File size: 12,895 Bytes
e490e7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import os
import os.path as osp
from glob import glob
import math
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import plotly.graph_objects as go
from tensorboard.backend.event_processing import event_accumulator

# plt.style.use("seaborn-v0_8")   # seaborn 风格
# plt.style.use("ggplot")   # seaborn 风格
plt.style.use("classic")      # 经典风格
# plt.style.use("bmh")          # Bayesian Methods for Hackers 风格
plt.rcParams["font.family"] = "Times New Roman"


def smooth(values, weight=0.6):
    """ 
    指数滑动平均 (Exponential Moving Average, EMA) 
    weight 越大越平滑,0~1之间
    """
    smoothed = []
    last = values[0]
    for v in values:
        last = last * weight + (1 - weight) * v
        smoothed.append(last)
    return np.array(smoothed)


def read_event_scalar(event_file, tag):
    """
    从 event 文件中读取某个 tag 的标量数据
    """
    ea = event_accumulator.EventAccumulator(event_file)
    ea.Reload()
    if tag not in ea.Tags()["scalars"]:
        raise ValueError(f"Tag {tag} not found in {event_file}, available: {ea.Tags()['scalars']}")
    events = ea.Scalars(tag)
    steps = [e.step for e in events]
    values = [e.value for e in events]
    return steps, values


def plot_multiple_events(event_files, tags, save_path, fontsize=18):
    """
    在一张图中绘制多个 event 文件的同一个 tag 曲线
    """
    # plt.figure(figsize=(8, 10))
    plt.figure(figsize=(6, 8))
    for i, tag in enumerate(tags):
        plt.subplot(len(tags), 1, i + 1)
        max_val, max_cfg = -1, None
        for j, event_file in enumerate(event_files):
            label = osp.basename(osp.dirname(osp.dirname(event_file)))
            steps, values = read_event_scalar(event_file, tag)
            if max_val < np.max(values):
                max_val = np.max(values)
                max_cfg = label
            values = smooth(values, weight=0.6)
            plt.plot(steps, values, label=label)

        plt.title(tag, fontsize=fontsize)
        plt.xlabel("Seen Prompts", fontsize=fontsize-2)
        # plt.ylabel(tag)
        plt.xticks(steps[::10], [f'{step * 40 / 1000:.1f}k' for step in steps[::10]], fontsize=fontsize-2)
        plt.legend(loc='lower right', fontsize=fontsize-4)
        plt.grid(True)
        plt.tight_layout()
        print(f"Max {tag}: {max_val:.4f} in {max_cfg}")

    plt.savefig(save_path, dpi=400)

    # plt.show()


def plot_dpo_implicit_acc_beta():
    event_files = glob('exps/audio_video/ablation/dpo/beta/*/tensorboard/events.out.tfevents.*')
    event_files = sorted(event_files, key=lambda x: int(osp.basename(osp.dirname(osp.dirname(x))).split('_')[-1]))
    event_files = [path for path in event_files if '300/' not in path and '700/' not in path]
    tags = ["implicit_acc_audio", "implicit_acc_video"]
    plot_multiple_events(event_files, tags, save_path='./debug/plot/implicit_acc_beta.pdf')


def plot_dpo_implicit_acc_lr():
    event_files = [
        glob(f'exps/audio_video/ablation/dpo/lr/lr_{lr}/tensorboard/events.out.tfevents.*')[0] for lr in ['1e-5', '5e-6', '1e-6']
    ]
    tags = ["implicit_acc_audio", "implicit_acc_video"]
    plot_multiple_events(event_files, tags, save_path='./debug/plot/implicit_acc_lr.pdf')


def plot_perform_radar():
    # 任务维度和范围
    labels = ["V-Quality", "A-Quality", "TV-Align", "TA-Align", "AV-Align", "AV-Sync"]
    ranges = [(0, 3.0),  (3.8, 5.2),  (2, 3.19), (1, 1.98),   (0, 2.8),   (0.4, 1.35)]

    # 示例分数
    scores = {
        "JavisDiT":   [1.02, 4.28, 2.6,  1.3,  1.8, 0.75],
        "UniVerse-1": [1.52, 4.09, 2.9,  1.1,  1.0, 0.80],
        "Ours":       [2.47, 4.91, 3.0, 1.66, 1.92, 1.02],
        "Veo-3":      [2.84, 5.11, 3.1,  1.9,  2.6, 1.28],
    }

    # 归一化函数
    def normalize(values, ranges, labels):
        return [(v - ranges[l][0]) / (ranges[l][1] - ranges[l][0]) for l, v in enumerate(values)]

    # 雷达图准备
    N = len(labels)
    angles = np.linspace(0, 2 * np.pi, N, endpoint=False).tolist()
    angles += angles[:1]

    fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True))
    fontsize = 16

    ax.set_theta_offset(np.pi/2)     # 设置起始角度 (0° 对应 π/2 → 90°)
    ax.set_theta_direction(1)        # 顺时针 = -1,逆时针 = 1

    # 绘制模型曲线
    for name, values in scores.items():
        norm_values = normalize(values, ranges, labels)
        norm_values += norm_values[:1]
        ax.plot(angles, norm_values, label=name, linewidth=1.5 if name in ['Ours', 'Veo-3'] else 1)
        ax.fill(angles, norm_values, alpha=0.1)

    # 关闭默认的 y 轴刻度
    ax.set_ylim(0, 1)
    ax.set_yticks([0.25,0.5,0.75])
    ax.set_yticklabels([])   # 不显示标签,只保留圈

    # ✅ 手动为每个维度绘制原始刻度
    for i, angle in enumerate(angles[:-1]):
        rmin, rmax = ranges[i]
        ticks = np.linspace(rmin, rmax, 5)[1:-1]  # 5-2=3 个刻度
        for t in ticks:
            rt = (t - rmin) / (rmax - rmin)  # normalize
            ax.text(angle, rt+0.03, f"{t:.1f}", ha="center", va="center", fontsize=fontsize-2, color="gray")

    # 设置轴标签
    ax.set_xticks(angles[:-1])
    labels_text = ax.set_xticklabels(labels, fontsize=fontsize, fontweight="bold")

    # ⭐ 关键修改:为每个标签设置一个新的 y 坐标 (在极坐标中是径向距离 r)
    # 这里的 1.1 表示将标签放置在半径为 1.1 的位置,而不是默认的 1
    # 你可以根据需要调整这个值,使其不与最外圈重合
    for i, (label, angle) in enumerate(zip(labels_text, angles[:-1])):
        # print(label.get_position())
        if i not in [0, 3]:  # 0 和 3 的位置比较特殊,单独调整
            label.set_position((angle, -0.12)) # 设置标签的位置offset
        label.set_ha('center') # 水平居中
        label.set_va('center') # 垂直居中,根据需要也可以调整为 'top' 或 'bottom'
        
    ax.legend(loc="upper right", bbox_to_anchor=(1.17, 1.15), fontsize=fontsize-2)
    plt.tight_layout()
    plt.savefig('./debug/plot/perform_radar.pdf')


def plot_ablation_bar():
    # 模拟数据:6个任务,每个任务的数值范围不同
    tasks = ["FVD ↓", "FAD ↓" , "TV-IB ↑", "TA-IB ↑", "AV-IB ↑", "JavisScore ↑", "DeSync ↓"]
    models = [
        "A-LoRA + AV-LoRA (r=64)", 
        "A-noLoRA + AV-AttnLoRA (r=64)", 
        "A-noLoRA + AV-LoRA (r=64)", 
        "A-noLoRA + AV-LoRA (r=32)", 
        "A-noLoRA + AV-LoRA (r=128)"
    ]

    # 原始分数 (注意:每个任务数值范围不同)
    data = np.array([
        [311.6, 223.1, 221.3, 222.5, 218.6],
        [ 5.80,  5.66,  5.51,  5.54,  5.60],
        [ 16.2,  28.1,  28.3,  28.3,  28.2],
        [ 14.2,  14.7,  15.3,  15.2,  14.7],
        [ 12.6,  18.6,  19.4,  19.2,  18.0],
        [  9.1,  14.1,  15.1,  14.7,  14.3],
        [ 96.9,  95.8,  90.1,  90.0,  90.1],
    ])
    data_range = np.array([
        [200, 350], 
        [5, 6], 
        [10, 35], 
        [10, 18], 
        [10, 25], 
        [5, 20], 
        [85, 100],
    ])

    # ---- 步骤1: 每个任务单独归一化到 [0,1] ----
    # norm_data = (data - data.min(axis=1, keepdims=True)) / \
    #             (data.max(axis=1, keepdims=True) - data.min(axis=1, keepdims=True))
    norm_data = (data - data_range[:, :1]) / (data_range[:, 1:] - data_range[:, :1])

    # ---- 步骤2: 画图 ----
    x = np.arange(len(tasks))  # 每个任务的位置
    bar_width = 0.15
    fontsize = 18

    colors = ["grey", "lightgrey", "royalblue", "cornflowerblue", "lightsteelblue"]
    hatches = [None, None, "//", None, None]  # 突出

    fig, ax = plt.subplots(figsize=(11.2,4))

    # 将网格放在最下层,并且非常淡
    ax.set_axisbelow(True)
    ax.yaxis.grid(True, linestyle='--', linewidth=0.7, alpha=0.3, color='gray', zorder=0)

    for i, model in enumerate(models):
        bars = ax.bar(
            x + i*bar_width - (len(models)-1)/2*bar_width,  # 居中
            norm_data[:, i],
            width=bar_width,
            label=model,
            color=colors[i],
            hatch=hatches[i],
            edgecolor="white",
            linewidth=0.5
        )
        # # 在柱子上方标注原始值
        # for j, bar in enumerate(bars):
        #     ax.text(
        #         bar.get_x() + bar.get_width()/2,
        #         bar.get_height() + 0.02,   # 稍微高于柱子
        #         f"{data[j, i]:.1f}",      # 原始值
        #         ha="center", va="bottom", fontsize=fontsize-4
        #     )

    # ---- 步骤3: 样式美化 ----
    ax.set_xticks(x)
    ax.set_xlim(x[0]-0.5, x[-1]+0.5)
    ax.set_xticklabels(tasks, fontsize=fontsize)
    ax.set_ylim(0, 1)   # 因为归一化
    ax.set_yticklabels([])  # 不显示 y 轴刻度
    
    # 图例放在上方
    ax.legend(
        loc="upper center", bbox_to_anchor=(0.5, 1.3),
        ncol=int(math.ceil(len(models)/2)), frameon=False, fontsize=fontsize-3
    )

    plt.tight_layout()
    plt.subplots_adjust(left=0.02, right=0.98, top=0.8, bottom=0.1)  # 调整边界范围
    plt.savefig('./debug/plot/lora_cfg_bar.pdf')


def plot_data_filtering():
    # 定义节点的顺序,以便后面设置坐标
    labels = [
        # 第 1 列 (x=0)
        "Raw Videos",                                   # 0
        # 第 2 列 (x=0.33)
        "Clean Videos",                                 # 1
        "Speech Videos",                                # 2
        # 第 3 列 (x=0.66)
        "HQ Videos",                                    # 3
        "Scoring Filters",                              # 4
        # 第 4 列 (x=1)
        "SFT",                                          # 5
        "DPO",                                          # 6
    ]

    # 节点颜色也需要对应新的顺序
    colors = [
        "purple", "blue", "grey", "darkgreen", "grey", "gold", "brown"
    ]


    # 2. ⭐ 核心改动:为每个节点手动指定 x, y 坐标
    #    x 控制列,y 控制行。所有值都在 0 到 1 之间。
    node_x = [
        0.01,       # Raw Videos
        0.33, 0.33, # Clean Videos, Speech Videos
        0.66, 0.66, # HQ Videos, Scoring Filters
        0.99, 0.99, # SFT, DPO
    ]
    node_y = [
        0.3,        # Raw Videos
        0.2, 0.7,   # Clean Videos, Speech Videos
        0.1, 0.45,   # HQ Videos, Scoring Filters
        0.1, 0.3,   # SFT, DPO
    ]


    # 3. 修正数据流 (link),使其与参考图的流向和流量匹配
    #    这里的 value 是我根据图上流量的粗细估算的,你可以换成真实数据
    links = {
        'source': [0,  0,  1,  1,  3,  3],
        'target': [1,  2,  3,  4,  5,  6],
        'value':  [66, 34, 33, 33, 29, 4],
        # ⭐ 美化改动:设置连接线的颜色和透明度
        'color':  ['rgba(128, 128, 128, 0.3)'] * 6
    }


    # 4. 创建图表
    fig = go.Figure(data=[go.Sankey(
        # arrangement 已被 x, y 坐标取代,可以移除
        node=dict(
            pad=25,
            thickness=30,
            line=dict(color="black", width=0.5),
            label=labels,
            color=colors,
            # 指定坐标
            x=node_x,
            y=node_y
        ),
        link=dict(
            source=links['source'],
            target=links['target'],
            value=links['value'],
            color=links['color']
        )
    )])

    fig.update_layout(
        # title_text="视频数据处理流程桑基图",
        font_size=16, # 你可以保留这个作为基础字号
        height=600,
        # ⭐ 新增的代码 ⭐
        font=dict(
            family="Times New Roman",  # 设置字体族
            size=16,                   # 可以在这里统一设置字号
            color="black"              # 设置字体颜色
        )
    )

    # fig.show()
    fig.write_image('./debug/plot/data_filtering.pdf')


def stat_audio_data_dist():
    data_root = '/mnt/HithinkOmniSSD/user_workspace/liukai4/datasets/JavisDiT/train/audio'
    df = pd.read_csv(f'{data_root}/JavisDiT_train_audio_v1.csv')
    subsets = []
    for subset in os.listdir(data_root):
        if osp.isdir(f'{data_root}/{subset}'):
            subsets.append(subset)
    stat = []
    for subset in subsets:
        stat.append(df['audio_path'].str.contains(subset).sum())
    stat = np.array(stat)
    indices = np.argsort(-stat)

    subsets = [subsets[i] for i in indices]
    stat = stat[indices]
    rel_stat = stat / stat.sum()
    for i in range(len(subsets)):
        print(f'{subsets[i]:<10} {stat[i]:>5} {rel_stat[i]:.2%}')
    

if __name__ == "__main__":
    # plot_dpo_implicit_acc_beta()
    # plot_dpo_implicit_acc_lr()

    # plot_perform_radar()

    plot_ablation_bar()

    # plot_data_filtering()
    # stat_audio_data_dist()

    pass