|
|
{
|
|
|
"queries": {
|
|
|
"description": "FutureQueryEval query collection with 148 queries across 7 categories",
|
|
|
"citation": "@misc{abdallah2025good, title={How Good are LLM-based Rerankers? An Empirical Analysis of State-of-the-Art Reranking Models}, author={Abdelrahman Abdallah and Bhawna Piryani and Jamshid Mozafari and Mohammed Ali and Adam Jatowt}, year={2025}, eprint={2508.16757}, archivePrefix={arXiv}, primaryClass={cs.CL}}",
|
|
|
"homepage": "https://github.com/DataScienceUIBK/llm-reranking-generalization-study",
|
|
|
"license": "Apache-2.0",
|
|
|
"features": {
|
|
|
"query_id": {
|
|
|
"dtype": "string",
|
|
|
"id": null,
|
|
|
"_type": "Value"
|
|
|
},
|
|
|
"query_text": {
|
|
|
"dtype": "string",
|
|
|
"id": null,
|
|
|
"_type": "Value"
|
|
|
},
|
|
|
"category": {
|
|
|
"dtype": "string",
|
|
|
"id": null,
|
|
|
"_type": "Value"
|
|
|
}
|
|
|
},
|
|
|
"splits": {
|
|
|
"queries": {
|
|
|
"name": "queries",
|
|
|
"num_bytes": 45056,
|
|
|
"num_examples": 148,
|
|
|
"dataset_name": "future_query_eval"
|
|
|
}
|
|
|
},
|
|
|
"download_size": 45056,
|
|
|
"dataset_size": 45056
|
|
|
},
|
|
|
"corpus": {
|
|
|
"description": "FutureQueryEval document corpus with 2,787 documents",
|
|
|
"citation": "@misc{abdallah2025good, title={How Good are LLM-based Rerankers? An Empirical Analysis of State-of-the-Art Reranking Models}, author={Abdelrahman Abdallah and Bhawna Piryani and Jamshid Mozafari and Mohammed Ali and Adam Jatowt}, year={2025}, eprint={2508.16757}, archivePrefix={arXiv}, primaryClass={cs.CL}}",
|
|
|
"homepage": "https://github.com/DataScienceUIBK/llm-reranking-generalization-study",
|
|
|
"license": "Apache-2.0",
|
|
|
"features": {
|
|
|
"doc_id": {
|
|
|
"dtype": "string",
|
|
|
"id": null,
|
|
|
"_type": "Value"
|
|
|
},
|
|
|
"title": {
|
|
|
"dtype": "string",
|
|
|
"id": null,
|
|
|
"_type": "Value"
|
|
|
},
|
|
|
"text": {
|
|
|
"dtype": "string",
|
|
|
"id": null,
|
|
|
"_type": "Value"
|
|
|
},
|
|
|
"url": {
|
|
|
"dtype": "string",
|
|
|
"id": null,
|
|
|
"_type": "Value"
|
|
|
}
|
|
|
},
|
|
|
"splits": {
|
|
|
"corpus": {
|
|
|
"name": "corpus",
|
|
|
"num_bytes": 964608,
|
|
|
"num_examples": 2787,
|
|
|
"dataset_name": "future_query_eval"
|
|
|
}
|
|
|
},
|
|
|
"download_size": 964608,
|
|
|
"dataset_size": 964608
|
|
|
},
|
|
|
"qrels": {
|
|
|
"description": "FutureQueryEval relevance judgments with 2,938 query-document pairs",
|
|
|
"citation": "@misc{abdallah2025good, title={How Good are LLM-based Rerankers? An Empirical Analysis of State-of-the-Art Reranking Models}, author={Abdelrahman Abdallah and Bhawna Piryani and Jamshid Mozafari and Mohammed Ali and Adam Jatowt}, year={2025}, eprint={2508.16757}, archivePrefix={arXiv}, primaryClass={cs.CL}}",
|
|
|
"homepage": "https://github.com/DataScienceUIBK/llm-reranking-generalization-study",
|
|
|
"license": "Apache-2.0",
|
|
|
"features": {
|
|
|
"query_id": {
|
|
|
"dtype": "string",
|
|
|
"id": null,
|
|
|
"_type": "Value"
|
|
|
},
|
|
|
"iteration": {
|
|
|
"dtype": "int32",
|
|
|
"id": null,
|
|
|
"_type": "Value"
|
|
|
},
|
|
|
"doc_id": {
|
|
|
"dtype": "string",
|
|
|
"id": null,
|
|
|
"_type": "Value"
|
|
|
},
|
|
|
"relevance": {
|
|
|
"dtype": "int32",
|
|
|
"id": null,
|
|
|
"_type": "Value"
|
|
|
}
|
|
|
},
|
|
|
"splits": {
|
|
|
"qrels": {
|
|
|
"name": "qrels",
|
|
|
"num_bytes": 99328,
|
|
|
"num_examples": 2938,
|
|
|
"dataset_name": "future_query_eval"
|
|
|
}
|
|
|
},
|
|
|
"download_size": 99328,
|
|
|
"dataset_size": 99328
|
|
|
}
|
|
|
} |