention Feature Maps
|
| 305 |
+
self.query_feature_map = query_feature_map
|
| 306 |
+
self.kv_feature_map = kv_feature_map
|
| 307 |
+
|
| 308 |
+
# Validate the correctness of rotary position embeddings parameters
|
| 309 |
+
# BC: if there is a 'type' field, move it to 'rope_type'.
|
| 310 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
| 311 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
| 312 |
+
|
| 313 |
+
self.layer_types = layer_types
|
| 314 |
+
if self.layer_types is None:
|
| 315 |
+
self.layer_types = [
|
| 316 |
+
("full_attention") for i in range(self.num_hidden_layers)
|
| 317 |
+
]
|
| 318 |
+
|
| 319 |
+
super().__init__(
|
| 320 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 321 |
+
**kwargs,
|
| 322 |
+
)
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8d85fd3448ffeb9bce6bea7672865f6cec4e0e224400a1c38de97199c8359dd7
|
| 3 |
+
size 2386809408
|
modeling_neuroblast_jax.py
ADDED
|
@@ -0,0 +1,691 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from typing import Optional, Tuple, Any, Callable
|
| 3 |
+
|
| 4 |
+
import jax
|
| 5 |
+
import jax.numpy as jnp
|
| 6 |
+
from flax import linen as nn
|
| 7 |
+
from flax.core.frozen_dict import FrozenDict
|
| 8 |
+
from flax.linen.attention import dot_product_attention
|
| 9 |
+
from flax.traverse_util import flatten_dict, unflatten_dict
|
| 10 |
+
from transformers.modeling_flax_utils import FlaxPreTrainedModel
|
| 11 |
+
from transformers.utils import logging
|
| 12 |
+
|
| 13 |
+
from .configuration_neuroblast_jax import NeuroBLASTConfig
|
| 14 |
+
|
| 15 |
+
logger = logging.get_logger(__name__)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class NeuroBLASTRMSNorm(nn.Module):
|
| 19 |
+
hidden_size: int = 0
|
| 20 |
+
eps: float = 1e-6
|
| 21 |
+
dtype: Any = jnp.float32
|
| 22 |
+
|
| 23 |
+
def setup(self):
|
| 24 |
+
self.weight = self.param(
|
| 25 |
+
"weight",
|
| 26 |
+
lambda rng, shape: jnp.ones(shape, dtype=self.dtype),
|
| 27 |
+
(self.hidden_size,),
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
def __call__(self, hidden_states):
|
| 31 |
+
variance = jnp.mean(jnp.square(hidden_states), axis=-1, keepdims=True)
|
| 32 |
+
hidden_states = hidden_states * jax.lax.rsqrt(variance + self.eps)
|
| 33 |
+
return self.weight * hidden_states
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class NeuroBLASTMLP(nn.Module):
|
| 37 |
+
config: Optional[NeuroBLASTConfig] = None
|
| 38 |
+
dtype: Any = jnp.float32
|
| 39 |
+
|
| 40 |
+
def setup(self):
|
| 41 |
+
self.hidden_size = self.config.hidden_size
|
| 42 |
+
self.intermediate_size = self.config.intermediate_size
|
| 43 |
+
|
| 44 |
+
self.gate_proj = nn.Dense(self.intermediate_size, use_bias=False, dtype=self.dtype)
|
| 45 |
+
self.up_proj = nn.Dense(self.intermediate_size, use_bias=False, dtype=self.dtype)
|
| 46 |
+
self.down_proj = nn.Dense(self.hidden_size, use_bias=False, dtype=self.dtype)
|
| 47 |
+
|
| 48 |
+
# Activation function
|
| 49 |
+
if self.config.hidden_act == "silu":
|
| 50 |
+
self.act_fn = nn.silu
|
| 51 |
+
elif self.config.hidden_act == "gelu":
|
| 52 |
+
self.act_fn = nn.gelu
|
| 53 |
+
elif self.config.hidden_act == "relu":
|
| 54 |
+
self.act_fn = nn.relu
|
| 55 |
+
else:
|
| 56 |
+
raise ValueError(f"Unsupported activation: {self.config.hidden_act}")
|
| 57 |
+
|
| 58 |
+
def __call__(self, x):
|
| 59 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def rotate_half(x):
|
| 63 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 64 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 65 |
+
return jnp.concatenate((-x2, x1), axis=-1)
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None):
|
| 69 |
+
|
| 70 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 71 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 72 |
+
return q_embed, k_embed
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
class NeuroBLASTAttention(nn.Module):
|
| 76 |
+
config: Optional[NeuroBLASTConfig] = None
|
| 77 |
+
layer_idx: int = 0
|
| 78 |
+
use_rope: bool = True
|
| 79 |
+
dtype: Any = jnp.float32
|
| 80 |
+
|
| 81 |
+
def setup(self):
|
| 82 |
+
self.hidden_size = self.config.hidden_size
|
| 83 |
+
self.num_heads = self.config.num_attention_heads
|
| 84 |
+
self.head_dim = getattr(
|
| 85 |
+
self.config, "head_dim", self.hidden_size // self.num_heads
|
| 86 |
+
)
|
| 87 |
+
self.num_key_value_heads = self.config.num_key_value_heads
|
| 88 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 89 |
+
self.scaling = self.head_dim**-0.5
|
| 90 |
+
self.attn_output_dim = self.num_heads * self.head_dim
|
| 91 |
+
|
| 92 |
+
self.q_proj = nn.Dense(
|
| 93 |
+
self.attn_output_dim,
|
| 94 |
+
use_bias=self.config.attention_bias,
|
| 95 |
+
dtype=self.dtype
|
| 96 |
+
)
|
| 97 |
+
self.k_proj = nn.Dense(
|
| 98 |
+
self.num_key_value_heads * self.head_dim,
|
| 99 |
+
use_bias=self.config.attention_bias,
|
| 100 |
+
dtype=self.dtype
|
| 101 |
+
)
|
| 102 |
+
self.v_proj = nn.Dense(
|
| 103 |
+
self.num_key_value_heads * self.head_dim,
|
| 104 |
+
use_bias=self.config.attention_bias,
|
| 105 |
+
dtype=self.dtype
|
| 106 |
+
)
|
| 107 |
+
self.o_proj = nn.Dense(
|
| 108 |
+
self.hidden_size,
|
| 109 |
+
use_bias=self.config.attention_bias,
|
| 110 |
+
dtype=self.dtype
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
self.q_norm = NeuroBLASTRMSNorm(self.head_dim, eps=self.config.rms_norm_eps, dtype=self.dtype)
|
| 114 |
+
self.k_norm = NeuroBLASTRMSNorm(self.head_dim, eps=self.config.rms_norm_eps, dtype=self.dtype)
|
| 115 |
+
|
| 116 |
+
def __call__(
|
| 117 |
+
self,
|
| 118 |
+
hidden_states,
|
| 119 |
+
attention_mask=None,
|
| 120 |
+
position_embeddings=None,
|
| 121 |
+
deterministic: bool = True,
|
| 122 |
+
):
|
| 123 |
+
batch_size, seq_len, _ = hidden_states.shape
|
| 124 |
+
|
| 125 |
+
# Projection
|
| 126 |
+
query_states = self.q_proj(hidden_states)
|
| 127 |
+
key_states = self.k_proj(hidden_states)
|
| 128 |
+
value_states = self.v_proj(hidden_states)
|
| 129 |
+
|
| 130 |
+
# Reshape
|
| 131 |
+
query_states = query_states.reshape(batch_size, seq_len, self.num_heads, self.head_dim)
|
| 132 |
+
key_states = key_states.reshape(batch_size, seq_len, self.num_key_value_heads, self.head_dim)
|
| 133 |
+
value_states = value_states.reshape(batch_size, seq_len, self.num_key_value_heads, self.head_dim)
|
| 134 |
+
|
| 135 |
+
# Norm
|
| 136 |
+
query_states = self.q_norm(query_states)
|
| 137 |
+
key_states = self.k_norm(key_states)
|
| 138 |
+
|
| 139 |
+
# RoPE
|
| 140 |
+
if self.use_rope and position_embeddings is not None:
|
| 141 |
+
cos, sin = position_embeddings
|
| 142 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 143 |
+
|
| 144 |
+
if self.num_key_value_groups > 1:
|
| 145 |
+
key_states = jnp.repeat(key_states, self.num_key_value_groups, axis=2)
|
| 146 |
+
value_states = jnp.repeat(value_states, self.num_key_value_groups, axis=2)
|
| 147 |
+
|
| 148 |
+
query_states = jnp.transpose(query_states, (0, 2, 1, 3))
|
| 149 |
+
key_states = jnp.transpose(key_states, (0, 2, 1, 3))
|
| 150 |
+
value_states = jnp.transpose(value_states, (0, 2, 1, 3))
|
| 151 |
+
|
| 152 |
+
scale = 1.0 / jnp.sqrt(self.head_dim)
|
| 153 |
+
attn_weights = jnp.einsum("...qd,...kd->...qk", query_states, key_states) * scale
|
| 154 |
+
|
| 155 |
+
if attention_mask is not None:
|
| 156 |
+
attn_weights = attn_weights + attention_mask
|
| 157 |
+
|
| 158 |
+
attn_weights = nn.softmax(attn_weights, axis=-1)
|
| 159 |
+
|
| 160 |
+
if self.config.attention_dropout > 0.0 and not deterministic:
|
| 161 |
+
attn_weights = nn.dropout(
|
| 162 |
+
nn.make_rng(),
|
| 163 |
+
attn_weights,
|
| 164 |
+
deterministic=deterministic,
|
| 165 |
+
rate=self.config.attention_dropout
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
attn_output = jnp.einsum("...qk,...kd->...qd", attn_weights, value_states)
|
| 169 |
+
|
| 170 |
+
attn_output = jnp.transpose(attn_output, (0, 2, 1, 3))
|
| 171 |
+
attn_output = attn_output.reshape(batch_size, seq_len, self.attn_output_dim)
|
| 172 |
+
|
| 173 |
+
attn_output = self.o_proj(attn_output)
|
| 174 |
+
|
| 175 |
+
return attn_output
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
class NeuroBLASTRMSNorm2d(nn.Module):
|
| 180 |
+
dim: int = 0
|
| 181 |
+
eps: float = 1e-6
|
| 182 |
+
dtype: Any = jnp.float32
|
| 183 |
+
|
| 184 |
+
def setup(self):
|
| 185 |
+
self.weight = self.param(
|
| 186 |
+
"weight",
|
| 187 |
+
lambda rng, shape: jnp.ones(shape, dtype=self.dtype),
|
| 188 |
+
(self.dim,),
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
def __call__(self, x):
|
| 192 |
+
variance = jnp.mean(jnp.square(x), axis=-1, keepdims=True)
|
| 193 |
+
x_norm = x * jax.lax.rsqrt(variance + self.eps)
|
| 194 |
+
return self.weight * x_norm
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
class NeuroBLASTCausalConv2DBlock(nn.Module):
|
| 198 |
+
config: Optional[NeuroBLASTConfig] = None
|
| 199 |
+
dilation: int = 1
|
| 200 |
+
layer_idx: int = 0
|
| 201 |
+
dtype: Any = jnp.float32
|
| 202 |
+
|
| 203 |
+
def setup(self):
|
| 204 |
+
k = self.config.kernel_size
|
| 205 |
+
d = self.config.hidden_size
|
| 206 |
+
s = self.config.scale
|
| 207 |
+
|
| 208 |
+
if s == 1:
|
| 209 |
+
self.conv = nn.Conv(
|
| 210 |
+
features=d,
|
| 211 |
+
kernel_size=(k, k),
|
| 212 |
+
kernel_dilation=(1, self.dilation),
|
| 213 |
+
padding=(k // 2, 0),
|
| 214 |
+
use_bias=False,
|
| 215 |
+
dtype=self.dtype,
|
| 216 |
+
)
|
| 217 |
+
self.use_gating = False
|
| 218 |
+
self.use_projection = False
|
| 219 |
+
elif s > 1:
|
| 220 |
+
internal_dim = int(d * s)
|
| 221 |
+
self.conv = nn.Conv(
|
| 222 |
+
features=internal_dim,
|
| 223 |
+
kernel_size=(k, k),
|
| 224 |
+
kernel_dilation=(1, self.dilation),
|
| 225 |
+
padding=(k // 2, 0),
|
| 226 |
+
use_bias=False,
|
| 227 |
+
dtype=self.dtype,
|
| 228 |
+
)
|
| 229 |
+
self.use_gating = True
|
| 230 |
+
self.use_projection = False
|
| 231 |
+
else:
|
| 232 |
+
internal_dim = max(int(d * s), d // 4)
|
| 233 |
+
self.conv = nn.Conv(
|
| 234 |
+
features=internal_dim,
|
| 235 |
+
kernel_size=(k, k),
|
| 236 |
+
kernel_dilation=(1, self.dilation),
|
| 237 |
+
padding=(k // 2, 0),
|
| 238 |
+
use_bias=False,
|
| 239 |
+
dtype=self.dtype,
|
| 240 |
+
)
|
| 241 |
+
self.use_gating = False
|
| 242 |
+
self.use_projection = True
|
| 243 |
+
self.proj_back = nn.Conv(features=d, kernel_size=(1, 1), use_bias=False, dtype=self.dtype)
|
| 244 |
+
|
| 245 |
+
self.norm_in = NeuroBLASTRMSNorm2d(d, eps=self.config.rms_norm_eps, dtype=self.dtype)
|
| 246 |
+
self.norm_out = NeuroBLASTRMSNorm2d(d, eps=self.config.rms_norm_eps, dtype=self.dtype)
|
| 247 |
+
self.dropout = nn.Dropout(self.config.dropout)
|
| 248 |
+
|
| 249 |
+
def __call__(self, x, deterministic: bool = True):
|
| 250 |
+
B, H, W, C = x.shape # Store original W for cropping!
|
| 251 |
+
residual = x
|
| 252 |
+
y = self.norm_in(x)
|
| 253 |
+
|
| 254 |
+
k = self.config.kernel_size
|
| 255 |
+
pad_w = (k - 1) * self.dilation
|
| 256 |
+
|
| 257 |
+
y_pad = jnp.pad(y, ((0, 0), (0, 0), (pad_w, 0), (0, 0)), mode='constant')
|
| 258 |
+
|
| 259 |
+
y = self.conv(y_pad)
|
| 260 |
+
|
| 261 |
+
y = y[:, :, -W:, :]
|
| 262 |
+
|
| 263 |
+
if self.use_gating:
|
| 264 |
+
gate, val = jnp.split(y, 2, axis=-1)
|
| 265 |
+
y = val * nn.softmax(gate, axis=-1)
|
| 266 |
+
elif self.use_projection:
|
| 267 |
+
y = self.proj_back(y)
|
| 268 |
+
|
| 269 |
+
y = self.norm_out(y)
|
| 270 |
+
|
| 271 |
+
x = residual + self.dropout(y, deterministic=deterministic)
|
| 272 |
+
return x
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
class NeuroBLASTDecoderLayer(nn.Module):
|
| 276 |
+
config: Optional[NeuroBLASTConfig] = None
|
| 277 |
+
layer_idx: int = 0
|
| 278 |
+
attention_type: str = "full_attention"
|
| 279 |
+
dtype: Any = jnp.float32
|
| 280 |
+
|
| 281 |
+
def setup(self):
|
| 282 |
+
self.hidden_size = self.config.hidden_size
|
| 283 |
+
|
| 284 |
+
if self.attention_type == "linear_attention":
|
| 285 |
+
self.self_attn = NeuroBLASTLinearAttention(
|
| 286 |
+
config=self.config,
|
| 287 |
+
layer_idx=self.layer_idx,
|
| 288 |
+
query_feature_map_name=self.config.query_feature_map,
|
| 289 |
+
kv_feature_map_name=self.config.kv_feature_map,
|
| 290 |
+
dtype=self.dtype,
|
| 291 |
+
)
|
| 292 |
+
else:
|
| 293 |
+
self.self_attn = NeuroBLASTAttention(
|
| 294 |
+
config=self.config,
|
| 295 |
+
layer_idx=self.layer_idx,
|
| 296 |
+
use_rope=(self.attention_type != "no_rope"),
|
| 297 |
+
dtype=self.dtype,
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
self.mlp = NeuroBLASTMLP(self.config, dtype=self.dtype)
|
| 301 |
+
self.input_layernorm = NeuroBLASTRMSNorm(self.hidden_size, eps=self.config.rms_norm_eps, dtype=self.dtype)
|
| 302 |
+
self.post_attention_layernorm = NeuroBLASTRMSNorm(self.hidden_size, eps=self.config.rms_norm_eps, dtype=self.dtype)
|
| 303 |
+
|
| 304 |
+
def __call__(
|
| 305 |
+
self,
|
| 306 |
+
hidden_states,
|
| 307 |
+
attention_mask=None,
|
| 308 |
+
position_embeddings=None,
|
| 309 |
+
deterministic: bool = True,
|
| 310 |
+
):
|
| 311 |
+
residual = hidden_states
|
| 312 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 313 |
+
|
| 314 |
+
hidden_states = self.self_attn(
|
| 315 |
+
hidden_states,
|
| 316 |
+
attention_mask=attention_mask,
|
| 317 |
+
position_embeddings=position_embeddings,
|
| 318 |
+
deterministic=deterministic,
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
hidden_states = residual + hidden_states
|
| 322 |
+
|
| 323 |
+
residual = hidden_states
|
| 324 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 325 |
+
hidden_states = self.mlp(hidden_states)
|
| 326 |
+
hidden_states = residual + hidden_states
|
| 327 |
+
|
| 328 |
+
return hidden_states
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
class NeuroBLASTToken2D(nn.Module):
|
| 332 |
+
dtype: Any = jnp.float32
|
| 333 |
+
|
| 334 |
+
def __call__(self, x, mode="seq_to_2d"):
|
| 335 |
+
if mode == "seq_to_2d":
|
| 336 |
+
# x: (B, L, C) → (B, H, W, C) where H=1, W=L
|
| 337 |
+
# PyTorch: x.view(B, L, 1, C).permute(0, 3, 2, 1) → (B, C, 1, L)
|
| 338 |
+
# In Flax channels-last: (B, H=1, W=L, C)
|
| 339 |
+
B, L, C = x.shape
|
| 340 |
+
x = x.reshape(B, 1, L, C) # (B, H=1, W=L, C)
|
| 341 |
+
return x
|
| 342 |
+
else:
|
| 343 |
+
# x: (B, H, W, C) → (B, L, C) where L = W*H
|
| 344 |
+
# PyTorch: x.permute(0, 3, 2, 1).view(B, W * H, C)
|
| 345 |
+
# Permute (B,C,H,W) → (B,W,H,C), then flatten to (B,W*H,C)
|
| 346 |
+
# This means W varies first (causal ordering)
|
| 347 |
+
#
|
| 348 |
+
# Flax: transpose (B, H, W, C) → (B, W, H, C), then flatten
|
| 349 |
+
B, H, W, C = x.shape
|
| 350 |
+
x = x.transpose(0, 2, 1, 3) # (B, H, W, C) → (B, W, H, C)
|
| 351 |
+
x = x.reshape(B, W * H, C) # (B, W, H, C) → (B, W*H, C)
|
| 352 |
+
return x
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
class NeuroBLASTRotaryEmbedding(nn.Module):
|
| 356 |
+
config: Optional[NeuroBLASTConfig] = None
|
| 357 |
+
dtype: Any = jnp.float32
|
| 358 |
+
|
| 359 |
+
def setup(self):
|
| 360 |
+
self.dim = self.config.head_dim
|
| 361 |
+
self.max_position_embeddings = self.config.max_position_embeddings
|
| 362 |
+
self.base = self.config.rope_theta
|
| 363 |
+
|
| 364 |
+
# Precompute freqs
|
| 365 |
+
inv_freq = 1.0 / (self.base ** (jnp.arange(0, self.dim, 2, dtype=jnp.float32) / self.dim))
|
| 366 |
+
self.inv_freq = inv_freq
|
| 367 |
+
|
| 368 |
+
def __call__(self, x, position_ids):
|
| 369 |
+
# x: (B, L, H, D)
|
| 370 |
+
# position_ids: (B, L) or (1, L)
|
| 371 |
+
|
| 372 |
+
inv_freq_expanded = self.inv_freq[None, :, None] # (1, D/2, 1)
|
| 373 |
+
|
| 374 |
+
# position_ids: (B, L)
|
| 375 |
+
# We want (B, L, D/2)
|
| 376 |
+
|
| 377 |
+
position_ids_expanded = position_ids[:, :, None] # (B, L, 1)
|
| 378 |
+
|
| 379 |
+
# freqs: (B, L, D/2)
|
| 380 |
+
freqs = jnp.matmul(position_ids_expanded.astype(jnp.float32), self.inv_freq[None, None, :])
|
| 381 |
+
|
| 382 |
+
# emb: (B, L, D)
|
| 383 |
+
emb = jnp.concatenate((freqs, freqs), axis=-1)
|
| 384 |
+
|
| 385 |
+
cos = jnp.cos(emb)
|
| 386 |
+
sin = jnp.sin(emb)
|
| 387 |
+
|
| 388 |
+
# Expand for heads: (B, L, 1, D)
|
| 389 |
+
cos = cos[:, :, None, :]
|
| 390 |
+
sin = sin[:, :, None, :]
|
| 391 |
+
|
| 392 |
+
return cos, sin
|
| 393 |
+
|
| 394 |
+
|
| 395 |
+
class NeuroBLASTModel(nn.Module):
|
| 396 |
+
config: Optional[NeuroBLASTConfig] = None
|
| 397 |
+
dtype: Any = jnp.float32
|
| 398 |
+
|
| 399 |
+
def setup(self):
|
| 400 |
+
self.embed_tokens = nn.Embed(
|
| 401 |
+
self.config.vocab_size,
|
| 402 |
+
self.config.hidden_size,
|
| 403 |
+
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
| 404 |
+
dtype=self.dtype,
|
| 405 |
+
)
|
| 406 |
+
|
| 407 |
+
self.token2d = NeuroBLASTToken2D(dtype=self.dtype)
|
| 408 |
+
|
| 409 |
+
sensory_layers = []
|
| 410 |
+
dilatation_step = 1
|
| 411 |
+
for i in range(self.config.num_sensory_layers):
|
| 412 |
+
if i % 2 == 0:
|
| 413 |
+
layer = NeuroBLASTDecoderLayer(
|
| 414 |
+
self.config, layer_idx=i, attention_type="full_attention", dtype=self.dtype, name=f"sensory_layers_{i}"
|
| 415 |
+
)
|
| 416 |
+
else:
|
| 417 |
+
dilation = min(2 ** ((i - 1) // dilatation_step), 8)
|
| 418 |
+
layer = NeuroBLASTCausalConv2DBlock(
|
| 419 |
+
self.config, dilation=dilation, layer_idx=i, dtype=self.dtype, name=f"sensory_layers_{i}"
|
| 420 |
+
)
|
| 421 |
+
sensory_layers.append(layer)
|
| 422 |
+
self.sensory_layers = sensory_layers
|
| 423 |
+
|
| 424 |
+
self.sensory_to_associative = NeuroBLASTRMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps, dtype=self.dtype)
|
| 425 |
+
|
| 426 |
+
associative_layers = []
|
| 427 |
+
next_layer_type = "full_attention"
|
| 428 |
+
for i in range(self.config.num_associative_layers):
|
| 429 |
+
idx = i + self.config.num_sensory_layers
|
| 430 |
+
if i % 2 == 0:
|
| 431 |
+
layer = NeuroBLASTDecoderLayer(
|
| 432 |
+
self.config, layer_idx=idx, attention_type=next_layer_type, dtype=self.dtype, name=f"associative_layers_{i}"
|
| 433 |
+
)
|
| 434 |
+
if next_layer_type == "full_attention":
|
| 435 |
+
next_layer_type = "no_rope"
|
| 436 |
+
else:
|
| 437 |
+
next_layer_type = "full_attention"
|
| 438 |
+
else:
|
| 439 |
+
dilation = min(2 ** ((i - 1) // dilatation_step), 8)
|
| 440 |
+
layer = NeuroBLASTCausalConv2DBlock(
|
| 441 |
+
self.config, dilation=dilation, layer_idx=idx, dtype=self.dtype, name=f"associative_layers_{i}"
|
| 442 |
+
)
|
| 443 |
+
associative_layers.append(layer)
|
| 444 |
+
self.associative_layers = associative_layers
|
| 445 |
+
|
| 446 |
+
self.sensory_to_motor = NeuroBLASTRMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps, dtype=self.dtype)
|
| 447 |
+
|
| 448 |
+
motor_layers = []
|
| 449 |
+
next_layer_type = "full_attention"
|
| 450 |
+
for i in range(self.config.num_motor_layers):
|
| 451 |
+
idx = i + self.config.num_sensory_layers + self.config.num_associative_layers
|
| 452 |
+
layer = NeuroBLASTDecoderLayer(
|
| 453 |
+
self.config, layer_idx=idx, attention_type=next_layer_type, dtype=self.dtype, name=f"motor_layers_{i}"
|
| 454 |
+
)
|
| 455 |
+
if next_layer_type == "full_attention":
|
| 456 |
+
next_layer_type = "no_rope"
|
| 457 |
+
else:
|
| 458 |
+
next_layer_type = "full_attention"
|
| 459 |
+
motor_layers.append(layer)
|
| 460 |
+
self.motor_layers = motor_layers
|
| 461 |
+
|
| 462 |
+
self.norm = NeuroBLASTRMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps, dtype=self.dtype)
|
| 463 |
+
self.rotary_emb = NeuroBLASTRotaryEmbedding(self.config, dtype=self.dtype)
|
| 464 |
+
|
| 465 |
+
def __call__(
|
| 466 |
+
self,
|
| 467 |
+
input_ids,
|
| 468 |
+
attention_mask=None,
|
| 469 |
+
position_ids=None,
|
| 470 |
+
deterministic: bool = True,
|
| 471 |
+
output_attentions: bool = False,
|
| 472 |
+
output_hidden_states: bool = False,
|
| 473 |
+
return_dict: bool = True,
|
| 474 |
+
):
|
| 475 |
+
batch_size, seq_len = input_ids.shape
|
| 476 |
+
|
| 477 |
+
if position_ids is None:
|
| 478 |
+
position_ids = jnp.arange(seq_len, dtype="i4")[None, :]
|
| 479 |
+
|
| 480 |
+
# Create attention mask
|
| 481 |
+
if attention_mask is None:
|
| 482 |
+
attention_mask = jnp.ones((batch_size, seq_len), dtype="i4")
|
| 483 |
+
|
| 484 |
+
# Build a boolean mask that enforces both padding and causality, then turn it
|
| 485 |
+
# into an additive bias for the attention logits.
|
| 486 |
+
attention_mask_bool = attention_mask.astype(bool)
|
| 487 |
+
causal_mask = nn.make_causal_mask(attention_mask_bool)
|
| 488 |
+
padding_mask = nn.make_attention_mask(attention_mask_bool, attention_mask_bool)
|
| 489 |
+
combined_mask = nn.combine_masks(causal_mask, padding_mask)
|
| 490 |
+
attention_bias = jnp.where(
|
| 491 |
+
combined_mask,
|
| 492 |
+
jnp.array(0.0, dtype=self.dtype),
|
| 493 |
+
jnp.array(jnp.finfo(self.dtype).min, dtype=self.dtype),
|
| 494 |
+
)
|
| 495 |
+
|
| 496 |
+
# Embedding lookup
|
| 497 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 498 |
+
|
| 499 |
+
# Zero out padding token embeddings (equivalent to PyTorch's padding_idx)
|
| 500 |
+
# attention_mask is (B, L) with 1 for real tokens, 0 for padding
|
| 501 |
+
# Expand to (B, L, 1) to broadcast across hidden_size dimension
|
| 502 |
+
embedding_mask = attention_mask[:, :, None].astype(inputs_embeds.dtype)
|
| 503 |
+
inputs_embeds = inputs_embeds * embedding_mask
|
| 504 |
+
|
| 505 |
+
hidden_states = inputs_embeds
|
| 506 |
+
|
| 507 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
| 508 |
+
|
| 509 |
+
all_hidden_states = () if output_hidden_states else None
|
| 510 |
+
all_attentions = () if output_attentions else None
|
| 511 |
+
|
| 512 |
+
residual = hidden_states
|
| 513 |
+
|
| 514 |
+
# Sensory
|
| 515 |
+
for i, layer in enumerate(self.sensory_layers):
|
| 516 |
+
if output_hidden_states:
|
| 517 |
+
all_hidden_states += (hidden_states,)
|
| 518 |
+
|
| 519 |
+
if i % 2 == 1:
|
| 520 |
+
hidden_states = self.token2d(hidden_states, mode="seq_to_2d")
|
| 521 |
+
hidden_states = layer(hidden_states, deterministic=deterministic)
|
| 522 |
+
hidden_states = self.token2d(hidden_states, mode="d2_to_seq")
|
| 523 |
+
else:
|
| 524 |
+
hidden_states = layer(
|
| 525 |
+
hidden_states,
|
| 526 |
+
attention_mask=attention_bias,
|
| 527 |
+
position_embeddings=position_embeddings,
|
| 528 |
+
deterministic=deterministic,
|
| 529 |
+
)
|
| 530 |
+
|
| 531 |
+
hidden_states = hidden_states + self.sensory_to_associative(nn.silu(residual))
|
| 532 |
+
|
| 533 |
+
# Associative
|
| 534 |
+
for i, layer in enumerate(self.associative_layers):
|
| 535 |
+
if output_hidden_states:
|
| 536 |
+
all_hidden_states += (hidden_states,)
|
| 537 |
+
|
| 538 |
+
if i % 2 == 1:
|
| 539 |
+
hidden_states = self.token2d(hidden_states, mode="seq_to_2d")
|
| 540 |
+
hidden_states = layer(hidden_states, deterministic=deterministic)
|
| 541 |
+
hidden_states = self.token2d(hidden_states, mode="d2_to_seq")
|
| 542 |
+
else:
|
| 543 |
+
hidden_states = layer(
|
| 544 |
+
hidden_states,
|
| 545 |
+
attention_mask=attention_bias,
|
| 546 |
+
position_embeddings=position_embeddings,
|
| 547 |
+
deterministic=deterministic,
|
| 548 |
+
)
|
| 549 |
+
|
| 550 |
+
hidden_states = hidden_states + self.sensory_to_motor(nn.silu(-residual))
|
| 551 |
+
|
| 552 |
+
# Motor
|
| 553 |
+
for i, layer in enumerate(self.motor_layers):
|
| 554 |
+
if output_hidden_states:
|
| 555 |
+
all_hidden_states += (hidden_states,)
|
| 556 |
+
|
| 557 |
+
hidden_states = layer(
|
| 558 |
+
hidden_states,
|
| 559 |
+
attention_mask=attention_bias,
|
| 560 |
+
position_embeddings=position_embeddings,
|
| 561 |
+
deterministic=deterministic,
|
| 562 |
+
)
|
| 563 |
+
|
| 564 |
+
hidden_states = self.norm(hidden_states)
|
| 565 |
+
|
| 566 |
+
if output_hidden_states:
|
| 567 |
+
all_hidden_states += (hidden_states,)
|
| 568 |
+
|
| 569 |
+
if not return_dict:
|
| 570 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
|
| 571 |
+
|
| 572 |
+
return FlaxBaseModelOutput(
|
| 573 |
+
last_hidden_state=hidden_states,
|
| 574 |
+
hidden_states=all_hidden_states,
|
| 575 |
+
attentions=all_attentions,
|
| 576 |
+
)
|
| 577 |
+
|
| 578 |
+
|
| 579 |
+
class NeuroBLASTForCausalLMModule(nn.Module):
|
| 580 |
+
config: Optional[NeuroBLASTConfig] = None
|
| 581 |
+
dtype: Any = jnp.float32
|
| 582 |
+
|
| 583 |
+
def setup(self):
|
| 584 |
+
self.model = NeuroBLASTModel(self.config, dtype=self.dtype)
|
| 585 |
+
self.lm_head = nn.Dense(self.config.vocab_size, use_bias=False, dtype=self.dtype)
|
| 586 |
+
|
| 587 |
+
def __call__(
|
| 588 |
+
self,
|
| 589 |
+
input_ids,
|
| 590 |
+
attention_mask=None,
|
| 591 |
+
position_ids=None,
|
| 592 |
+
deterministic: bool = True,
|
| 593 |
+
output_attentions: bool = False,
|
| 594 |
+
output_hidden_states: bool = False,
|
| 595 |
+
return_dict: bool = True,
|
| 596 |
+
):
|
| 597 |
+
outputs = self.model(
|
| 598 |
+
input_ids,
|
| 599 |
+
attention_mask=attention_mask,
|
| 600 |
+
position_ids=position_ids,
|
| 601 |
+
deterministic=deterministic,
|
| 602 |
+
output_attentions=output_attentions,
|
| 603 |
+
output_hidden_states=output_hidden_states,
|
| 604 |
+
return_dict=return_dict,
|
| 605 |
+
)
|
| 606 |
+
|
| 607 |
+
hidden_states = outputs[0] if not return_dict else outputs.last_hidden_state
|
| 608 |
+
logits = self.lm_head(hidden_states)
|
| 609 |
+
|
| 610 |
+
if not return_dict:
|
| 611 |
+
return (logits,) + outputs[1:]
|
| 612 |
+
|
| 613 |
+
return FlaxCausalLMOutput(
|
| 614 |
+
logits=logits,
|
| 615 |
+
hidden_states=outputs.hidden_states,
|
| 616 |
+
attentions=outputs.attentions,
|
| 617 |
+
)
|
| 618 |
+
|
| 619 |
+
class NeuroBLASTForCausalLM(FlaxPreTrainedModel):
|
| 620 |
+
module_class = NeuroBLASTForCausalLMModule
|
| 621 |
+
config_class = NeuroBLASTConfig
|
| 622 |
+
|
| 623 |
+
def __init__(
|
| 624 |
+
self,
|
| 625 |
+
config: NeuroBLASTConfig,
|
| 626 |
+
input_shape: Tuple = (1, 1),
|
| 627 |
+
seed: int = 0,
|
| 628 |
+
dtype: jnp.dtype = jnp.float32,
|
| 629 |
+
_do_init: bool = True,
|
| 630 |
+
**kwargs,
|
| 631 |
+
):
|
| 632 |
+
module = NeuroBLASTForCausalLMModule(config=config, dtype=dtype, **kwargs)
|
| 633 |
+
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
|
| 634 |
+
|
| 635 |
+
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
|
| 636 |
+
# init input tensors
|
| 637 |
+
input_ids = jnp.zeros(input_shape, dtype="i4")
|
| 638 |
+
attention_mask = jnp.ones_like(input_ids)
|
| 639 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
|
| 640 |
+
params_rng, dropout_rng = jax.random.split(rng)
|
| 641 |
+
rngs = {"params": params_rng, "dropout": dropout_rng}
|
| 642 |
+
|
| 643 |
+
module_init_outputs = self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False)
|
| 644 |
+
|
| 645 |
+
random_params = module_init_outputs["params"]
|
| 646 |
+
|
| 647 |
+
if params is not None:
|
| 648 |
+
random_params = flatten_dict(unflatten_dict(random_params) | unflatten_dict(params))
|
| 649 |
+
return FrozenDict(random_params)
|
| 650 |
+
return random_params
|
| 651 |
+
|
| 652 |
+
def __call__(
|
| 653 |
+
self,
|
| 654 |
+
input_ids,
|
| 655 |
+
attention_mask=None,
|
| 656 |
+
position_ids=None,
|
| 657 |
+
params: dict = None,
|
| 658 |
+
dropout_rng: jax.random.PRNGKey = None,
|
| 659 |
+
train: bool = False,
|
| 660 |
+
output_attentions: bool = None,
|
| 661 |
+
output_hidden_states: bool = None,
|
| 662 |
+
return_dict: bool = None,
|
| 663 |
+
):
|
| 664 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 665 |
+
output_hidden_states = (
|
| 666 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 667 |
+
)
|
| 668 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 669 |
+
|
| 670 |
+
if params is None:
|
| 671 |
+
params = self.params
|
| 672 |
+
|
| 673 |
+
rngs = {}
|
| 674 |
+
if dropout_rng is not None:
|
| 675 |
+
rngs["dropout"] = dropout_rng
|
| 676 |
+
|
| 677 |
+
return self.module.apply(
|
| 678 |
+
{"params": params or self.params},
|
| 679 |
+
input_ids=jnp.array(input_ids),
|
| 680 |
+
attention_mask=jnp.array(attention_mask) if attention_mask is not None else None,
|
| 681 |
+
position_ids=jnp.array(position_ids) if position_ids is not None else None,
|
| 682 |
+
deterministic=not train,
|
| 683 |
+
output_attentions=output_attentions,
|
| 684 |
+
output_hidden_states=output_hidden_states,
|
| 685 |
+
return_dict=return_dict,
|
| 686 |
+
rngs=rngs,
|
| 687 |
+
)
|
| 688 |
+
|
| 689 |
+
from transformers.modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutput
|
| 690 |
+
|
| 691 |
+
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<think>",
|
| 6 |
+
"</think>",
|
| 7 |
+
"source_1",
|
| 8 |
+
"source_2",
|
| 9 |
+
"source_3",
|
| 10 |
+
"source_4",
|
| 11 |
+
"source_5",
|
| 12 |
+
"source_6",
|
| 13 |
+
"source_7",
|
| 14 |
+
"source_8",
|
| 15 |
+
"source_9",
|
| 16 |
+
"source_10",
|
| 17 |
+
"<ref",
|
| 18 |
+
"</ref>",
|
| 19 |
+
"→",
|
| 20 |
+
"↺",
|
| 21 |
+
"※",
|
| 22 |
+
"?maybe?",
|
| 23 |
+
"●",
|
| 24 |
+
"◐",
|
| 25 |
+
"○",
|
| 26 |
+
"⚠",
|
| 27 |
+
"☐",
|
| 28 |
+
"☑",
|
| 29 |
+
"✓",
|
| 30 |
+
"⟨H≈0.1⟩",
|
| 31 |
+
"⟨H≈0.2⟩",
|
| 32 |
+
"⟨H≈0.3⟩",
|
| 33 |
+
"⟨H≈0.4⟩",
|
| 34 |
+
"⟨H≈0.5⟩",
|
| 35 |
+
"⟨H≈0.6⟩",
|
| 36 |
+
"⟨H≈0.7⟩",
|
| 37 |
+
"⟨H≈0.8⟩",
|
| 38 |
+
"⟨H≈0.9⟩",
|
| 39 |
+
"⟨H≈1.0⟩",
|
| 40 |
+
"⟨H≈1.1⟩",
|
| 41 |
+
"⟨H≈1.2⟩",
|
| 42 |
+
"⟨H≈1.3⟩",
|
| 43 |
+
"⟨H≈1.4⟩",
|
| 44 |
+
"⟨H≈1.5⟩",
|
| 45 |
+
"⟨H≈1.6⟩",
|
| 46 |
+
"⟨H≈1.7⟩",
|
| 47 |
+
"⟨H≈1.8⟩"
|
| 48 |
+
],
|
| 49 |
+
"bos_token": {
|
| 50 |
+
"content": "<|im_start|>",
|
| 51 |
+
"lstrip": false,
|
| 52 |
+
"normalized": false,
|
| 53 |
+
"rstrip": false,
|
| 54 |
+
"single_word": false
|
| 55 |
+
},
|
| 56 |
+
"eos_token": {
|
| 57 |
+
"content": "<|im_end|>",
|
| 58 |
+
"lstrip": false,
|
| 59 |
+
"normalized": false,
|
| 60 |
+
"rstrip": false,
|
| 61 |
+
"single_word": false
|
| 62 |
+
},
|
| 63 |
+
"mask_token": {
|
| 64 |
+
"content": "<|mask|>",
|
| 65 |
+
"lstrip": false,
|
| 66 |
+
"normalized": false,
|
| 67 |
+
"rstrip": false,
|
| 68 |
+
"single_word": false
|
| 69 |
+
},
|
| 70 |
+
"pad_token": {
|
| 71 |
+
"content": "<|pad|>",
|
| 72 |
+
"lstrip": false,
|
| 73 |
+
"normalized": false,
|
| 74 |
+
"rstrip": false,
|
| 75 |
+
"single_word": false
|
| 76 |
+
}
|
| 77 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,474 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[UNK]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<|begin_of_text|>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "<|end_of_text|>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "[PAD]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"65491": {
|
| 36 |
+
"content": "<|im_start|>",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
},
|
| 43 |
+
"65492": {
|
| 44 |
+
"content": "<|im_end|>",
|
| 45 |
+
"lstrip": false,
|
| 46 |
+
"normalized": false,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": true
|
| 50 |
+
},
|
| 51 |
+
"65493": {
|
| 52 |
+
"content": "<think>",
|
| 53 |
+
"lstrip": false,
|
| 54 |
+
"normalized": false,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": false,
|
| 57 |
+
"special": true
|
| 58 |
+
},
|
| 59 |
+
"65494": {
|
| 60 |
+
"content": "</think>",
|
| 61 |
+
"lstrip": false,
|
| 62 |
+
"normalized": false,
|
| 63 |
+
"rstrip": false,
|
| 64 |
+
"single_word": false,
|
| 65 |
+
"special": true
|
| 66 |
+
},
|
| 67 |
+
"65495": {
|
| 68 |
+
"content": "source_1",
|
| 69 |
+
"lstrip": false,
|
| 70 |
+
"normalized": false,
|
| 71 |
+
"rstrip": false,
|
| 72 |
+
"single_word": false,
|
| 73 |
+
"special": true
|
| 74 |
+
},
|
| 75 |
+
"65496": {
|
| 76 |
+
"content": "source_2",
|
| 77 |
+
"lstrip": false,
|
| 78 |
+
"normalized": false,
|
| 79 |
+
"rstrip": false,
|
| 80 |
+
"single_word": false,
|
| 81 |
+
"special": true
|
| 82 |
+
},
|
| 83 |
+
"65497": {
|
| 84 |
+
"content": "source_3",
|
| 85 |
+
"lstrip": false,
|
| 86 |
+
"normalized": false,
|
| 87 |
+
"rstrip": false,
|
| 88 |
+
"single_word": false,
|
| 89 |
+
"special": true
|
| 90 |
+
},
|
| 91 |
+
"65498": {
|
| 92 |
+
"content": "source_4",
|
| 93 |
+
"lstrip": false,
|
| 94 |
+
"normalized": false,
|
| 95 |
+
"rstrip": false,
|
| 96 |
+
"single_word": false,
|
| 97 |
+
"special": true
|
| 98 |
+
},
|
| 99 |
+
"65499": {
|
| 100 |
+
"content": "source_5",
|
| 101 |
+
"lstrip": false,
|
| 102 |
+
"normalized": false,
|
| 103 |
+
"rstrip": false,
|
| 104 |
+
"single_word": false,
|
| 105 |
+
"special": true
|
| 106 |
+
},
|
| 107 |
+
"65500": {
|
| 108 |
+
"content": "source_6",
|
| 109 |
+
"lstrip": false,
|
| 110 |
+
"normalized": false,
|
| 111 |
+
"rstrip": false,
|
| 112 |
+
"single_word": false,
|
| 113 |
+
"special": true
|
| 114 |
+
},
|
| 115 |
+
"65501": {
|
| 116 |
+
"content": "source_7",
|
| 117 |
+
"lstrip": false,
|
| 118 |
+
"normalized": false,
|
| 119 |
+
"rstrip": false,
|
| 120 |
+
"single_word": false,
|
| 121 |
+
"special": true
|
| 122 |
+
},
|
| 123 |
+
"65502": {
|
| 124 |
+
"content": "source_8",
|
| 125 |
+
"lstrip": false,
|
| 126 |
+
"normalized": false,
|
| 127 |
+
"rstrip": false,
|
| 128 |
+
"single_word": false,
|
| 129 |
+
"special": true
|
| 130 |
+
},
|
| 131 |
+
"65503": {
|
| 132 |
+
"content": "source_9",
|
| 133 |
+
"lstrip": false,
|
| 134 |
+
"normalized": false,
|
| 135 |
+
"rstrip": false,
|
| 136 |
+
"single_word": false,
|
| 137 |
+
"special": true
|
| 138 |
+
},
|
| 139 |
+
"65504": {
|
| 140 |
+
"content": "source_10",
|
| 141 |
+
"lstrip": false,
|
| 142 |
+
"normalized": false,
|
| 143 |
+
"rstrip": false,
|
| 144 |
+
"single_word": false,
|
| 145 |
+
"special": true
|
| 146 |
+
},
|
| 147 |
+
"65505": {
|
| 148 |
+
"content": "<ref",
|
| 149 |
+
"lstrip": false,
|
| 150 |
+
"normalized": false,
|
| 151 |
+
"rstrip": false,
|
| 152 |
+
"single_word": false,
|
| 153 |
+
"special": true
|
| 154 |
+
},
|
| 155 |
+
"65506": {
|
| 156 |
+
"content": "</ref>",
|
| 157 |
+
"lstrip": false,
|
| 158 |
+
"normalized": false,
|
| 159 |
+
"rstrip": false,
|
| 160 |
+
"single_word": false,
|
| 161 |
+
"special": true
|
| 162 |
+
},
|
| 163 |
+
"65507": {
|
| 164 |
+
"content": "→",
|
| 165 |
+
"lstrip": false,
|
| 166 |
+
"normalized": false,
|
| 167 |
+
"rstrip": false,
|
| 168 |
+
"single_word": false,
|
| 169 |
+
"special": true
|
| 170 |
+
},
|
| 171 |
+
"65508": {
|
| 172 |
+
"content": "↺",
|
| 173 |
+
"lstrip": false,
|
| 174 |
+
"normalized": false,
|
| 175 |
+
"rstrip": false,
|
| 176 |
+
"single_word": false,
|
| 177 |
+
"special": true
|
| 178 |
+
},
|
| 179 |
+
"65509": {
|
| 180 |
+
"content": "※",
|
| 181 |
+
"lstrip": false,
|
| 182 |
+
"normalized": false,
|
| 183 |
+
"rstrip": false,
|
| 184 |
+
"single_word": false,
|
| 185 |
+
"special": true
|
| 186 |
+
},
|
| 187 |
+
"65510": {
|
| 188 |
+
"content": "?maybe?",
|
| 189 |
+
"lstrip": false,
|
| 190 |
+
"normalized": false,
|
| 191 |
+
"rstrip": false,
|
| 192 |
+
"single_word": false,
|
| 193 |
+
"special": true
|
| 194 |
+
},
|
| 195 |
+
"65511": {
|
| 196 |
+
"content": "●",
|
| 197 |
+
"lstrip": false,
|
| 198 |
+
"normalized": false,
|
| 199 |
+
"rstrip": false,
|
| 200 |
+
"single_word": false,
|
| 201 |
+
"special": true
|
| 202 |
+
},
|
| 203 |
+
"65512": {
|
| 204 |
+
"content": "◐",
|
| 205 |
+
"lstrip": false,
|
| 206 |
+
"normalized": false,
|
| 207 |
+
"rstrip": false,
|
| 208 |
+
"single_word": false,
|
| 209 |
+
"special": true
|
| 210 |
+
},
|
| 211 |
+
"65513": {
|
| 212 |
+
"content": "○",
|
| 213 |
+
"lstrip": false,
|
| 214 |
+
"normalized": false,
|
| 215 |
+
"rstrip": false,
|
| 216 |
+
"single_word": false,
|
| 217 |
+
"special": true
|
| 218 |
+
},
|
| 219 |
+
"65514": {
|
| 220 |
+
"content": "⚠",
|
| 221 |
+
"lstrip": false,
|
| 222 |
+
"normalized": false,
|
| 223 |
+
"rstrip": false,
|
| 224 |
+
"single_word": false,
|
| 225 |
+
"special": true
|
| 226 |
+
},
|
| 227 |
+
"65515": {
|
| 228 |
+
"content": "☐",
|
| 229 |
+
"lstrip": false,
|
| 230 |
+
"normalized": false,
|
| 231 |
+
"rstrip": false,
|
| 232 |
+
"single_word": false,
|
| 233 |
+
"special": true
|
| 234 |
+
},
|
| 235 |
+
"65516": {
|
| 236 |
+
"content": "☑",
|
| 237 |
+
"lstrip": false,
|
| 238 |
+
"normalized": false,
|
| 239 |
+
"rstrip": false,
|
| 240 |
+
"single_word": false,
|
| 241 |
+
"special": true
|
| 242 |
+
},
|
| 243 |
+
"65517": {
|
| 244 |
+
"content": "✓",
|
| 245 |
+
"lstrip": false,
|
| 246 |
+
"normalized": false,
|
| 247 |
+
"rstrip": false,
|
| 248 |
+
"single_word": false,
|
| 249 |
+
"special": true
|
| 250 |
+
},
|
| 251 |
+
"65518": {
|
| 252 |
+
"content": "⟨H≈0.1⟩",
|
| 253 |
+
"lstrip": false,
|
| 254 |
+
"normalized": false,
|
| 255 |
+
"rstrip": false,
|
| 256 |
+
"single_word": false,
|
| 257 |
+
"special": true
|
| 258 |
+
},
|
| 259 |
+
"65519": {
|
| 260 |
+
"content": "⟨H≈0.2⟩",
|
| 261 |
+
"lstrip": false,
|
| 262 |
+
"normalized": false,
|
| 263 |
+
"rstrip": false,
|
| 264 |
+
"single_word": false,
|
| 265 |
+
"special": true
|
| 266 |
+
},
|
| 267 |
+
"65520": {
|
| 268 |
+
"content": "⟨H≈0.3⟩",
|
| 269 |
+
"lstrip": false,
|
| 270 |
+
"normalized": false,
|
| 271 |
+
"rstrip": false,
|
| 272 |
+
"single_word": false,
|
| 273 |
+
"special": true
|
| 274 |
+
},
|
| 275 |
+
"65521": {
|
| 276 |
+
"content": "⟨H≈0.4⟩",
|
| 277 |
+
"lstrip": false,
|
| 278 |
+
"normalized": false,
|
| 279 |
+
"rstrip": false,
|
| 280 |
+
"single_word": false,
|
| 281 |
+
"special": true
|
| 282 |
+
},
|
| 283 |
+
"65522": {
|
| 284 |
+
"content": "⟨H≈0.5⟩",
|
| 285 |
+
"lstrip": false,
|
| 286 |
+
"normalized": false,
|
| 287 |
+
"rstrip": false,
|
| 288 |
+
"single_word": false,
|
| 289 |
+
"special": true
|
| 290 |
+
},
|
| 291 |
+
"65523": {
|
| 292 |
+
"content": "⟨H≈0.6⟩",
|
| 293 |
+
"lstrip": false,
|
| 294 |
+
"normalized": false,
|
| 295 |
+
"rstrip": false,
|
| 296 |
+
"single_word": false,
|
| 297 |
+
"special": true
|
| 298 |
+
},
|
| 299 |
+
"65524": {
|
| 300 |
+
"content": "⟨H≈0.7⟩",
|
| 301 |
+
"lstrip": false,
|
| 302 |
+
"normalized": false,
|
| 303 |
+
"rstrip": false,
|
| 304 |
+
"single_word": false,
|
| 305 |
+
"special": true
|
| 306 |
+
},
|
| 307 |
+
"65525": {
|
| 308 |
+
"content": "⟨H≈0.8⟩",
|
| 309 |
+
"lstrip": false,
|
| 310 |
+
"normalized": false,
|
| 311 |
+
"rstrip": false,
|
| 312 |
+
"single_word": false,
|
| 313 |
+
"special": true
|
| 314 |
+
},
|
| 315 |
+
"65526": {
|
| 316 |
+
"content": "⟨H≈0.9⟩",
|
| 317 |
+
"lstrip": false,
|
| 318 |
+
"normalized": false,
|
| 319 |
+
"rstrip": false,
|
| 320 |
+
"single_word": false,
|
| 321 |
+
"special": true
|
| 322 |
+
},
|
| 323 |
+
"65527": {
|
| 324 |
+
"content": "⟨H≈1.0⟩",
|
| 325 |
+
"lstrip": false,
|
| 326 |
+
"normalized": false,
|
| 327 |
+
"rstrip": false,
|
| 328 |
+
"single_word": false,
|
| 329 |
+
"special": true
|
| 330 |
+
},
|
| 331 |
+
"65528": {
|
| 332 |
+
"content": "⟨H≈1.1⟩",
|
| 333 |
+
"lstrip": false,
|
| 334 |
+
"normalized": false,
|
| 335 |
+
"rstrip": false,
|
| 336 |
+
"single_word": false,
|
| 337 |
+
"special": true
|
| 338 |
+
},
|
| 339 |
+
"65529": {
|
| 340 |
+
"content": "⟨H≈1.2⟩",
|
| 341 |
+
"lstrip": false,
|
| 342 |
+
"normalized": false,
|
| 343 |
+
"rstrip": false,
|
| 344 |
+
"single_word": false,
|
| 345 |
+
"special": true
|
| 346 |
+
},
|
| 347 |
+
"65530": {
|
| 348 |
+
"content": "⟨H≈1.3⟩",
|
| 349 |
+
"lstrip": false,
|
| 350 |
+
"normalized": false,
|
| 351 |
+
"rstrip": false,
|
| 352 |
+
"single_word": false,
|
| 353 |
+
"special": true
|
| 354 |
+
},
|
| 355 |
+
"65531": {
|
| 356 |
+
"content": "⟨H≈1.4⟩",
|
| 357 |
+
"lstrip": false,
|
| 358 |
+
"normalized": false,
|
| 359 |
+
"rstrip": false,
|
| 360 |
+
"single_word": false,
|
| 361 |
+
"special": true
|
| 362 |
+
},
|
| 363 |
+
"65532": {
|
| 364 |
+
"content": "⟨H≈1.5⟩",
|
| 365 |
+
"lstrip": false,
|
| 366 |
+
"normalized": false,
|
| 367 |
+
"rstrip": false,
|
| 368 |
+
"single_word": false,
|
| 369 |
+
"special": true
|
| 370 |
+
},
|
| 371 |
+
"65533": {
|
| 372 |
+
"content": "⟨H≈1.6⟩",
|
| 373 |
+
"lstrip": false,
|
| 374 |
+
"normalized": false,
|
| 375 |
+
"rstrip": false,
|
| 376 |
+
"single_word": false,
|
| 377 |
+
"special": true
|
| 378 |
+
},
|
| 379 |
+
"65534": {
|
| 380 |
+
"content": "⟨H≈1.7⟩",
|
| 381 |
+
"lstrip": false,
|
| 382 |
+
"normalized": false,
|
| 383 |
+
"rstrip": false,
|
| 384 |
+
"single_word": false,
|
| 385 |
+
"special": true
|
| 386 |
+
},
|
| 387 |
+
"65535": {
|
| 388 |
+
"content": "⟨H≈1.8⟩",
|
| 389 |
+
"lstrip": false,
|
| 390 |
+
"normalized": false,
|
| 391 |
+
"rstrip": false,
|
| 392 |
+
"single_word": false,
|
| 393 |
+
"special": true
|
| 394 |
+
},
|
| 395 |
+
"65536": {
|
| 396 |
+
"content": "<|mask|>",
|
| 397 |
+
"lstrip": false,
|
| 398 |
+
"normalized": false,
|
| 399 |
+
"rstrip": false,
|
| 400 |
+
"single_word": false,
|
| 401 |
+
"special": true
|
| 402 |
+
},
|
| 403 |
+
"65537": {
|
| 404 |
+
"content": "<|pad|>",
|
| 405 |
+
"lstrip": false,
|
| 406 |
+
"normalized": false,
|
| 407 |
+
"rstrip": false,
|
| 408 |
+
"single_word": false,
|
| 409 |
+
"special": true
|
| 410 |
+
}
|
| 411 |
+
},
|
| 412 |
+
"additional_special_tokens": [
|
| 413 |
+
"<|im_start|>",
|
| 414 |
+
"<|im_end|>",
|
| 415 |
+
"<think>",
|
| 416 |
+
"</think>",
|
| 417 |
+
"source_1",
|
| 418 |
+
"source_2",
|
| 419 |
+
"source_3",
|
| 420 |
+
"source_4",
|
| 421 |
+
"source_5",
|
| 422 |
+
"source_6",
|
| 423 |
+
"source_7",
|
| 424 |
+
"source_8",
|
| 425 |
+
"source_9",
|
| 426 |
+
"source_10",
|
| 427 |
+
"<ref",
|
| 428 |
+
"</ref>",
|
| 429 |
+
"→",
|
| 430 |
+
"↺",
|
| 431 |
+
"※",
|
| 432 |
+
"?maybe?",
|
| 433 |
+
"●",
|
| 434 |
+
"◐",
|
| 435 |
+
"○",
|
| 436 |
+
"⚠",
|
| 437 |
+
"☐",
|
| 438 |
+
"☑",
|
| 439 |
+
"✓",
|
| 440 |
+
"⟨H≈0.1⟩",
|
| 441 |
+
"⟨H≈0.2⟩",
|
| 442 |
+
"⟨H≈0.3⟩",
|
| 443 |
+
"⟨H≈0.4⟩",
|
| 444 |
+
"⟨H≈0.5⟩",
|
| 445 |
+
"⟨H≈0.6⟩",
|
| 446 |
+
"⟨H≈0.7⟩",
|
| 447 |
+
"⟨H≈0.8⟩",
|
| 448 |
+
"⟨H≈0.9⟩",
|
| 449 |
+
"⟨H≈1.0⟩",
|
| 450 |
+
"⟨H≈1.1⟩",
|
| 451 |
+
"⟨H≈1.2⟩",
|
| 452 |
+
"⟨H≈1.3⟩",
|
| 453 |
+
"⟨H≈1.4⟩",
|
| 454 |
+
"⟨H≈1.5⟩",
|
| 455 |
+
"⟨H≈1.6⟩",
|
| 456 |
+
"⟨H≈1.7⟩",
|
| 457 |
+
"⟨H≈1.8⟩"
|
| 458 |
+
],
|
| 459 |
+
"bos_token": "<|im_start|>",
|
| 460 |
+
"clean_up_tokenization_spaces": true,
|
| 461 |
+
"eos_token": "<|im_end|>",
|
| 462 |
+
"extra_special_tokens": {},
|
| 463 |
+
"mask_token": "<|mask|>",
|
| 464 |
+
"max_length": 256,
|
| 465 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 466 |
+
"pad_to_multiple_of": null,
|
| 467 |
+
"pad_token": "<|pad|>",
|
| 468 |
+
"pad_token_type_id": 0,
|
| 469 |
+
"padding_side": "right",
|
| 470 |
+
"stride": 0,
|
| 471 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
| 472 |
+
"truncation_side": "right",
|
| 473 |
+
"truncation_strategy": "longest_first"
|
| 474 |
+
}
|