|
|
"""Create a hard multiple choice subset of the ImageNet validation split based on human accuracy annotation data.""" |
|
|
|
|
|
from typing import Dict, Tuple |
|
|
import argparse |
|
|
import glob |
|
|
import json |
|
|
import pickle |
|
|
import numpy as np |
|
|
import scipy.io |
|
|
|
|
|
|
|
|
def get_imagenet_labels() -> Tuple[Dict[str, str], Dict[str, str]]: |
|
|
"""Return ground truth wnids.""" |
|
|
images = glob.glob("*/*.jpeg", root_dir="/gscratch/efml/djghosh/temp_data/imagenetv2/inv2-all") |
|
|
with open("imagenet_wnids.txt") as fp: |
|
|
wnids = [line.strip() for line in fp] |
|
|
imagenet_labels = {} |
|
|
imagenet_paths = {} |
|
|
for imgpath in images: |
|
|
label_id, image_id = imgpath.split(".jpeg")[0].split("/") |
|
|
imagenet_labels[image_id] = wnids[int(label_id)] |
|
|
imagenet_paths[image_id] = imgpath |
|
|
return imagenet_labels, imagenet_paths |
|
|
|
|
|
|
|
|
def get_hard_examples(num_choices: int = 4, seed: int | np.random.Generator = None): |
|
|
rng = np.random.default_rng(seed) |
|
|
gt_labels, gt_paths = get_imagenet_labels() |
|
|
with open("human_accuracy_annotations.pkl", "rb") as fp: |
|
|
annotation_data = pickle.load(fp) |
|
|
examples = [] |
|
|
for imgname, annot in annotation_data['initial_annots'].items(): |
|
|
if imgname in gt_labels and len(annot.get('wrong', [])) >= num_choices - 1: |
|
|
if gt_labels[imgname] not in annot['wrong']: |
|
|
wrong_choices = rng.choice(annot['wrong'], size=num_choices - 1, replace=False) |
|
|
examples.append({ |
|
|
'image': f"imagesv2/{gt_paths[imgname]}", |
|
|
'choices': [gt_labels[imgname]] + list(wrong_choices), |
|
|
'correct_answer': gt_labels[imgname] |
|
|
}) |
|
|
return examples |
|
|
|
|
|
|
|
|
def construct_ancestor_map(wnids: list): |
|
|
"""Construct map of deepest common ancestor for all pairs of ImageNet classes.""" |
|
|
ancestor_map = np.zeros((len(wnids), len(wnids)), dtype=np.uint8) |
|
|
def iterate_postorder(node: dict, depth: int): |
|
|
|
|
|
if node['children'] is None: |
|
|
idx = wnids.index(node['wnid']) |
|
|
ancestor_map[idx, idx] = depth |
|
|
return [idx] |
|
|
|
|
|
all_leaves = [ |
|
|
iterate_postorder(child, depth + 1) |
|
|
for child in node['children'].values() |
|
|
] |
|
|
|
|
|
for branch in range(len(all_leaves)): |
|
|
for other in range(len(all_leaves)): |
|
|
if other == branch: |
|
|
continue |
|
|
for leaf_a in all_leaves[branch]: |
|
|
for leaf_b in all_leaves[other]: |
|
|
ancestor_map[leaf_a, leaf_b] = max(ancestor_map[leaf_a, leaf_b], depth) |
|
|
return sum(all_leaves, []) |
|
|
with open("imagenet_hierarchy.json") as fp: |
|
|
root = json.load(fp)['tree'] |
|
|
iterate_postorder(root, 0) |
|
|
return ancestor_map |
|
|
|
|
|
|
|
|
def get_filled_hard_examples(num_choices: int = 4, min_hard: int = 1, seed: int | np.random.Generator = None): |
|
|
""" |
|
|
Construct hard MCQA examples using human annotation data. |
|
|
Examples with fewer than the required number of 'wrong' annotations will have remaining answer choices filled in. |
|
|
""" |
|
|
rng = np.random.default_rng(seed) |
|
|
with open("imagenet_wnids.txt") as fp: |
|
|
wnids = [line.strip() for line in fp] |
|
|
gt_labels, gt_paths = get_imagenet_labels() |
|
|
ancestor_map = construct_ancestor_map(wnids) |
|
|
|
|
|
with open("human_accuracy_annotations.pkl", "rb") as fp: |
|
|
annotation_data = pickle.load(fp) |
|
|
examples = [] |
|
|
for imgname, annot in annotation_data['initial_annots'].items(): |
|
|
if imgname in gt_labels and len(annot.get('wrong', [])) >= min_hard: |
|
|
if gt_labels[imgname] not in annot['wrong']: |
|
|
|
|
|
if num_choices - 1 < len(annot['wrong']): |
|
|
wrong_choices = list(rng.choice(annot['wrong'], size=num_choices - 1, replace=False)) |
|
|
else: |
|
|
wrong_choices = list(annot['wrong']) |
|
|
|
|
|
gt_idx = wnids.index(gt_labels[imgname]) |
|
|
for depth in range(ancestor_map[gt_idx, gt_idx] - 1, -1, -1): |
|
|
if len(wrong_choices) >= num_choices - 1: |
|
|
break |
|
|
neighbors = [ |
|
|
wnids[idx] |
|
|
for idx in np.nonzero(ancestor_map[gt_idx] == depth)[0] |
|
|
if wnids[idx] not in annot['wrong'] and wnids[idx] not in annot.get('correct', []) |
|
|
] |
|
|
if num_choices - 1 - len(wrong_choices) < len(neighbors): |
|
|
wrong_choices += list(rng.choice(neighbors, size=num_choices - 1 - len(wrong_choices), replace=False)) |
|
|
else: |
|
|
wrong_choices += neighbors |
|
|
examples.append({ |
|
|
'image': f"imagesv2/{gt_paths[imgname]}", |
|
|
'choices': [gt_labels[imgname]] + list(wrong_choices), |
|
|
'correct_answer': gt_labels[imgname] |
|
|
}) |
|
|
return examples |
|
|
|
|
|
|
|
|
def get_close_examples(num_choices: int = 4, seed: int | np.random.Generator = None): |
|
|
""" |
|
|
Construct close MCQA examples using only ImageNet/WordNet hierarchy data. |
|
|
""" |
|
|
rng = np.random.default_rng(seed) |
|
|
with open("imagenet_wnids.txt") as fp: |
|
|
wnids = [line.strip() for line in fp] |
|
|
gt_labels, gt_paths = get_imagenet_labels() |
|
|
ancestor_map = construct_ancestor_map(wnids) |
|
|
|
|
|
with open("human_accuracy_annotations.pkl", "rb") as fp: |
|
|
annotation_data = pickle.load(fp) |
|
|
examples = [] |
|
|
for imgname, annot in annotation_data['initial_annots'].items(): |
|
|
if imgname in gt_labels: |
|
|
if gt_labels[imgname] not in annot.get('wrong', []): |
|
|
wrong_choices = [] |
|
|
|
|
|
gt_idx = wnids.index(gt_labels[imgname]) |
|
|
for depth in range(ancestor_map[gt_idx, gt_idx] - 1, -1, -1): |
|
|
if len(wrong_choices) >= num_choices - 1: |
|
|
break |
|
|
neighbors = [ |
|
|
wnids[idx] |
|
|
for idx in np.nonzero(ancestor_map[gt_idx] == depth)[0] |
|
|
if wnids[idx] not in annot.get('correct', []) |
|
|
] |
|
|
if num_choices - 1 - len(wrong_choices) < len(neighbors): |
|
|
wrong_choices += list(rng.choice(neighbors, size=num_choices - 1 - len(wrong_choices), replace=False)) |
|
|
else: |
|
|
wrong_choices += neighbors |
|
|
examples.append({ |
|
|
'image': f"imagesv2/{gt_paths[imgname]}", |
|
|
'choices': [gt_labels[imgname]] + list(wrong_choices), |
|
|
'correct_answer': gt_labels[imgname] |
|
|
}) |
|
|
return examples |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
parser = argparse.ArgumentParser() |
|
|
parser.add_argument("--n-choices", "-n", type=int, required=True) |
|
|
parser.add_argument("--output", "-o", type=str, default=None) |
|
|
group = parser.add_mutually_exclusive_group() |
|
|
group.add_argument("--fill", "-f", action="store_true") |
|
|
group.add_argument("--no-hard", action="store_true") |
|
|
parser.add_argument("--min-hard", "-m", type=int, default=1) |
|
|
parser.add_argument("--seed", type=int, default=42) |
|
|
args = parser.parse_args() |
|
|
if args.fill: |
|
|
dataset = get_filled_hard_examples(args.n_choices, args.min_hard, seed=args.seed) |
|
|
elif args.no_hard: |
|
|
dataset = get_close_examples(args.n_choices, seed=args.seed) |
|
|
else: |
|
|
dataset = get_hard_examples(args.n_choices, seed=args.seed) |
|
|
print(f"No. of examples: {len(dataset)}") |
|
|
if args.output: |
|
|
with open(args.output, "w") as fp: |
|
|
json.dump(dataset, fp, indent=2) |
|
|
print(f"Saved to '{args.output}'") |
|
|
|