# GeoBotv1 Examples This directory contains example scripts demonstrating the capabilities of GeoBotv1. ## Examples Overview ### 01_basic_usage.py Basic introduction to GeoBotv1 core components: - Creating geopolitical scenarios - Building causal graphs - Running Monte Carlo simulations - Bayesian belief updating - Uncertainty quantification **Run it:** ```bash python 01_basic_usage.py ``` ### 02_data_ingestion.py Demonstrates data ingestion capabilities: - PDF document processing - Web scraping and article extraction - News aggregation from multiple sources - Intelligence extraction from documents - Entity and keyword extraction **Run it:** ```bash python 02_data_ingestion.py ``` **Note:** For full functionality, install optional dependencies: ```bash pip install pypdf pdfplumber beautifulsoup4 newspaper3k trafilatura feedparser ``` ### 03_intervention_simulation.py Advanced intervention and counterfactual analysis: - Policy intervention simulation - Comparing multiple policy options - Finding optimal interventions - Counterfactual reasoning ("what if" scenarios) - Causal effect estimation **Run it:** ```bash python 03_intervention_simulation.py ``` ### 04_advanced_features.py Research-grade advanced mathematical features: - Sequential Monte Carlo (particle filtering) for nonlinear state estimation - Stochastic Differential Equations (Euler-Maruyama, Milstein, Jump-Diffusion) - Gradient-based Optimal Transport with Kantorovich duality - Entropic OT with Sinkhorn algorithm - Structured event extraction from intelligence text - Event database with temporal normalization **Run it:** ```bash python 04_advanced_features.py ``` **Note:** Some features require additional dependencies: ```bash pip install torch # For advanced features ``` ## Additional Resources ### Creating Custom Scenarios ```python from geobot.core.scenario import Scenario import numpy as np scenario = Scenario( name="custom_scenario", features={ 'tension': np.array([0.7]), 'stability': np.array([0.4]), }, probability=1.0 ) ``` ### Building Causal Models ```python from geobot.models.causal_graph import CausalGraph graph = CausalGraph(name="my_model") graph.add_node('cause') graph.add_node('effect') graph.add_edge('cause', 'effect', strength=0.8) ``` ### Monte Carlo Simulation ```python from geobot.simulation.monte_carlo import MonteCarloEngine, SimulationConfig config = SimulationConfig(n_simulations=1000, time_horizon=100) engine = MonteCarloEngine(config) ``` ### Web Scraping ```python from geobot.data_ingestion.web_scraper import ArticleExtractor extractor = ArticleExtractor() article = extractor.extract_article('https://example.com/article') print(article['title']) print(article['text']) ``` ### PDF Processing ```python from geobot.data_ingestion.pdf_reader import PDFProcessor processor = PDFProcessor() result = processor.extract_intelligence('report.pdf') print(f"Risk Level: {result['intelligence']['risk_level']}") ``` ## Need Help? - Check the main README.md in the project root - Review the module documentation in each package - Examine the source code for detailed implementation ## Contributing Have an interesting use case? Create a new example script and submit a PR!