| import pandas as pd | |
| import datasets | |
| _DESCRIPTION = """\ | |
| Multi-source dataset of antibody-mutation interactions including IC50, binding, escape, and affinity measurements. | |
| Also includes antibody synonyms with CDR sequences and epitope information. | |
| """ | |
| _FEATURES = { | |
| 'antibody_name': datasets.Value("string"), | |
| 'antigen_lineage': datasets.Value("string"), | |
| 'target_value': datasets.Value("float"), | |
| 'target_type': datasets.Value("string"), | |
| 'source_name': datasets.Value("string"), | |
| 'source_doi': datasets.Value("string"), | |
| 'assay_name': datasets.Value("string"), | |
| 'pdb_id': datasets.Value("string"), | |
| 'structure_release_date': datasets.Value("string"), | |
| 'structure_resolution': datasets.Value("float"), | |
| 'mutations': datasets.Value("string"), | |
| 'antigen_chain_ids': datasets.Value("string"), | |
| 'antigen_domain': datasets.Value("string"), | |
| 'antigen_residue_indices': datasets.Value("string"), | |
| 'antigen_residue_indices_trimmed': datasets.Value("string"), | |
| 'antigen_host': datasets.Value("string"), | |
| 'antibody_heavy_chain_id': datasets.Value("string"), | |
| 'antibody_light_chain_id': datasets.Value("string"), | |
| 'epitope_residues': datasets.Value("string"), | |
| 'epitope_mutations': datasets.Value("string"), | |
| 'epitope_domain': datasets.Value("string"), | |
| 'epitope_alteration_count': datasets.Value("string"), | |
| 'spike_sequence': datasets.Value("string"), | |
| 'antibody_heavy_chain_sequence': datasets.Value("string"), | |
| 'antibody_light_chain_sequence': datasets.Value("string"), | |
| 'antibody_vh_sequence': datasets.Value("string"), | |
| 'antibody_vl_sequence': datasets.Value("string"), | |
| 'antigen_sequence': datasets.Value("string"), | |
| 'antigen_sequence_trimmed': datasets.Value("string"), | |
| 'antigen_sequence_without_indels': datasets.Value("string"), | |
| 'antigen_sequence_trimmed_without_indels': datasets.Value("string"), | |
| 'antigen_pdb_sequence': datasets.Value("string"), | |
| 'antigen_pdb_sequence_trimmed': datasets.Value("string"), | |
| } | |
| _ANTIBODY_SYNONYMS_FEATURES = { | |
| 'antibody_name': datasets.Value("string"), | |
| 'pdb_id': datasets.Value("string"), | |
| 'antibody_heavy_chain_cdr1': datasets.Value("string"), | |
| 'antibody_heavy_chain_cdr2': datasets.Value("string"), | |
| 'antibody_heavy_chain_cdr3': datasets.Value("string"), | |
| 'antibody_light_chain_cdr1': datasets.Value("string"), | |
| 'antibody_light_chain_cdr2': datasets.Value("string"), | |
| 'antibody_light_chain_cdr3': datasets.Value("string"), | |
| 'epitope_residues': datasets.Value("string"), | |
| 'epitope_domain': datasets.Value("string"), | |
| } | |
| _TABLES = { | |
| "antibody_synonyms": { | |
| "file": "antibody_info/antibody_synonyms_with_epitopes.parquet", | |
| "features": _ANTIBODY_SYNONYMS_FEATURES, | |
| }, | |
| "drdb": { | |
| "file": "data/drdb_binding_potency.parquet", | |
| "features": { | |
| **_FEATURES, | |
| } | |
| }, | |
| "covabdab": { | |
| "file": "data/covabdab_binding.parquet", | |
| "features": { | |
| **{ | |
| **_FEATURES, | |
| "target_value": datasets.Value("bool"), | |
| } | |
| } | |
| }, | |
| "dms_bloom": { | |
| "file": "data/dms_bloom_ab_escape.parquet", | |
| "features": { | |
| **_FEATURES, | |
| } | |
| }, | |
| "dms_cao": { | |
| "file": "data/dms_cao_ab_escape.parquet", | |
| "features": { | |
| **_FEATURES, | |
| } | |
| }, | |
| "jian_elisa": { | |
| "file": "data/jian_elisa_ab_ic50.parquet", | |
| "features": { | |
| **_FEATURES, | |
| } | |
| }, | |
| "spr": { | |
| "file": "data/spr_ab_affinity.parquet", | |
| "features": { | |
| **_FEATURES, | |
| } | |
| } | |
| } | |
| class CovUniBindConfig(datasets.BuilderConfig): | |
| def __init__(self, **kwargs): | |
| super().__init__(version=datasets.Version("1.0.0"), **kwargs) | |
| class CovUniBind(datasets.GeneratorBasedBuilder): | |
| BUILDER_CONFIGS = [ | |
| CovUniBindConfig(name=table, description=f"{table} subset") for table in _TABLES | |
| ] | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features(_TABLES[self.config.name]["features"]), | |
| ) | |
| def _split_generators(self, dl_manager): | |
| file_path = _TABLES[self.config.name]["file"] | |
| data_path = dl_manager.download_and_extract(file_path) | |
| return [ | |
| datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_path}), | |
| ] | |
| def _generate_examples(self, filepath): | |
| df = pd.read_parquet(filepath) | |
| for idx, row in df.iterrows(): | |
| yield idx, row.to_dict() | |