File size: 17,059 Bytes
e490e7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
import os
import math
import time
from pprint import pformat
import warnings
warnings.filterwarnings('ignore')
import colossalai
import torch
import torch.distributed as dist
from peft import PeftModel
from colossalai.cluster import DistCoordinator
from mmengine.runner import set_random_seed
from tqdm import tqdm
import numpy as np
import pandas as pd
from javisdit.acceleration.parallel_states import set_sequence_parallel_group
from javisdit.datasets import save_sample
from javisdit.datasets.aspect import get_image_size, get_num_frames
from javisdit.models.text_encoder.t5 import text_preprocessing
from javisdit.registry import MODELS, SCHEDULERS, build_module
from javisdit.utils.config_utils import parse_configs
from javisdit.utils.inference_utils import (
add_watermark,
append_generated,
append_score_to_prompts,
apply_va_mask_strategy,
collect_va_references_batch,
dframe_to_frame,
extract_json_from_prompts,
extract_prompts_loop,
get_save_path_name,
load_prompts,
merge_prompt,
prepare_multi_resolution_info,
refine_prompts_by_openai,
split_prompt
)
from javisdit.utils.misc import all_exists, create_logger, is_distributed, is_main_process, to_torch_dtype
def main():
torch.set_grad_enabled(False)
# ======================================================
# configs & runtime variables
# ======================================================
# == parse configs ==
cfg = parse_configs(training=False)
audio_only = cfg.get('audio_only', False)
# == device and dtype ==
device = "cuda" if torch.cuda.is_available() else "cpu"
cfg_dtype = cfg.get("dtype", "fp32")
assert cfg_dtype in ["fp16", "bf16", "fp32"], f"Unknown mixed precision {cfg_dtype}"
dtype = to_torch_dtype(cfg.get("dtype", "bf16"))
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# == init distributed env ==
if is_distributed():
colossalai.launch_from_torch({})
coordinator = DistCoordinator()
enable_sequence_parallelism = cfg.enable_sequence_parallelism and coordinator.world_size > 1
if enable_sequence_parallelism:
set_sequence_parallel_group(dist.group.WORLD)
else:
coordinator = None
enable_sequence_parallelism = False
set_random_seed(seed=cfg.get("seed", 1024))
# == init logger ==
logger = create_logger()
logger.info("Inference configuration:\n %s", pformat(cfg.to_dict()))
verbose = cfg.get("verbose", 1)
progress_wrap = tqdm if verbose == 1 else (lambda x: x)
torch.set_num_threads(1) # NOTE: without it, loading audioldm2 is really really slow
# ======================================================
# build model & load weights
# ======================================================
logger.info("Building models...")
# == build text-encoder and vae ==
text_encoder = build_module(cfg.text_encoder, MODELS, device=device, dtype=dtype)
prior_encoder = build_module(cfg.get('prior_encoder', None), MODELS)
if prior_encoder is not None:
prior_encoder = prior_encoder.to(device, dtype).eval()
vae = build_module(cfg.vae, MODELS).to(device, dtype).eval()
audio_vae = build_module(cfg.audio_vae, MODELS, device=device, dtype=dtype)
# == prepare video size ==
image_size = cfg.get("image_size", None)
if image_size is None:
resolution = cfg.get("resolution", None)
aspect_ratio = cfg.get("aspect_ratio", None)
assert (
resolution is not None and aspect_ratio is not None
), "resolution and aspect_ratio must be provided if image_size is not provided"
image_size = get_image_size(resolution, aspect_ratio)
num_frames = get_num_frames(cfg.num_frames)
# == build diffusion model ==
input_size = (num_frames, *image_size)
v_latent_size = vae.get_latent_size(input_size) # [t//4 for every 17 frame, h//8, w//8]
ckpt_path = cfg.model.pop('weight_init_from', cfg.get('model_path', ''))
model = (
build_module(
cfg.model,
MODELS,
input_size=v_latent_size,
in_channels=vae.out_channels,
caption_channels=text_encoder.output_dim,
model_max_length=text_encoder.model_max_length,
enable_sequence_parallelism=enable_sequence_parallelism,
weight_init_from=ckpt_path,
)
.to(device, dtype)
.eval()
)
text_encoder.y_embedder = model.y_embedder # HACK: for classifier-free guidance
if prior_encoder is not None:
prior_encoder.st_prior_embedder = model.st_prior_embedder
lora_ckpt_path = os.path.join(ckpt_path, cfg.get("lora_dir", "lora"))
if os.path.exists(lora_ckpt_path):
logger.info(f'Loading LoRA weight from {lora_ckpt_path}')
model = PeftModel.from_pretrained(model, lora_ckpt_path, is_trainable=False)
logger.info("Merging LoRA weights...")
model = model.merge_and_unload()
# == build scheduler ==
scheduler = build_module(cfg.scheduler, SCHEDULERS)
# ======================================================
# inference
# ======================================================
# == load prompts ==
prompts = cfg.get("prompt", None)
start_idx = cfg.get("start_index", 0)
if prompts is None:
if cfg.get("prompt_path", None) is not None:
prompts = load_prompts(cfg.prompt_path, start_idx, cfg.get("end_index", None),
prompt_key=cfg.get("prompt_key", "text"))
else:
prompts = [cfg.get("prompt_generator", "")] * 1_000_000 # endless loop
elif isinstance(prompts, str):
prompts = [prompts]
# == prepare reference ==
reference_path = cfg.get("reference_path", [("", "")] * len(prompts))
mask_strategy = cfg.get("mask_strategy", [""] * len(prompts))
if isinstance(reference_path, str) and os.path.isfile(reference_path):
reference_df = pd.read_csv(reference_path)
reference_path = list(zip(reference_df['path'].tolist(), reference_df['audio_path'].tolist()))
if isinstance(mask_strategy, str):
mask_strategy = [mask_strategy] * len(prompts)
assert len(reference_path) == len(prompts), "Length of reference must be the same as prompts"
assert len(mask_strategy) == len(prompts), "Length of mask_strategy must be the same as prompts"
# == prepare distributed inference ==
if is_distributed() and not enable_sequence_parallelism:
local_rank = dist.get_rank()
num_per_rank = math.ceil(len(prompts) / coordinator.world_size)
local_start_idx = local_rank * num_per_rank
local_end_idx = local_start_idx + num_per_rank
prompts = prompts[local_start_idx:local_end_idx]
reference_path = reference_path[local_start_idx:local_end_idx]
mask_strategy = mask_strategy[local_start_idx:local_end_idx]
start_idx += local_start_idx
# == prepare arguments ==
fps = cfg.fps
save_fps = cfg.get("save_fps", fps // cfg.get("frame_interval", 1))
multi_resolution = cfg.get("multi_resolution", None)
batch_size = cfg.get("batch_size", 1)
num_sample = cfg.get("num_sample", 1)
loop = cfg.get("loop", 1)
condition_frame_length = cfg.get("condition_frame_length", 5)
condition_frame_edit = cfg.get("condition_frame_edit", 0.0)
align = cfg.get("align", None)
assert loop == 1, "not implemented"
audio_fps = cfg.get("audio_fps", 16000)
neg_prompts = cfg.get("neg_prompt", None)
if isinstance(neg_prompts, str):
neg_prompts = [neg_prompts] * len(prompts)
use_text_preprocessing = cfg.get("use_text_preprocessing", True)
save_dir = cfg.save_dir
os.makedirs(save_dir, exist_ok=True)
sample_name = cfg.get("sample_name", None)
prompt_as_path = cfg.get("prompt_as_path", False)
# == Iter over all samples ==
for i in progress_wrap(range(0, len(prompts), batch_size)):
# == prepare batch prompts ==
batch_prompts = prompts[i : i + batch_size]
ms = mask_strategy[i : i + batch_size]
refs = reference_path[i : i + batch_size]
neg_prompts_batch = neg_prompts[i : i + batch_size] if neg_prompts is not None else None
# == get json from prompts ==
batch_prompts, refs, ms = extract_json_from_prompts(batch_prompts, refs, ms, noimpl=True)
original_batch_prompts = batch_prompts
# == get reference for condition ==
refs = collect_va_references_batch(refs, vae, image_size,
audio_vae=audio_vae, audio_cfg=cfg.get("audio_cfg", {}))
# == multi-resolution info ==
model_args = prepare_multi_resolution_info(
multi_resolution, len(batch_prompts), image_size, num_frames, fps, device, dtype
)
# == Iter over number of sampling for one prompt ==
for k in range(num_sample):
# == prepare save paths ==
save_paths = [
get_save_path_name(
save_dir,
sample_name=sample_name,
sample_idx=start_idx + idx,
prompt=original_batch_prompts[idx],
prompt_as_path=prompt_as_path,
num_sample=num_sample,
k=k,
)
for idx in range(len(batch_prompts))
]
if enable_sequence_parallelism and coordinator.world_size > 1:
dist.barrier()
if all(os.path.exists(f'{_path}.mp4') for _path in save_paths):
continue
# NOTE: Skip if the sample already exists
# This is useful for resuming sampling VBench
if prompt_as_path and all_exists(save_paths):
continue
# == process prompts step by step ==
# 0. split prompt
# each element in the list is [prompt_segment_list, loop_idx_list]
batched_prompt_segment_list = []
batched_loop_idx_list = []
for prompt in batch_prompts:
prompt_segment_list, loop_idx_list = split_prompt(prompt)
batched_prompt_segment_list.append(prompt_segment_list)
batched_loop_idx_list.append(loop_idx_list)
# 1. refine prompt by openai
if cfg.get("llm_refine", False):
# only call openai API when
# 1. seq parallel is not enabled
# 2. seq parallel is enabled and the process is rank 0
if not enable_sequence_parallelism or (enable_sequence_parallelism and is_main_process()):
for idx, prompt_segment_list in enumerate(batched_prompt_segment_list):
batched_prompt_segment_list[idx] = refine_prompts_by_openai(prompt_segment_list)
# sync the prompt if using seq parallel
if enable_sequence_parallelism:
coordinator.block_all()
prompt_segment_length = [
len(prompt_segment_list) for prompt_segment_list in batched_prompt_segment_list
]
# flatten the prompt segment list
batched_prompt_segment_list = [
prompt_segment
for prompt_segment_list in batched_prompt_segment_list
for prompt_segment in prompt_segment_list
]
# create a list of size equal to world size
broadcast_obj_list = [batched_prompt_segment_list] * coordinator.world_size
dist.broadcast_object_list(broadcast_obj_list, 0)
# recover the prompt list
batched_prompt_segment_list = []
segment_start_idx = 0
all_prompts = broadcast_obj_list[0]
for num_segment in prompt_segment_length:
batched_prompt_segment_list.append(
all_prompts[segment_start_idx : segment_start_idx + num_segment]
)
segment_start_idx += num_segment
# 2. append score
for idx, prompt_segment_list in enumerate(batched_prompt_segment_list):
batched_prompt_segment_list[idx] = append_score_to_prompts(
prompt_segment_list,
aes=cfg.get("aes", None),
flow=cfg.get("flow", None),
camera_motion=cfg.get("camera_motion", None),
)
# 3. clean prompt with T5
for idx, prompt_segment_list in enumerate(batched_prompt_segment_list):
batched_prompt_segment_list[idx] = [
text_preprocessing(prompt, use_text_preprocessing=use_text_preprocessing) \
for prompt in prompt_segment_list
]
# 4. merge to obtain the final prompt
batch_prompts = []
for prompt_segment_list, loop_idx_list in zip(batched_prompt_segment_list, batched_loop_idx_list):
batch_prompts.append(merge_prompt(prompt_segment_list, loop_idx_list))
# == Iter over loop generation ==
video_clips, audio_clips = [], []
for loop_i in range(loop):
# == get prompt for loop i ==
batch_prompts_loop = extract_prompts_loop(batch_prompts, loop_i)
# == add condition frames for loop ==
if loop_i > 0:
raise NotImplementedError
refs, ms = append_generated(
vae, video_clips[-1], refs, ms, loop_i, condition_frame_length, condition_frame_edit
)
# == sampling ==
if cfg.get('fix_noise_seed', None):
torch.manual_seed(1024) ## TODO: fix or not
vz = torch.randn(len(batch_prompts), vae.out_channels, *v_latent_size, device=device, dtype=dtype)
audio_length_in_s = num_frames / fps
az, original_waveform_length = audio_vae.prepare_latents(audio_length_in_s, len(batch_prompts), device=device, dtype=dtype)
masks = apply_va_mask_strategy(vz, az, refs, ms, loop_i, align=align,
v2a_t_scale=1/5*17/fps/(10.24/1024)/4)
samples = scheduler.multimodal_sample(
model,
text_encoder,
{'video': vz, 'audio': az},
batch_prompts_loop,
device=device,
additional_args=model_args,
progress=verbose >= 2,
mask=masks,
prior_encoder=prior_encoder,
neg_prompts=neg_prompts_batch
)
video_samples, audio_samples = samples['video'], samples['audio']
video_samples = vae.decode(video_samples.to(dtype), num_frames=num_frames)
video_clips.append(video_samples)
audio_samples = audio_vae.decode_audio(audio_samples, original_waveform_length=original_waveform_length)
audio_clips.append(audio_samples)
# == save samples ==
if not enable_sequence_parallelism or is_main_process():
for idx, batch_prompt in enumerate(batch_prompts):
if verbose >= 2:
logger.info("Prompt: %s", batch_prompt)
save_path = save_paths[idx]
video = [video_clips[i][idx] for i in range(loop)]
audio = [audio_clips[i][idx] for i in range(loop)]
for i in range(1, loop): # TODO: audio
raise NotImplementedError
video[i] = video[i][:, dframe_to_frame(condition_frame_length) :]
# audio[i] = audio[i][:, audio_dframe_to_frame(condition_frame_length) :]
video = torch.cat(video, dim=1)
audio = torch.cat(audio, dim=0)
save_path = save_sample(
video,
fps=save_fps,
audio=audio,
audio_fps=audio_fps,
save_path=save_path,
verbose=verbose >= 2,
audio_only=audio_only,
)
if save_path.endswith(".mp4") and cfg.get("watermark", False):
time.sleep(1) # prevent loading previous generated video
add_watermark(save_path)
start_idx += len(batch_prompts)
logger.info("Inference finished.")
logger.info("Saved %s samples to %s", len(prompts), save_dir)
if __name__ == "__main__":
main()
|