|
|
import numpy as np |
|
|
import torch |
|
|
from decord import VideoReader |
|
|
from PIL import Image, ImageSequence |
|
|
|
|
|
|
|
|
def get_frame_indices(num_frames, vlen, sample="rand", fix_start=None, input_fps=1, max_num_frames=-1): |
|
|
if sample in ["rand", "middle"]: |
|
|
acc_samples = min(num_frames, vlen) |
|
|
|
|
|
intervals = np.linspace(start=0, stop=vlen, num=acc_samples + 1).astype(int) |
|
|
ranges = [] |
|
|
for idx, interv in enumerate(intervals[:-1]): |
|
|
ranges.append((interv, intervals[idx + 1] - 1)) |
|
|
if sample == "rand": |
|
|
try: |
|
|
frame_indices = [random.choice(range(x[0], x[1])) for x in ranges] |
|
|
except: |
|
|
frame_indices = np.random.permutation(vlen)[:acc_samples] |
|
|
frame_indices.sort() |
|
|
frame_indices = list(frame_indices) |
|
|
elif fix_start is not None: |
|
|
frame_indices = [x[0] + fix_start for x in ranges] |
|
|
elif sample == "middle": |
|
|
frame_indices = [(x[0] + x[1]) // 2 for x in ranges] |
|
|
else: |
|
|
raise NotImplementedError |
|
|
|
|
|
if len(frame_indices) < num_frames: |
|
|
padded_frame_indices = [frame_indices[-1]] * num_frames |
|
|
padded_frame_indices[: len(frame_indices)] = frame_indices |
|
|
frame_indices = padded_frame_indices |
|
|
elif "fps" in sample: |
|
|
output_fps = float(sample[3:]) |
|
|
duration = float(vlen) / input_fps |
|
|
delta = 1 / output_fps |
|
|
frame_seconds = np.arange(0 + delta / 2, duration + delta / 2, delta) |
|
|
frame_indices = np.around(frame_seconds * input_fps).astype(int) |
|
|
frame_indices = [e for e in frame_indices if e < vlen] |
|
|
if max_num_frames > 0 and len(frame_indices) > max_num_frames: |
|
|
frame_indices = frame_indices[:max_num_frames] |
|
|
|
|
|
else: |
|
|
raise ValueError |
|
|
return frame_indices |
|
|
|
|
|
|
|
|
def load_video(video_path, data_transform=None, num_frames=None, return_tensor=True, width=None, height=None): |
|
|
""" |
|
|
Load a video from a given path and apply optional data transformations. |
|
|
|
|
|
The function supports loading video in GIF (.gif), PNG (.png), and MP4 (.mp4) formats. |
|
|
Depending on the format, it processes and extracts frames accordingly. |
|
|
|
|
|
Parameters: |
|
|
- video_path (str): The file path to the video or image to be loaded. |
|
|
- data_transform (callable, optional): A function that applies transformations to the video data. |
|
|
|
|
|
Returns: |
|
|
- frames (torch.Tensor): A tensor containing the video frames with shape (T, C, H, W), |
|
|
where T is the number of frames, C is the number of channels, H is the height, and W is the width. |
|
|
|
|
|
Raises: |
|
|
- NotImplementedError: If the video format is not supported. |
|
|
|
|
|
The function first determines the format of the video file by its extension. |
|
|
For GIFs, it iterates over each frame and converts them to RGB. |
|
|
For PNGs, it reads the single frame, converts it to RGB. |
|
|
For MP4s, it reads the frames using the VideoReader class and converts them to NumPy arrays. |
|
|
If a data_transform is provided, it is applied to the buffer before converting it to a tensor. |
|
|
Finally, the tensor is permuted to match the expected (T, C, H, W) format. |
|
|
""" |
|
|
if video_path.endswith(".gif"): |
|
|
frame_ls = [] |
|
|
img = Image.open(video_path) |
|
|
for frame in ImageSequence.Iterator(img): |
|
|
frame = frame.convert("RGB") |
|
|
frame = np.array(frame).astype(np.uint8) |
|
|
frame_ls.append(frame) |
|
|
buffer = np.array(frame_ls).astype(np.uint8) |
|
|
elif video_path.endswith(".png"): |
|
|
frame = Image.open(video_path) |
|
|
frame = frame.convert("RGB") |
|
|
frame = np.array(frame).astype(np.uint8) |
|
|
frame_ls = [frame] |
|
|
buffer = np.array(frame_ls) |
|
|
elif video_path.endswith(".mp4"): |
|
|
import decord |
|
|
|
|
|
decord.bridge.set_bridge("native") |
|
|
if width: |
|
|
video_reader = VideoReader(video_path, width=width, height=height, num_threads=1) |
|
|
else: |
|
|
video_reader = VideoReader(video_path, num_threads=1) |
|
|
frames = video_reader.get_batch(range(len(video_reader))) |
|
|
|
|
|
buffer = frames.asnumpy().astype(np.uint8) |
|
|
else: |
|
|
raise NotImplementedError |
|
|
|
|
|
frames = buffer |
|
|
if num_frames: |
|
|
frame_indices = get_frame_indices(num_frames, len(frames), sample="middle") |
|
|
frames = frames[frame_indices] |
|
|
|
|
|
if data_transform: |
|
|
frames = data_transform(frames) |
|
|
elif return_tensor: |
|
|
frames = torch.Tensor(frames) |
|
|
frames = frames.permute(0, 3, 1, 2) |
|
|
|
|
|
return frames |
|
|
|