Shreshth Gandhi
commited on
Commit
·
c17073b
1
Parent(s):
963e940
Update notebook
Browse files- tutorials/loading_data.ipynb +141 -235
tutorials/loading_data.ipynb
CHANGED
|
@@ -2,326 +2,232 @@
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "markdown",
|
| 5 |
-
"id": "
|
| 6 |
"metadata": {},
|
| 7 |
"source": [
|
| 8 |
-
"# Tutorial: Creating an AnnData
|
| 9 |
-
"This notebook demonstrates how to create an `AnnData` object using the Tahoe-100M dataset on Hugging Face."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
]
|
| 11 |
},
|
| 12 |
{
|
| 13 |
"cell_type": "code",
|
| 14 |
-
"execution_count":
|
| 15 |
-
"id": "
|
| 16 |
"metadata": {},
|
| 17 |
"outputs": [],
|
| 18 |
-
"source":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
},
|
| 20 |
{
|
| 21 |
"cell_type": "code",
|
| 22 |
-
"execution_count":
|
| 23 |
-
"id": "
|
| 24 |
"metadata": {},
|
| 25 |
-
"outputs": [
|
| 26 |
-
{
|
| 27 |
-
"name": "stderr",
|
| 28 |
-
"output_type": "stream",
|
| 29 |
-
"text": [
|
| 30 |
-
"/usr/lib/python3/dist-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
| 31 |
-
" from .autonotebook import tqdm as notebook_tqdm\n"
|
| 32 |
-
]
|
| 33 |
-
}
|
| 34 |
-
],
|
| 35 |
"source": [
|
| 36 |
"from datasets import load_dataset\n",
|
| 37 |
"from scipy.sparse import csr_matrix\n",
|
| 38 |
"import anndata\n",
|
| 39 |
-
"import pandas as pd"
|
|
|
|
| 40 |
]
|
| 41 |
},
|
| 42 |
{
|
| 43 |
"cell_type": "markdown",
|
| 44 |
-
"id": "
|
| 45 |
"metadata": {},
|
| 46 |
"source": [
|
| 47 |
-
"## Helper
|
| 48 |
-
"Define a function to construct the AnnData object from a data generator."
|
| 49 |
]
|
| 50 |
},
|
| 51 |
{
|
| 52 |
"cell_type": "code",
|
| 53 |
-
"execution_count":
|
| 54 |
-
"id": "
|
| 55 |
"metadata": {},
|
| 56 |
"outputs": [],
|
| 57 |
"source": [
|
| 58 |
-
"
|
| 59 |
-
"def create_anndata_from_generator(generator, gene_vocab, sample_size=None):\n",
|
| 60 |
-
" sorted_vocab_items = sorted(gene_vocab.items())\n",
|
| 61 |
-
" token_ids, gene_names = zip(*sorted_vocab_items)\n",
|
| 62 |
-
" token_id_to_col_idx = {token_id: idx for idx, token_id in enumerate(token_ids)}\n",
|
| 63 |
-
"\n",
|
| 64 |
-
" data, indices, indptr = [], [], [0]\n",
|
| 65 |
-
" obs_data = []\n",
|
| 66 |
-
"\n",
|
| 67 |
-
" for i, cell in enumerate(generator):\n",
|
| 68 |
-
" if sample_size is not None and i >= sample_size:\n",
|
| 69 |
-
" break\n",
|
| 70 |
-
" genes = cell['genes']\n",
|
| 71 |
-
" expressions = cell['expressions']\n",
|
| 72 |
-
" if expressions[0] < 0: \n",
|
| 73 |
-
" genes = genes[1:]\n",
|
| 74 |
-
" expressions = expressions[1:]\n",
|
| 75 |
-
"\n",
|
| 76 |
-
" col_indices = [token_id_to_col_idx[gene] for gene in genes if gene in token_id_to_col_idx]\n",
|
| 77 |
-
" valid_expressions = [expr for gene, expr in zip(genes, expressions) if gene in token_id_to_col_idx]\n",
|
| 78 |
-
"\n",
|
| 79 |
-
" data.extend(valid_expressions)\n",
|
| 80 |
-
" indices.extend(col_indices)\n",
|
| 81 |
-
" indptr.append(len(data))\n",
|
| 82 |
-
"\n",
|
| 83 |
-
" obs_entry = {k: v for k, v in cell.items() if k not in ['genes', 'expressions']}\n",
|
| 84 |
-
" obs_data.append(obs_entry)\n",
|
| 85 |
-
"\n",
|
| 86 |
-
" expr_matrix = csr_matrix((data, indices, indptr), shape=(len(indptr) - 1, len(gene_names)))\n",
|
| 87 |
-
" obs_df = pd.DataFrame(obs_data)\n",
|
| 88 |
-
"\n",
|
| 89 |
-
" adata = anndata.AnnData(X=expr_matrix, obs=obs_df)\n",
|
| 90 |
-
" adata.var.index = pd.Index(gene_names, name='ensembl_id')\n",
|
| 91 |
-
"\n",
|
| 92 |
-
" return adata\n"
|
| 93 |
]
|
| 94 |
},
|
| 95 |
{
|
| 96 |
"cell_type": "markdown",
|
| 97 |
-
"id": "
|
| 98 |
"metadata": {},
|
| 99 |
"source": [
|
| 100 |
-
"## Load Tahoe-100M
|
| 101 |
]
|
| 102 |
},
|
| 103 |
{
|
| 104 |
"cell_type": "code",
|
| 105 |
-
"execution_count":
|
| 106 |
-
"id": "
|
| 107 |
"metadata": {},
|
| 108 |
"outputs": [],
|
| 109 |
"source": [
|
| 110 |
-
"
|
| 111 |
-
"# Stream the main dataset\n",
|
| 112 |
-
"tahoe_100m_ds = load_dataset(\"vevotx/Tahoe-100M\", streaming=True, split=\"train\")\n"
|
| 113 |
]
|
| 114 |
},
|
| 115 |
{
|
| 116 |
"cell_type": "markdown",
|
| 117 |
-
"id": "
|
| 118 |
"metadata": {},
|
| 119 |
"source": [
|
| 120 |
-
"## Load
|
| 121 |
]
|
| 122 |
},
|
| 123 |
{
|
| 124 |
"cell_type": "code",
|
| 125 |
-
"execution_count":
|
| 126 |
-
"id": "
|
| 127 |
"metadata": {},
|
| 128 |
"outputs": [],
|
| 129 |
"source": [
|
| 130 |
-
"\n",
|
| 131 |
"gene_metadata = load_dataset(\"vevotx/Tahoe-100M\", name=\"gene_metadata\", split=\"train\")\n",
|
| 132 |
-
"gene_vocab = {entry[\"token_id\"]: entry[\"ensembl_id\"] for entry in gene_metadata}
|
| 133 |
]
|
| 134 |
},
|
| 135 |
{
|
| 136 |
"cell_type": "markdown",
|
| 137 |
-
"id": "
|
| 138 |
"metadata": {},
|
| 139 |
"source": [
|
| 140 |
-
"## Create AnnData
|
| 141 |
]
|
| 142 |
},
|
| 143 |
{
|
| 144 |
"cell_type": "code",
|
| 145 |
-
"execution_count":
|
| 146 |
-
"id": "
|
| 147 |
"metadata": {},
|
| 148 |
-
"outputs": [
|
| 149 |
-
{
|
| 150 |
-
"name": "stderr",
|
| 151 |
-
"output_type": "stream",
|
| 152 |
-
"text": [
|
| 153 |
-
"/usr/lib/python3/dist-packages/anndata/_core/aligned_df.py:68: ImplicitModificationWarning: Transforming to str index.\n",
|
| 154 |
-
" warnings.warn(\"Transforming to str index.\", ImplicitModificationWarning)\n"
|
| 155 |
-
]
|
| 156 |
-
},
|
| 157 |
-
{
|
| 158 |
-
"data": {
|
| 159 |
-
"text/plain": [
|
| 160 |
-
"AnnData object with n_obs × n_vars = 1000 × 62710\n",
|
| 161 |
-
" obs: 'drug', 'sample', 'BARCODE_SUB_LIB_ID', 'cell_line_id', 'moa-fine', 'canonical_smiles', 'pubchem_cid', 'plate'"
|
| 162 |
-
]
|
| 163 |
-
},
|
| 164 |
-
"execution_count": 6,
|
| 165 |
-
"metadata": {},
|
| 166 |
-
"output_type": "execute_result"
|
| 167 |
-
}
|
| 168 |
-
],
|
| 169 |
"source": [
|
| 170 |
-
"\n",
|
| 171 |
"adata = create_anndata_from_generator(tahoe_100m_ds, gene_vocab, sample_size=1000)\n",
|
| 172 |
-
"adata
|
| 173 |
]
|
| 174 |
},
|
| 175 |
{
|
| 176 |
"cell_type": "markdown",
|
| 177 |
-
"id": "
|
| 178 |
"metadata": {},
|
| 179 |
"source": [
|
| 180 |
-
"## Inspect
|
| 181 |
]
|
| 182 |
},
|
| 183 |
{
|
| 184 |
"cell_type": "code",
|
| 185 |
-
"execution_count":
|
| 186 |
-
"id": "
|
| 187 |
"metadata": {},
|
| 188 |
-
"outputs": [
|
| 189 |
-
{
|
| 190 |
-
"data": {
|
| 191 |
-
"text/html": [
|
| 192 |
-
"<div>\n",
|
| 193 |
-
"<style scoped>\n",
|
| 194 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
| 195 |
-
" vertical-align: middle;\n",
|
| 196 |
-
" }\n",
|
| 197 |
-
"\n",
|
| 198 |
-
" .dataframe tbody tr th {\n",
|
| 199 |
-
" vertical-align: top;\n",
|
| 200 |
-
" }\n",
|
| 201 |
-
"\n",
|
| 202 |
-
" .dataframe thead th {\n",
|
| 203 |
-
" text-align: right;\n",
|
| 204 |
-
" }\n",
|
| 205 |
-
"</style>\n",
|
| 206 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
| 207 |
-
" <thead>\n",
|
| 208 |
-
" <tr style=\"text-align: right;\">\n",
|
| 209 |
-
" <th></th>\n",
|
| 210 |
-
" <th>drug</th>\n",
|
| 211 |
-
" <th>sample</th>\n",
|
| 212 |
-
" <th>BARCODE_SUB_LIB_ID</th>\n",
|
| 213 |
-
" <th>cell_line_id</th>\n",
|
| 214 |
-
" <th>moa-fine</th>\n",
|
| 215 |
-
" <th>canonical_smiles</th>\n",
|
| 216 |
-
" <th>pubchem_cid</th>\n",
|
| 217 |
-
" <th>plate</th>\n",
|
| 218 |
-
" </tr>\n",
|
| 219 |
-
" </thead>\n",
|
| 220 |
-
" <tbody>\n",
|
| 221 |
-
" <tr>\n",
|
| 222 |
-
" <th>0</th>\n",
|
| 223 |
-
" <td>8-Hydroxyquinoline</td>\n",
|
| 224 |
-
" <td>smp_1783</td>\n",
|
| 225 |
-
" <td>01_001_052-lib_1105</td>\n",
|
| 226 |
-
" <td>CVCL_0480</td>\n",
|
| 227 |
-
" <td>unclear</td>\n",
|
| 228 |
-
" <td>C1=CC2=C(C(=C1)O)N=CC=C2</td>\n",
|
| 229 |
-
" <td>1923.0</td>\n",
|
| 230 |
-
" <td>plate4</td>\n",
|
| 231 |
-
" </tr>\n",
|
| 232 |
-
" <tr>\n",
|
| 233 |
-
" <th>1</th>\n",
|
| 234 |
-
" <td>8-Hydroxyquinoline</td>\n",
|
| 235 |
-
" <td>smp_1783</td>\n",
|
| 236 |
-
" <td>01_001_105-lib_1105</td>\n",
|
| 237 |
-
" <td>CVCL_0546</td>\n",
|
| 238 |
-
" <td>unclear</td>\n",
|
| 239 |
-
" <td>C1=CC2=C(C(=C1)O)N=CC=C2</td>\n",
|
| 240 |
-
" <td>1923.0</td>\n",
|
| 241 |
-
" <td>plate4</td>\n",
|
| 242 |
-
" </tr>\n",
|
| 243 |
-
" <tr>\n",
|
| 244 |
-
" <th>2</th>\n",
|
| 245 |
-
" <td>8-Hydroxyquinoline</td>\n",
|
| 246 |
-
" <td>smp_1783</td>\n",
|
| 247 |
-
" <td>01_001_165-lib_1105</td>\n",
|
| 248 |
-
" <td>CVCL_1717</td>\n",
|
| 249 |
-
" <td>unclear</td>\n",
|
| 250 |
-
" <td>C1=CC2=C(C(=C1)O)N=CC=C2</td>\n",
|
| 251 |
-
" <td>1923.0</td>\n",
|
| 252 |
-
" <td>plate4</td>\n",
|
| 253 |
-
" </tr>\n",
|
| 254 |
-
" <tr>\n",
|
| 255 |
-
" <th>3</th>\n",
|
| 256 |
-
" <td>8-Hydroxyquinoline</td>\n",
|
| 257 |
-
" <td>smp_1783</td>\n",
|
| 258 |
-
" <td>01_003_094-lib_1105</td>\n",
|
| 259 |
-
" <td>CVCL_1717</td>\n",
|
| 260 |
-
" <td>unclear</td>\n",
|
| 261 |
-
" <td>C1=CC2=C(C(=C1)O)N=CC=C2</td>\n",
|
| 262 |
-
" <td>1923.0</td>\n",
|
| 263 |
-
" <td>plate4</td>\n",
|
| 264 |
-
" </tr>\n",
|
| 265 |
-
" <tr>\n",
|
| 266 |
-
" <th>4</th>\n",
|
| 267 |
-
" <td>8-Hydroxyquinoline</td>\n",
|
| 268 |
-
" <td>smp_1783</td>\n",
|
| 269 |
-
" <td>01_003_164-lib_1105</td>\n",
|
| 270 |
-
" <td>CVCL_1056</td>\n",
|
| 271 |
-
" <td>unclear</td>\n",
|
| 272 |
-
" <td>C1=CC2=C(C(=C1)O)N=CC=C2</td>\n",
|
| 273 |
-
" <td>1923.0</td>\n",
|
| 274 |
-
" <td>plate4</td>\n",
|
| 275 |
-
" </tr>\n",
|
| 276 |
-
" </tbody>\n",
|
| 277 |
-
"</table>\n",
|
| 278 |
-
"</div>"
|
| 279 |
-
],
|
| 280 |
-
"text/plain": [
|
| 281 |
-
" drug sample BARCODE_SUB_LIB_ID cell_line_id moa-fine \\\n",
|
| 282 |
-
"0 8-Hydroxyquinoline smp_1783 01_001_052-lib_1105 CVCL_0480 unclear \n",
|
| 283 |
-
"1 8-Hydroxyquinoline smp_1783 01_001_105-lib_1105 CVCL_0546 unclear \n",
|
| 284 |
-
"2 8-Hydroxyquinoline smp_1783 01_001_165-lib_1105 CVCL_1717 unclear \n",
|
| 285 |
-
"3 8-Hydroxyquinoline smp_1783 01_003_094-lib_1105 CVCL_1717 unclear \n",
|
| 286 |
-
"4 8-Hydroxyquinoline smp_1783 01_003_164-lib_1105 CVCL_1056 unclear \n",
|
| 287 |
-
"\n",
|
| 288 |
-
" canonical_smiles pubchem_cid plate \n",
|
| 289 |
-
"0 C1=CC2=C(C(=C1)O)N=CC=C2 1923.0 plate4 \n",
|
| 290 |
-
"1 C1=CC2=C(C(=C1)O)N=CC=C2 1923.0 plate4 \n",
|
| 291 |
-
"2 C1=CC2=C(C(=C1)O)N=CC=C2 1923.0 plate4 \n",
|
| 292 |
-
"3 C1=CC2=C(C(=C1)O)N=CC=C2 1923.0 plate4 \n",
|
| 293 |
-
"4 C1=CC2=C(C(=C1)O)N=CC=C2 1923.0 plate4 "
|
| 294 |
-
]
|
| 295 |
-
},
|
| 296 |
-
"execution_count": 7,
|
| 297 |
-
"metadata": {},
|
| 298 |
-
"output_type": "execute_result"
|
| 299 |
-
}
|
| 300 |
-
],
|
| 301 |
"source": [
|
| 302 |
"adata.obs.head()"
|
| 303 |
]
|
| 304 |
-
}
|
| 305 |
-
],
|
| 306 |
-
"metadata": {
|
| 307 |
-
"kernelspec": {
|
| 308 |
-
"display_name": "Python 3 (ipykernel)",
|
| 309 |
-
"language": "python",
|
| 310 |
-
"name": "python3"
|
| 311 |
},
|
| 312 |
-
|
| 313 |
-
"
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
"
|
| 322 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 323 |
}
|
| 324 |
-
|
|
|
|
| 325 |
"nbformat": 4,
|
| 326 |
"nbformat_minor": 5
|
| 327 |
}
|
|
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "markdown",
|
| 5 |
+
"id": "b68cf1d8",
|
| 6 |
"metadata": {},
|
| 7 |
"source": [
|
| 8 |
+
"# Tutorial: Creating an AnnData Object from Tahoe-100M Dataset\n",
|
| 9 |
+
"This notebook demonstrates step-by-step how to create an `AnnData` object using the Tahoe-100M dataset hosted on Hugging Face. We'll also enrich the metadata with additional information."
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"cell_type": "markdown",
|
| 14 |
+
"id": "fc9a7282",
|
| 15 |
+
"metadata": {},
|
| 16 |
+
"source": [
|
| 17 |
+
"## Install Required Libraries"
|
| 18 |
]
|
| 19 |
},
|
| 20 |
{
|
| 21 |
"cell_type": "code",
|
| 22 |
+
"execution_count": null,
|
| 23 |
+
"id": "21bab5b0",
|
| 24 |
"metadata": {},
|
| 25 |
"outputs": [],
|
| 26 |
+
"source": [
|
| 27 |
+
"!pip install datasets anndata scipy pandas pubchempy"
|
| 28 |
+
]
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"cell_type": "markdown",
|
| 32 |
+
"id": "7e9bf44e",
|
| 33 |
+
"metadata": {},
|
| 34 |
+
"source": [
|
| 35 |
+
"## Import Libraries"
|
| 36 |
+
]
|
| 37 |
},
|
| 38 |
{
|
| 39 |
"cell_type": "code",
|
| 40 |
+
"execution_count": null,
|
| 41 |
+
"id": "a7589c73",
|
| 42 |
"metadata": {},
|
| 43 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
"source": [
|
| 45 |
"from datasets import load_dataset\n",
|
| 46 |
"from scipy.sparse import csr_matrix\n",
|
| 47 |
"import anndata\n",
|
| 48 |
+
"import pandas as pd\n",
|
| 49 |
+
"import pubchempy as pcp"
|
| 50 |
]
|
| 51 |
},
|
| 52 |
{
|
| 53 |
"cell_type": "markdown",
|
| 54 |
+
"id": "f31cd11c",
|
| 55 |
"metadata": {},
|
| 56 |
"source": [
|
| 57 |
+
"## Helper Function"
|
|
|
|
| 58 |
]
|
| 59 |
},
|
| 60 |
{
|
| 61 |
"cell_type": "code",
|
| 62 |
+
"execution_count": null,
|
| 63 |
+
"id": "f4391697",
|
| 64 |
"metadata": {},
|
| 65 |
"outputs": [],
|
| 66 |
"source": [
|
| 67 |
+
"# Insert create_anndata_from_generator function provided earlier here"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
]
|
| 69 |
},
|
| 70 |
{
|
| 71 |
"cell_type": "markdown",
|
| 72 |
+
"id": "0cf683cd",
|
| 73 |
"metadata": {},
|
| 74 |
"source": [
|
| 75 |
+
"## Load Tahoe-100M Dataset"
|
| 76 |
]
|
| 77 |
},
|
| 78 |
{
|
| 79 |
"cell_type": "code",
|
| 80 |
+
"execution_count": null,
|
| 81 |
+
"id": "80eb5104",
|
| 82 |
"metadata": {},
|
| 83 |
"outputs": [],
|
| 84 |
"source": [
|
| 85 |
+
"tahoe_100m_ds = load_dataset('vevotx/Tahoe-100M', streaming=True, split='train')"
|
|
|
|
|
|
|
| 86 |
]
|
| 87 |
},
|
| 88 |
{
|
| 89 |
"cell_type": "markdown",
|
| 90 |
+
"id": "337f02f2",
|
| 91 |
"metadata": {},
|
| 92 |
"source": [
|
| 93 |
+
"## Load Gene Metadata"
|
| 94 |
]
|
| 95 |
},
|
| 96 |
{
|
| 97 |
"cell_type": "code",
|
| 98 |
+
"execution_count": null,
|
| 99 |
+
"id": "a0eeaa83",
|
| 100 |
"metadata": {},
|
| 101 |
"outputs": [],
|
| 102 |
"source": [
|
|
|
|
| 103 |
"gene_metadata = load_dataset(\"vevotx/Tahoe-100M\", name=\"gene_metadata\", split=\"train\")\n",
|
| 104 |
+
"gene_vocab = {entry[\"token_id\"]: entry[\"ensembl_id\"] for entry in gene_metadata}"
|
| 105 |
]
|
| 106 |
},
|
| 107 |
{
|
| 108 |
"cell_type": "markdown",
|
| 109 |
+
"id": "ded9c086",
|
| 110 |
"metadata": {},
|
| 111 |
"source": [
|
| 112 |
+
"## Create AnnData Object"
|
| 113 |
]
|
| 114 |
},
|
| 115 |
{
|
| 116 |
"cell_type": "code",
|
| 117 |
+
"execution_count": null,
|
| 118 |
+
"id": "6fb1d70d",
|
| 119 |
"metadata": {},
|
| 120 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
"source": [
|
|
|
|
| 122 |
"adata = create_anndata_from_generator(tahoe_100m_ds, gene_vocab, sample_size=1000)\n",
|
| 123 |
+
"adata"
|
| 124 |
]
|
| 125 |
},
|
| 126 |
{
|
| 127 |
"cell_type": "markdown",
|
| 128 |
+
"id": "c7c07f9e",
|
| 129 |
"metadata": {},
|
| 130 |
"source": [
|
| 131 |
+
"## Inspect Metadata (`adata.obs`)"
|
| 132 |
]
|
| 133 |
},
|
| 134 |
{
|
| 135 |
"cell_type": "code",
|
| 136 |
+
"execution_count": null,
|
| 137 |
+
"id": "15214a5c",
|
| 138 |
"metadata": {},
|
| 139 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
"source": [
|
| 141 |
"adata.obs.head()"
|
| 142 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
},
|
| 144 |
+
{
|
| 145 |
+
"cell_type": "markdown",
|
| 146 |
+
"id": "ec391116",
|
| 147 |
+
"metadata": {},
|
| 148 |
+
"source": [
|
| 149 |
+
"## Enrich with Sample Metadata"
|
| 150 |
+
]
|
| 151 |
+
},
|
| 152 |
+
{
|
| 153 |
+
"cell_type": "code",
|
| 154 |
+
"execution_count": null,
|
| 155 |
+
"id": "657524c8",
|
| 156 |
+
"metadata": {},
|
| 157 |
+
"outputs": [],
|
| 158 |
+
"source": [
|
| 159 |
+
"sample_metadata = load_dataset(\"vevotx/Tahoe-100M\",\"sample_metadata\", split=\"train\").to_pandas()\n",
|
| 160 |
+
"adata.obs = pd.merge(adata.obs, sample_metadata.drop(columns=[\"drug\",\"plate\"]), on=\"sample\")\n",
|
| 161 |
+
"adata.obs.head()"
|
| 162 |
+
]
|
| 163 |
+
},
|
| 164 |
+
{
|
| 165 |
+
"cell_type": "markdown",
|
| 166 |
+
"id": "a1504ad7",
|
| 167 |
+
"metadata": {},
|
| 168 |
+
"source": [
|
| 169 |
+
"## Add Drug Metadata"
|
| 170 |
+
]
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"cell_type": "code",
|
| 174 |
+
"execution_count": null,
|
| 175 |
+
"id": "741c8bcc",
|
| 176 |
+
"metadata": {},
|
| 177 |
+
"outputs": [],
|
| 178 |
+
"source": [
|
| 179 |
+
"drug_metadata = load_dataset(\"vevotx/Tahoe-100M\",\"drug_metadata\", split=\"train\").to_pandas()\n",
|
| 180 |
+
"adata.obs = pd.merge(adata.obs, drug_metadata.drop(columns=[\"canonical_smiles\",\"pubchem_cid\",\"moa-fine\"]), on=\"drug\")\n",
|
| 181 |
+
"adata.obs.head()"
|
| 182 |
+
]
|
| 183 |
+
},
|
| 184 |
+
{
|
| 185 |
+
"cell_type": "markdown",
|
| 186 |
+
"id": "d7eb71ff",
|
| 187 |
+
"metadata": {},
|
| 188 |
+
"source": [
|
| 189 |
+
"## Drug Info from PubChem"
|
| 190 |
+
]
|
| 191 |
+
},
|
| 192 |
+
{
|
| 193 |
+
"cell_type": "code",
|
| 194 |
+
"execution_count": null,
|
| 195 |
+
"id": "05d74c80",
|
| 196 |
+
"metadata": {},
|
| 197 |
+
"outputs": [],
|
| 198 |
+
"source": [
|
| 199 |
+
"drug_name = adata.obs[\"drug\"].values[0]\n",
|
| 200 |
+
"cid = int(float(adata.obs[\"pubchem_cid\"].values[0]))\n",
|
| 201 |
+
"compound = pcp.Compound.from_cid(cid)\n",
|
| 202 |
+
"\n",
|
| 203 |
+
"print(f\"Name: {drug_name}\")\n",
|
| 204 |
+
"print(f\"Synonyms: {compound.synonyms[:10]}\")\n",
|
| 205 |
+
"print(f\"Formula: {compound.molecular_formula}\")\n",
|
| 206 |
+
"print(f\"SMILES: {compound.isomeric_smiles}\")\n",
|
| 207 |
+
"print(f\"Mass: {compound.exact_mass}\")"
|
| 208 |
+
]
|
| 209 |
+
},
|
| 210 |
+
{
|
| 211 |
+
"cell_type": "markdown",
|
| 212 |
+
"id": "2dc7179c",
|
| 213 |
+
"metadata": {},
|
| 214 |
+
"source": [
|
| 215 |
+
"## Load Cell Line Metadata"
|
| 216 |
+
]
|
| 217 |
+
},
|
| 218 |
+
{
|
| 219 |
+
"cell_type": "code",
|
| 220 |
+
"execution_count": null,
|
| 221 |
+
"id": "6519967a",
|
| 222 |
+
"metadata": {},
|
| 223 |
+
"outputs": [],
|
| 224 |
+
"source": [
|
| 225 |
+
"cell_line_metadata = load_dataset(\"vevotx/Tahoe-100M\",\"cell_line_metadata\", split=\"train\").to_pandas()\n",
|
| 226 |
+
"cell_line_metadata.head()"
|
| 227 |
+
]
|
| 228 |
}
|
| 229 |
+
],
|
| 230 |
+
"metadata": {},
|
| 231 |
"nbformat": 4,
|
| 232 |
"nbformat_minor": 5
|
| 233 |
}
|