Datasets:
ivelin
commited on
Commit
·
ce1b4f4
1
Parent(s):
5666321
fix: checkpoint
Browse filesSigned-off-by: ivelin <[email protected]>
- ui_refexp.py +65 -67
ui_refexp.py
CHANGED
|
@@ -67,40 +67,40 @@ _METADATA_URLS = {
|
|
| 67 |
|
| 68 |
|
| 69 |
def tfrecord2dict(raw_tfr_dataset: None):
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
|
| 105 |
|
| 106 |
class UIRefExp(datasets.GeneratorBasedBuilder):
|
|
@@ -120,34 +120,35 @@ class UIRefExp(datasets.GeneratorBasedBuilder):
|
|
| 120 |
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
| 121 |
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
| 122 |
BUILDER_CONFIGS = [
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
DEFAULT_CONFIG_NAME = "
|
| 137 |
|
| 138 |
def _info(self):
|
| 139 |
features = datasets.Features(
|
| 140 |
{
|
| 141 |
"screenshot": datasets.Image(),
|
| 142 |
-
|
| 143 |
-
"
|
|
|
|
|
|
|
| 144 |
}
|
| 145 |
)
|
| 146 |
|
| 147 |
return datasets.DatasetInfo(
|
| 148 |
description=_DESCRIPTION,
|
| 149 |
features=features,
|
| 150 |
-
supervised_keys=("screenshot","prompt", "target_bounding_box"),
|
| 151 |
homepage=_HOMEPAGE,
|
| 152 |
license=_LICENSE,
|
| 153 |
citation=_CITATION,
|
|
@@ -161,51 +162,48 @@ class UIRefExp(datasets.GeneratorBasedBuilder):
|
|
| 161 |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
|
| 162 |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
| 163 |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
| 164 |
-
image_urls = _DATA_URLs[self.config.name]
|
| 165 |
-
image_archive = dl_manager.download(image_urls)
|
| 166 |
# download and extract TFRecord labeling metadata
|
| 167 |
local_tfrs = {}
|
| 168 |
-
for split, tfrecord_url in _METADATA_URLS:
|
| 169 |
local_tfr_file = dl_manager.download(tfrecord_url)
|
| 170 |
local_tfrs[split] = local_tfr_file
|
| 171 |
-
|
|
|
|
|
|
|
|
|
|
| 172 |
return [
|
| 173 |
datasets.SplitGenerator(
|
| 174 |
name=datasets.Split.TRAIN,
|
| 175 |
# These kwargs will be passed to _generate_examples
|
| 176 |
gen_kwargs={
|
| 177 |
-
"
|
| 178 |
-
"metadata_file": local_tfrs["train"],
|
| 179 |
"images": dl_manager.iter_archive(archive_path),
|
| 180 |
"split": "train",
|
| 181 |
-
|
| 182 |
},
|
| 183 |
),
|
| 184 |
datasets.SplitGenerator(
|
| 185 |
name=datasets.Split.VALIDATION,
|
| 186 |
# These kwargs will be passed to _generate_examples
|
| 187 |
gen_kwargs={
|
| 188 |
-
"
|
| 189 |
-
"metadata_file": local_tfrs["validation"],
|
| 190 |
"images": dl_manager.iter_archive(archive_path),
|
| 191 |
"split": "validation",
|
| 192 |
-
},
|
| 193 |
),
|
| 194 |
datasets.SplitGenerator(
|
| 195 |
name=datasets.Split.TEST,
|
| 196 |
# These kwargs will be passed to _generate_examples
|
| 197 |
gen_kwargs={
|
| 198 |
-
"
|
| 199 |
-
"metadata_file": local_tfrs["test"],
|
| 200 |
"images": dl_manager.iter_archive(archive_path),
|
| 201 |
"split": "test",
|
| 202 |
-
},
|
| 203 |
)
|
| 204 |
]
|
| 205 |
|
| 206 |
def _generate_examples(
|
| 207 |
self,
|
| 208 |
-
root_dir,
|
| 209 |
metadata_file,
|
| 210 |
images,
|
| 211 |
split, # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
|
@@ -214,12 +212,12 @@ class UIRefExp(datasets.GeneratorBasedBuilder):
|
|
| 214 |
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
| 215 |
# The `key` is here for legacy reason (tfds) and is not important in itself.
|
| 216 |
# filter tfrecord and convert to json
|
| 217 |
-
|
| 218 |
with open(metadata_path, encoding="utf-8") as f:
|
| 219 |
files_to_keep = set(f.read().split("\n"))
|
| 220 |
for file_path, file_obj in images:
|
| 221 |
if file_path.startswith(_IMAGES_DIR):
|
| 222 |
-
if file_path[len(_IMAGES_DIR)
|
| 223 |
label = file_path.split("/")[2]
|
| 224 |
yield file_path, {
|
| 225 |
"image": {"path": file_path, "bytes": file_obj.read()},
|
|
|
|
| 67 |
|
| 68 |
|
| 69 |
def tfrecord2dict(raw_tfr_dataset: None):
|
| 70 |
+
"""Filter and convert refexp tfrecord file to dict object."""
|
| 71 |
+
count = 0
|
| 72 |
+
donut_refexp_dict = []
|
| 73 |
+
for raw_record in raw_tfr_dataset:
|
| 74 |
+
count += 1
|
| 75 |
+
example = tf.train.Example()
|
| 76 |
+
example.ParseFromString(raw_record.numpy())
|
| 77 |
+
# print(f"total UI objects in this sample: {len(example.features.feature['image/object/bbox/xmin'].float_list.value)}")
|
| 78 |
+
# print(f"feature keys: {example.features.feature.keys}")
|
| 79 |
+
donut_refexp = {}
|
| 80 |
+
image_id = example.features.feature['image/id'].bytes_list.value[0].decode()
|
| 81 |
+
image_path = zipurl_template.format(image_id=image_id)
|
| 82 |
+
donut_refexp["image_path"] = image_path
|
| 83 |
+
donut_refexp["question"] = example.features.feature["image/ref_exp/text"].bytes_list.value[0].decode()
|
| 84 |
+
object_idx = example.features.feature["image/ref_exp/label"].int64_list.value[0]
|
| 85 |
+
object_idx = int(object_idx)
|
| 86 |
+
# print(f"object_idx: {object_idx}")
|
| 87 |
+
object_bb = {}
|
| 88 |
+
# print(f"example.features.feature['image/object/bbox/xmin']: {example.features.feature['image/object/bbox/xmin'].float_list.value[object_idx]}")
|
| 89 |
+
object_bb["xmin"] = example.features.feature['image/object/bbox/xmin'].float_list.value[object_idx]
|
| 90 |
+
object_bb["ymin"] = example.features.feature['image/object/bbox/ymin'].float_list.value[object_idx]
|
| 91 |
+
object_bb["xmax"] = example.features.feature['image/object/bbox/xmax'].float_list.value[object_idx]
|
| 92 |
+
object_bb["ymax"] = example.features.feature['image/object/bbox/ymax'].float_list.value[object_idx]
|
| 93 |
+
donut_refexp["answer"] = object_bb
|
| 94 |
+
donut_refexp_dict.append(donut_refexp)
|
| 95 |
+
if count != 3:
|
| 96 |
+
continue
|
| 97 |
+
print(f"Donut refexp: {donut_refexp}")
|
| 98 |
+
# for key, feature in example.features.feature.items():
|
| 99 |
+
# if key in ['image/id', "image/ref_exp/text", "image/ref_exp/label", 'image/object/bbox/xmin', 'image/object/bbox/ymin', 'image/object/bbox/xmax', 'image/object/bbox/ymax']:
|
| 100 |
+
# print(key, feature)
|
| 101 |
+
|
| 102 |
+
print(f"Total samples in the raw dataset: {count}")
|
| 103 |
+
return donut_refexp_dict
|
| 104 |
|
| 105 |
|
| 106 |
class UIRefExp(datasets.GeneratorBasedBuilder):
|
|
|
|
| 120 |
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
| 121 |
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
| 122 |
BUILDER_CONFIGS = [
|
| 123 |
+
datasets.BuilderConfig(
|
| 124 |
+
name="ui_refexp",
|
| 125 |
+
version=VERSION,
|
| 126 |
+
description="Contains 66k+ unique UI screens. For each UI, we present a screenshot (JPG file) and the text shown on the screen that was extracted using an OCR model.",
|
| 127 |
+
)
|
| 128 |
+
# ,
|
| 129 |
+
# # datasets.BuilderConfig(
|
| 130 |
+
# # name="screenshots_captions_filtered",
|
| 131 |
+
# # version=VERSION,
|
| 132 |
+
# # description="Contains 25k unique UI screens. For each UI, we present a screenshot (JPG file) and the text shown on the screen that was extracted using an OCR model. Filtering was done as discussed in this paper: https://aclanthology.org/2020.acl-main.729.pdf",
|
| 133 |
+
# # ),
|
| 134 |
+
]
|
| 135 |
+
|
| 136 |
+
DEFAULT_CONFIG_NAME = "ui_refexp"
|
| 137 |
|
| 138 |
def _info(self):
|
| 139 |
features = datasets.Features(
|
| 140 |
{
|
| 141 |
"screenshot": datasets.Image(),
|
| 142 |
+
# click the search button next to menu drawer at the top of the screen
|
| 143 |
+
"prompt": datasets.Value("string"),
|
| 144 |
+
# [xmin, ymin, xmax, ymax], normalized screen reference values between 0 and 1
|
| 145 |
+
"target_bounding_box": dict,
|
| 146 |
}
|
| 147 |
)
|
| 148 |
|
| 149 |
return datasets.DatasetInfo(
|
| 150 |
description=_DESCRIPTION,
|
| 151 |
features=features,
|
|
|
|
| 152 |
homepage=_HOMEPAGE,
|
| 153 |
license=_LICENSE,
|
| 154 |
citation=_CITATION,
|
|
|
|
| 162 |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
|
| 163 |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
| 164 |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
|
|
|
|
|
|
| 165 |
# download and extract TFRecord labeling metadata
|
| 166 |
local_tfrs = {}
|
| 167 |
+
for split, tfrecord_url in _METADATA_URLS[self.config.name].items():
|
| 168 |
local_tfr_file = dl_manager.download(tfrecord_url)
|
| 169 |
local_tfrs[split] = local_tfr_file
|
| 170 |
+
# download image files
|
| 171 |
+
image_urls = _DATA_URLs[self.config.name]
|
| 172 |
+
archive_path = dl_manager.download(image_urls)
|
| 173 |
+
|
| 174 |
return [
|
| 175 |
datasets.SplitGenerator(
|
| 176 |
name=datasets.Split.TRAIN,
|
| 177 |
# These kwargs will be passed to _generate_examples
|
| 178 |
gen_kwargs={
|
| 179 |
+
"metadata_file": local_tfrs["train"],
|
|
|
|
| 180 |
"images": dl_manager.iter_archive(archive_path),
|
| 181 |
"split": "train",
|
| 182 |
+
|
| 183 |
},
|
| 184 |
),
|
| 185 |
datasets.SplitGenerator(
|
| 186 |
name=datasets.Split.VALIDATION,
|
| 187 |
# These kwargs will be passed to _generate_examples
|
| 188 |
gen_kwargs={
|
| 189 |
+
"metadata_file": local_tfrs["validation"],
|
|
|
|
| 190 |
"images": dl_manager.iter_archive(archive_path),
|
| 191 |
"split": "validation",
|
| 192 |
+
},
|
| 193 |
),
|
| 194 |
datasets.SplitGenerator(
|
| 195 |
name=datasets.Split.TEST,
|
| 196 |
# These kwargs will be passed to _generate_examples
|
| 197 |
gen_kwargs={
|
| 198 |
+
"metadata_file": local_tfrs["test"],
|
|
|
|
| 199 |
"images": dl_manager.iter_archive(archive_path),
|
| 200 |
"split": "test",
|
| 201 |
+
},
|
| 202 |
)
|
| 203 |
]
|
| 204 |
|
| 205 |
def _generate_examples(
|
| 206 |
self,
|
|
|
|
| 207 |
metadata_file,
|
| 208 |
images,
|
| 209 |
split, # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
|
|
|
| 212 |
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
| 213 |
# The `key` is here for legacy reason (tfds) and is not important in itself.
|
| 214 |
# filter tfrecord and convert to json
|
| 215 |
+
|
| 216 |
with open(metadata_path, encoding="utf-8") as f:
|
| 217 |
files_to_keep = set(f.read().split("\n"))
|
| 218 |
for file_path, file_obj in images:
|
| 219 |
if file_path.startswith(_IMAGES_DIR):
|
| 220 |
+
if file_path[len(_IMAGES_DIR): -len(".jpg")] in files_to_keep:
|
| 221 |
label = file_path.split("/")[2]
|
| 222 |
yield file_path, {
|
| 223 |
"image": {"path": file_path, "bytes": file_obj.read()},
|