File size: 18,899 Bytes
e490e7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import argparse
import os
import os.path as osp
import pandas as pd
import json
from typing import List, Dict, Literal
from glob import glob
from copy import deepcopy
import math

import logging
logging.warning = lambda *args, **kwargs: None

import torch
import torch.distributed as dist

from .src.metrics import (
    # quality
    calc_fvd_kvd_fad, calc_audio_quality_score, calc_video_quality_score,
    # alignment
    calc_imagebind_score, calc_clip_score, calc_clap_score, calc_cavp_score,
    # synchrony
    calc_av_align, calc_av_score, calc_desync_score,
    # audio-only
    calc_audio_score
)

class JavisBenchCategory(object):
    def __init__(self, cfg: str):
        self.cfg = cfg
        
        with open(cfg, 'r') as f:
            data = json.load(f)
        
        category_matrix = []
        for aspect in data:
            category_list = []
            for category in aspect['categories']:
                category_list.append(category['title'])
            category_matrix.append(category_list)

        self.category_cfg = data
        self.aspect_list = [aspect['aspect'] for aspect in data]
        self.category_matrix = category_matrix
        self.aspect_num = len(self.category_matrix)


class JavisEvaluator(object):
    def __init__(self, input_file: str, category_cfg: str, metrics: List[str], output_file: str, **kwargs):
        self.input_file = input_file
        self.df = pd.read_csv(input_file)
        eval_num = kwargs.pop('eval_num', None)
        if eval_num:
            print(f'Evaluate the first {eval_num} samples.')
            self.df = self.df.iloc[:eval_num]

        self.world_size = dist.get_world_size()
        self.rank = dist.get_rank() % torch.cuda.device_count()
        self.is_main_process = self.rank in [0, -1]
        if self.world_size > 1:
            if metrics != ['av-reward']:
                raise NotImplementedError('Only support reward evaluation in multi-gpu mode.')
            nums_per_rank = math.ceil(len(self.df) / self.world_size)
            start = self.rank * nums_per_rank
            self.df = self.df.iloc[start:start+nums_per_rank]

        if category_cfg and osp.isfile(category_cfg) and kwargs.get('verbose'):
            self.parse_aspect_dict(category_cfg)
        else:
            self.cat2indices = None

        self.output_file = output_file

        self.total_metrics = [
            'fvd+kvd+fad',   # quality
            'video-quality',  # visual quality and motion quality
            'audio-quality',  # audio quality
            'imagebind-score', 'cxxp-score',  # semantic consistency
            'av-align',  # av alignment
            'av-score',  #'avh-score', 'javis-score'
            'desync',  # av synchrony
            # 'audio-score', 
        ]
        if metrics == ['all']:
            metrics = self.total_metrics
        self.metrics = metrics
        self.metric2items = {
            # for general audio-video evaluation
            'fvd+kvd+fad': ['fvd', 'kvd', 'fad'],
            'video-quality': ['visual_quality', 'motion_quality'],
            'audio-quality': ['audio_quality'],
            'imagebind-score': ['ib_tv', 'ib_ta', 'ib_av'],
            'cxxp-score': ['clip_score', 'clap_score', 'cavp_score'],
            'av-align': ['av_align'],
            'av-score': ['avh_score', 'javis_score'],
            'desync': ['desync'],
            # for audio evaluation only
            'audio-score': ['fad', 'quality', 'ib_ta', 'clap'],
            # for audio-video reward calculation
            'av-reward': [
                'visual_quality', 'motion_quality', 'audio_quality',
                'ib_tv', 'ib_ta', 'ib_av',
                'desync_scores', # TODO: JavisScore?
            ]
        }
        self.exclude = kwargs.pop('exclude', [])

        self.eval_kwargs = kwargs

        self.gather_audio_video_pred()
    
    def parse_aspect_dict(self, category_cfg:str):
        self.category = JavisBenchCategory(category_cfg)
        cat2indices: List[List[List[int]]] = []
        for ai in range(self.category.aspect_num):
            index_list = [[] for _ in range(len(self.category.category_matrix[ai]))]
            for pi, cat_str in enumerate(self.df[f'cat{ai}_ind'].tolist()):
                for ci in (cat_str.split(',') if isinstance(cat_str, str) else [cat_str]):
                    index_list[int(ci)].append(pi)
            cat2indices.append(index_list)
        
        self.cat2indices = cat2indices
    
    @torch.no_grad()
    def __call__(self, *args, **kwds):
        device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        exist_metrics = self.load_metric()

        prompt_list = self.df['text'].tolist()
        # video_prompt_list = self.df.get('video_text', self.df['text']).tolist()
        video_prompt_list = prompt_list
        audio_prompt_list = self.df.get('audio_text', self.df['text']).tolist()

        gt_video_list = self.df['path'].tolist()
        gt_audio_list = self.df.get('audio_path', self.df['path']).tolist()

        pred_video_list = self.df['pred_video_path'].tolist()
        pred_audio_list = self.df['pred_audio_path'].tolist()

        save_avalign_scores = self.eval_kwargs.get('save_avalign_scores', False)
        save_av_reward = False
        max_length_s = self.eval_kwargs.get('max_audio_len_s', 8.0)
        for metric in self.metrics:
            if not self.eval_kwargs.get('force_eval', False) and \
                    all(item in exist_metrics for item in self.metric2items[metric]):
                print(f'{metric} calculated. skip.')
                continue
            if metric in self.exclude:
                print(f'{metric} excluded. skip.')
                continue
            
            if metric == 'fvd+kvd+fad':
                mode = self.eval_kwargs.get('fvd_mode', 'vanilla')
                exist_metrics["fvd"], exist_metrics["kvd"], exist_metrics["fad"] = \
                    calc_fvd_kvd_fad(gt_video_list, pred_video_list, gt_audio_list, pred_audio_list, 
                                     device, self.cat2indices, mode=mode, **self.eval_kwargs)
                self.write_metric(exist_metrics, metric)
            
            elif metric == 'video-quality':
                exist_metrics["visual_quality"], exist_metrics["motion_quality"] = \
                    calc_video_quality_score(pred_video_list, video_prompt_list, device, self.cat2indices)
                self.write_metric(exist_metrics, metric)
            
            elif metric == 'audio-quality':
                audio_sr = self.eval_kwargs.get('audio_sr', 16000)
                exist_metrics["audio_quality"] = calc_audio_quality_score(
                    pred_audio_list, audio_prompt_list, max_length_s, device, self.cat2indices, audio_sr=audio_sr)
                self.write_metric(exist_metrics, metric)

            elif metric == 'imagebind-score':
                exist_metrics["ib_tv"], exist_metrics["ib_ta"], exist_metrics["ib_av"] = \
                    calc_imagebind_score(pred_video_list, pred_audio_list, video_prompt_list, audio_prompt_list,
                                         device, self.cat2indices)
                self.write_metric(exist_metrics, metric)
            
            elif metric == 'cxxp-score':
                if "clip_score" not in exist_metrics:
                    exist_metrics["clip_score"] = calc_clip_score(pred_video_list, video_prompt_list, device, self.cat2indices)
                if "clap_score" not in exist_metrics:
                    exist_metrics["clap_score"] = calc_clap_score(pred_audio_list, audio_prompt_list, device, self.cat2indices)
                if "cavp_score" not in exist_metrics and 'cavp_score' not in self.exclude:
                    exist_metrics["cavp_score"] = calc_cavp_score(pred_video_list, pred_audio_list, device, self.cat2indices,
                                                                  cavp_config_path=self.eval_kwargs['cavp_config_path'])
                self.write_metric(exist_metrics, metric)
            
            elif metric == 'av-align':
                ret = calc_av_align(pred_video_list, pred_audio_list, self.cat2indices, return_score_list=save_avalign_scores)
                if save_avalign_scores:
                    exist_metrics["av_align"], av_align_scores = ret
                    assert len(av_align_scores) == len(self.df)
                    self.df['av_align_scores'] = av_align_scores
                else:
                    exist_metrics["av_align"] = ret
                self.write_metric(exist_metrics, metric)

            elif metric == 'av-score':
                ret = calc_av_score(pred_video_list, pred_audio_list, prompt_list, device, self.cat2indices,
                                    window_size_s=self.eval_kwargs.get("window_size_s", 2.0),
                                    window_overlap_s=self.eval_kwargs.get("window_overlap_s", 1.5),
                                    return_score_list=save_avalign_scores)
                if save_avalign_scores:
                    exist_metrics["avh_score"], exist_metrics["javis_score"], avh_scores, javis_scores = ret
                    assert len(avh_scores) == len(javis_scores) == len(self.df)
                    self.df['avh_scores'] = avh_scores
                    self.df['javis_scores'] = javis_scores
                else:
                    exist_metrics["avh_score"], exist_metrics["javis_score"] = ret
                self.write_metric(exist_metrics, metric)
            
            elif metric == 'desync':
                ret = calc_desync_score(pred_video_list, pred_audio_list, max_length_s, device, 
                                        self.cat2indices, return_score_list=save_avalign_scores)    
                if save_avalign_scores:
                    exist_metrics["desync"], desync_scores = ret
                    assert len(desync_scores) == len(self.df)
                    self.df['desync_scores'] = desync_scores
                else:
                    exist_metrics["desync"] = ret
                self.write_metric(exist_metrics, metric)
            
            elif metric == 'audio-score':
                calc_audio_score(gt_audio_list, pred_audio_list, audio_prompt_list, device, 
                                 exist_metrics=exist_metrics, **self.eval_kwargs)
                self.write_metric(exist_metrics, metric)
            
            elif metric == 'av-reward':
                if 'visual_quality' not in self.exclude:
                    ret = calc_video_quality_score(pred_video_list, video_prompt_list, device, 
                                                   self.cat2indices, return_score_list=True)
                    self.df['visual_quality'], self.df['motion_quality'] = ret[2:]  # list
                    save_av_reward = True
                    exist_metrics['visual_quality'] = float(self.df['visual_quality'].mean())
                    exist_metrics['motion_quality'] = float(self.df['motion_quality'].mean())
                if 'audio_quality' not in self.exclude:
                    audio_sr = self.eval_kwargs.get('audio_sr', 16000)
                    ret = calc_audio_quality_score(pred_audio_list, audio_prompt_list, max_length_s, device, 
                                                   self.cat2indices, audio_sr=audio_sr, return_score_list=True)
                    self.df['audio_quality'] = ret[1]  # list
                    save_av_reward = True
                    exist_metrics['audio_quality'] = float(self.df['audio_quality'].mean())
                if 'ib_tv' not in self.exclude:
                    ret = calc_imagebind_score(pred_video_list, pred_audio_list, video_prompt_list, audio_prompt_list,
                                               device, self.cat2indices, return_score_list=True)
                    self.df["ib_tv"], self.df["ib_ta"], self.df["ib_av"] = ret[3:]  # list
                    save_av_reward = True
                    exist_metrics['ib_tv'] = float(self.df['ib_tv'].mean())
                    exist_metrics['ib_ta'] = float(self.df['ib_ta'].mean())
                    exist_metrics['ib_av'] = float(self.df['ib_av'].mean())
                if 'desync' not in self.exclude:
                    ret = calc_desync_score(pred_video_list, pred_audio_list, max_length_s, device, 
                                            self.cat2indices, return_score_list=True)
                    self.df['desync_scores'] = ret[1]  # list
                    save_av_reward = True
                    exist_metrics['desync_scores'] = float(self.df['desync_scores'].mean())
                self.write_metric(exist_metrics, metric)

        if self.world_size > 1:
            # TODO: gather scores per rank for general eval
            obj_list = [None for _ in range(self.world_size)]
            dist.all_gather_object(obj_list, self.df)
            if self.is_main_process:
                self.df = pd.concat(obj_list)

        if self.is_main_process:
            if save_avalign_scores:
                save_path = osp.splitext(self.output_file)[0] + '_avalign.csv'
                self.df.to_csv(save_path, index=False)

            if save_av_reward:
                save_path = osp.splitext(self.output_file)[0] + '_avreward.csv'
                self.df.to_csv(save_path, index=False)

    def write_metric(self, metric:dict, metric_type:str):
        os.makedirs(osp.dirname(self.output_file), exist_ok=True)
        for item in self.metric2items[metric_type]:
            if item not in metric:
                print(f'{item}: NOT FOUND', end='; ')
                continue
            score = metric[item]
            if isinstance(score, dict):
                score = score['overall']
            print(f'{item}: {score:.4f}', end='; ')
        print()
        with open(self.output_file, 'w+') as f:
            json.dump(metric, f, indent=4, ensure_ascii=False)

    def load_metric(self):
        metric = {}
        if osp.exists(self.output_file) and osp.getsize(self.output_file) > 0:
            with open(self.output_file, 'r') as f:
                metric = json.load(f)
        return metric

    def gather_audio_video_pred(self):
        infer_data_dir = self.eval_kwargs['infer_data_dir']
        if not infer_data_dir:
            if not self.eval_kwargs['eval_gt']:
                assert 'pred_video_path' in self.df and 'pred_audio_path' in self.df
            else:
                assert 'fvd+kvd+fad' not in self.metrics
                self.df['pred_video_path'] = self.df['path']
                self.df['pred_audio_path'] = self.df['audio_path']
            return
        assert osp.isdir(infer_data_dir), infer_data_dir
        audio_only = self.metrics == ['audio-score']
        sample_num = len(self.df)
        if audio_only:
            pred_audio_list = [f'{infer_data_dir}/sample_{i:04d}.wav' for i in range(sample_num)]
            pred_video_list = [''] * sample_num
            assert all(osp.exists(path) for path in pred_audio_list)
            self.df['text'] = self.df['audio_text']
            self.df['path'] = self.df['audio_path']
        else:
            pred_audio_list = [f'{infer_data_dir}/sample_{i:04d}.wav' for i in range(sample_num)]
            pred_video_list = [f'{infer_data_dir}/sample_{i:04d}.mp4' for i in range(sample_num)]
            assert all(osp.exists(path) for path in pred_audio_list)
            assert all(osp.exists(path) for path in pred_video_list)

        self.df['pred_video_path'] = pred_video_list
        self.df['pred_audio_path'] = pred_audio_list

def run_eval(args):
    dist.init_process_group(backend="nccl")
    local_rank = int(os.environ["LOCAL_RANK"]) % torch.cuda.device_count()
    torch.cuda.set_device(local_rank)

    print(f"Start evaluation on {args.infer_data_dir}")

    evaluator = JavisEvaluator(**vars(args))
    evaluator()


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument("--input_file", type=str, default=None, help="path to input csv file", required=True)
    parser.add_argument("--infer_data_dir", type=str, default=None, help="directory to audio-video inference results")
    parser.add_argument("--output_file", type=str, default=None, help="path to output json file", required=True)
    parser.add_argument("--category_cfg", type=str, default='./eval/javisbench/configs/category.json')
    parser.add_argument("--metrics", type=str, nargs='+', default='all', help="metrics to calculate, default as `all`")
    parser.add_argument("--exclude", type=str, nargs='+', default=[], help="skipping specific metric calculation")
    parser.add_argument("--verbose", action='store_true', default=False, help="whether to present category-specific score list")
    parser.add_argument("--num_workers", type=int, default=8, help="number of workers for data loading")
    # parameters for evaluation
    parser.add_argument("--max_frames", type=int, default=24, help="size of the input video")
    parser.add_argument("--max_audio_len_s", type=float, default=None, help="maximum length of the audio")
    parser.add_argument("--video_fps", type=int, default=24, help="frame rate of the input video")
    parser.add_argument("--audio_sr", type=int, default=16000, help="sampling rate of the audio")
    parser.add_argument("--image_size", type=int, default=224, help="size of the input image")
    parser.add_argument("--eval_num", type=int, default=None, help="number of videos to evaluate")
    parser.add_argument("--fvd_avcache_path", type=str, default=None, help="path to the audio-video cache file for FVD/KVD/FAD evaluation")
    parser.add_argument("--fvd_mode", type=str, default='vanilla', choices=['vanilla', 'mmdiffusion'], help="mode of fvd calculation, `video` or `audio`")
    parser.add_argument("--force_eval", action='store_true', default=False, help="whether to evaluate scores even if existing")
    parser.add_argument("--eval_gt", action='store_true', default=False, help="whether to evaluate ground-truth audio-video pairs")
    # hyper-parameters for metrics
    parser.add_argument("--window_size_s", type=float, default=2.0, help="JavisScore window size")
    parser.add_argument("--window_overlap_s", type=float, default=1.5, help="JavisScore overlap size")
    parser.add_argument("--cavp_config_path", type=str, default='./eval/javisbench/configs/Stage1_CAVP.yaml', help="JavisScore overlap size")
    parser.add_argument("--save_avalign_scores", action='store_true', default=False, help="whether to return score list for AV-Align evaluation")
    args = parser.parse_args()

    os.makedirs('./checkpoints', exist_ok=True)
    os.makedirs(osp.dirname(args.output_file), exist_ok=True)
    cache_dir = f'{osp.dirname(args.output_file)}/cache/{osp.basename(osp.splitext(args.output_file)[0])}'
    setattr(args, "cache_dir", cache_dir)

    run_eval(args)