File size: 9,668 Bytes
e490e7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import os
from pprint import pformat
from itertools import islice

import colossalai
import torch
import torch.distributed as dist
from tqdm import tqdm

from javisdit.acceleration.parallel_states import get_data_parallel_group, set_data_parallel_group
from javisdit.datasets.dataloader import prepare_dataloader
from javisdit.datasets.datasets import VariableVideoTextDataset
from javisdit.registry import DATASETS, MODELS, build_module
from javisdit.utils.config_utils import parse_configs, save_training_config
from javisdit.utils.misc import FeatureSaver, Timer, create_logger, to_torch_dtype


def main():
    torch.set_grad_enabled(False)
    # ======================================================
    # 1. configs & runtime variables
    # ======================================================
    # == parse configs ==
    cfg = parse_configs(training=False)

    # == device and dtype ==
    assert torch.cuda.is_available(), "Training currently requires at least one GPU."
    cfg_dtype = cfg.get("dtype", "bf16")
    assert cfg_dtype in ["fp16", "bf16"], f"Unknown mixed precision {cfg_dtype}"
    dtype = to_torch_dtype(cfg.get("dtype", "bf16"))

    # == colossalai init distributed training ==
    device = "cuda" if torch.cuda.is_available() else "cpu"
    cfg_dtype = cfg.get("dtype", "fp32")
    assert cfg_dtype in ["fp16", "bf16", "fp32"], f"Unknown mixed precision {cfg_dtype}"
    dtype = to_torch_dtype(cfg.get("dtype", "bf16"))
    torch.backends.cuda.matmul.allow_tf32 = True
    torch.backends.cudnn.allow_tf32 = True

    colossalai.launch_from_torch({})
    set_data_parallel_group(dist.group.WORLD)

    # == init logger, tensorboard & wandb ==
    logger = create_logger()
    logger.info("Configuration:\n %s", pformat(cfg.to_dict()))

    # ======================================================
    # 2. build dataset and dataloader
    # ======================================================
    # == global variables ==
    bin_size = cfg.bin_size
    save_text_features = cfg.get("save_text_features", False)
    save_compressed_text_features = cfg.get("save_compressed_text_features", False)
    if save_compressed_text_features:
        raise NotImplementedError
    save_text_only = cfg.get("save_text_only", False)

    # resume from a specific batch index
    start_index = cfg.get("start_index", 0)
    end_index = cfg.get("end_index")
    last_micro_batch_access_index = start_index * bin_size
    start_step = 0

    # create save directory
    assert cfg.get("save_dir", None) is not None, "Please specify the save_dir in the config file."
    save_dir = os.path.join(cfg.save_dir, f"s{start_index}_e{end_index}")
    os.makedirs(save_dir, exist_ok=True)
    save_training_config(cfg.to_dict(), save_dir)
    logger.info("Saving features to %s", save_dir)

    saver = FeatureSaver(save_dir, bin_size, start_bin=start_index)
    start_step = saver.get_num_saved()
    if start_step > 0:
        logger.info(f'Found existing data. Start from step {start_step}.')
        last_micro_batch_access_index += start_step

    logger.info("Building dataset...")
    # == build dataset ==
    dataset = build_module(cfg.dataset, DATASETS, audio_cfg=cfg.get("audio_cfg"))
    logger.info("Dataset contains %s samples.", len(dataset))

    # == build dataloader ==
    dataloader_args = dict(
        dataset=dataset,
        batch_size=cfg.get("batch_size", None),
        num_workers=cfg.get("num_workers", 4),
        seed=cfg.get("seed", 1024),
        shuffle=True,
        drop_last=True,
        pin_memory=True,
        process_group=get_data_parallel_group(),
        prefetch_factor=1,
        sampler_kwargs={}
    )
    assert isinstance(dataset, VariableVideoTextDataset)
    dataloader_args['sampler_kwargs'] = {'last_micro_batch_access_index': last_micro_batch_access_index}

    dataloader, _ = prepare_dataloader(
        bucket_config=cfg.get("bucket_config", None),
        num_bucket_build_workers=cfg.get("num_bucket_build_workers", 1),
        **dataloader_args,
    )
    num_steps_per_epoch = len(dataloader)
    # dataloader.batch_sampler.load_state_dict({"last_micro_batch_access_index": start_index})

    # == number of bins ==
    num_bin = num_steps_per_epoch // bin_size
    logger.info("Number of batches: %s", num_steps_per_epoch)
    logger.info("Bin size: %s", bin_size)
    logger.info("Number of bins: %s", num_bin)
    num_bin_to_process = min(num_bin, end_index) - start_index
    logger.info("Start index: %s", start_index)
    logger.info("End index: %s", end_index)
    logger.info("Number of batches to process: %s", num_bin_to_process)

    # ======================================================
    # 3. build model
    # ======================================================
    logger.info("Building models...")
    # == build text-encoder and vae ==
    text_encoder = build_module(cfg.get('text_encoder', None), MODELS, device=device, dtype=dtype)
    vae = build_module(cfg.vae, MODELS).to(device, dtype).eval()
    audio_vae = build_module(cfg.audio_vae, MODELS, device=device, dtype=dtype)

    # =======================================================
    # 5. training loop
    # =======================================================
    # == training loop in an epoch ==
    dataloader_iter = iter(dataloader)
    log_time = cfg.get("log_time", False)
    total_steps = num_bin_to_process * bin_size
    for _ in tqdm(range(start_step, total_steps), initial=start_step, total=total_steps):
        with Timer("step", log=log_time):
            with Timer("data loading", log=log_time):
                batch = next(dataloader_iter)
                neg_vx, neg_ax = None, None
                if not save_text_only:
                    vx = batch.pop("video").to(device, dtype)  # [B, C, T, H, W]
                    ax = batch.pop("audio").to(device, dtype) # [B, C, T, M]
                    if dataset.neg_aug:
                        neg_vx = {aug_type: aug_vx.flatten(0, 1).to(device, dtype) \
                                for aug_type, aug_vx in batch.pop('neg_videos').items()}
                        neg_ax = {aug_type: aug_ax.flatten(0, 1).to(device, dtype) \
                                for aug_type, aug_ax in batch.pop('neg_audios').items()}
                else:
                    vx, ax = None, None
                y = batch.get("text")
                raw_text = batch.get('raw_text', batch.get("text"))
                batch_num_frames = batch['num_frames']
                batch_fps = batch['fps']
                batch_duration = batch_num_frames / batch_fps
                assert len(torch.unique(batch_duration)) == 1, 'variable durations temporally unsupported'
            
            if not save_text_only:
                with Timer("vae", log=log_time):
                    if neg_vx is not None:
                        size_list = [vx.shape[0], *[v.shape[0] for v in neg_vx.values()]]
                        bs, neg_num = vx.shape[0], dataset.neg_aug
                        for x, neg_x, encode_func in \
                                [[vx, neg_vx, vae.encode], [ax, neg_ax, audio_vae.encode_audio]]:
                            x = torch.cat([x, *list(neg_x.values())], dim=0)
                            x = encode_func(x)
                            x_list = x.split(size_list, dim=0)
                            dims = x_list[0].shape[1:]
                            for i, aug_type in enumerate(neg_x.keys()):
                                neg_x[aug_type] = x_list[i+1].view(bs, neg_num, *dims)
                            neg_x['raw'] = x_list[0]
                        vx, ax = neg_vx.pop('raw'), neg_ax.pop('raw')
                    else:
                        vx = vae.encode(vx)
                        ax = audio_vae.encode_audio(ax)  # [B, C, T, M]
                with Timer("feature to cpu", log=log_time):
                    vx = vx.cpu()
                    ax = ax.cpu()
                    if dataset.neg_aug:
                        neg_vx = {k: v.cpu() for k, v in neg_vx.items()}
                        neg_ax = {k: v.cpu() for k, v in neg_ax.items()}

            batch_dict = {
                "index": batch["index"],
                "x": vx,
                "ax": ax,
                "text": y,
                "raw_text": raw_text,
                "fps": batch["fps"].to(dtype),
                "audio_fps": batch["audio_fps"].to(dtype),
                "height": batch["height"].to(dtype),
                "width": batch["width"].to(dtype),
                "num_frames": batch["num_frames"].to(dtype),
            }
            if dataset.neg_aug:
                batch_dict.update({
                    "neg_vx": neg_vx,
                    "neg_ax": neg_ax
                })
            if dataset.require_onset:
                batch_dict.update({
                    "onset": batch["onset"].to(dtype),
                })

            if save_text_features:
                with Timer("text", log=log_time):
                    text_infos = text_encoder.encode(y)
                    y_feat = text_infos["y"]
                    y_mask = text_infos["mask"]
                    # if save_compressed_text_features:
                    #     y_feat, y_mask = model.encode_text(y_feat, y_mask)
                    #     y_mask = torch.tensor(y_mask)
                with Timer("feature to cpu", log=log_time):
                    y_feat = y_feat.cpu()
                    y_mask = y_mask.cpu()
                batch_dict.update({
                    "y": y_feat, "mask": y_mask,
                })

            saver.update(batch_dict)
    saver.save()


if __name__ == "__main__":
    main()